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Dislocation dynamics. I. A proposed methodology for deformation micromechanics
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A new methodology in computational micromechanics, dislocation dynamics (DD), is introduced.
Dislocation dynamics is developed for examining the dynamic behavior of dislocation distributions
in solid materials. Under conditions of externally applied stress, dislocations exhibit glide with a ve-

locity proportional to a power of the applied stress 0. and climb motion with a velocity that is a
function of the applied stress and temperature. These motions result from long-range force fields,

comprising both externally applied stress and long-range interactions between individual disloca-
tions. Short-range reactions are represented as discrete events. The DD methodology is to be
differentiated from particle methods in statistical mechanics (e.g., molecular dynamics and the
Monte Carlo method) in two respects. First, DD is developed to study the dynamical behavior of
"defects" in the solid. Generally, the density of defects is less than that of the particles that make

up the solid. Second, the small number of dislocations allows for a complete dynamical representa-
tion of the evolution of dislocations in the material medium without the requirement of statistical
averaging. The purpose of the DD methodology is to bridge the gap between experimentally ob-
served phenomena and theoretical descriptions of dislocation aggregates, particularly the evolution
of self-organized dislocation structures under temperature, stress, and irradiation conditions.

I. INTRODUCTION

Dynamical methods were formulated to predict the
time-dependent trajectories of a number of interacting
particles. The term molecular dynamics (MD) has been
used to describe the early versions of such calculations
that were applied to the study of the motion of molecules
in a fluid. Alder and Wainwright' were the first to per-
form MD calculations using discrete potentials. In 1964,
Rahman made the first MD simulations of fluids with
continuous potentials. Verlet made significant contribu-
tions to further application and understanding of the MD
process. In 1980, Andersen proposed a mixed Monte
Carlo (MC)—MD algorithm for performing isothermal
simulations where stochastic collisions from a heat bath
are treated in accord with the MC process. A similar ap-
proach for a many-body system has been suggested by
Abraham, where the equations of motion (EOM's) are
solved considering the stochastic component due to
Brownian motion.

Although it is impractical to simulate the microscopic
dynamics of atoms or molecules within a solid lattice
containing a dilute concentration of defects, we can simu-
late the inverse problem of the motion of defects within
the solid. Dislocations are line defects within a solid
which, although existing on a microscopic level, can pro-
duce macroscopic changes in the properties of the solid
medium. A dislocation is a local discontinuity in an oth-
erwise perfect lattice structure. In a three-dimensional
(3D) array of atoms within a crystal, removing a half
plane of atoms within the crystal leads to a local singular-
ity called a dislocation. This produces a distortion of the
crystal leading to a long-range elastic field.

Dislocations only exhibit macroscopic forces by the

transference of elastic energy through the solid medium.
In this sense a distinct difference can be drawn between
defect (dislocation) dynamics (DD) and MD. In the
latter, the particles constitute the medium and interac-
tion primarily occurs through nearest-neighbor forces
(gases) or local bonding (liquid). In the former, the parti-
cles are singularities (defects) which are distinct from the
medium. The solid is almost like an ether through which
the dislocation particles propagate.

Here we propose a new simulation methodology, DD,
applicable to bulk solid systems. The system of disloca-
tions is treated as a collection of vector particles, and the
simulation is enacted through application of a new gen-
eral methodology, vector particle dynamics. In Sec. II
we describe the physics defining the collective dynamical
interaction between components of a large dislocation
system. Section III is a description of the computer
methodology which is characteristic of DD simulations
and sample results. Section IV of this paper is a discus-
sion of the main features of the DD methodology, and in-
cludes a comparison with traditional MD methodology.
In a companion paper, "Dislocation Dynamics. II." we
present applications of the methodology to the study of
the formation of planar dislocation arrays, persistent slip
bands (PSB's), and dislocation cells.

II. INTERACTION PHYSICS

A. Dislocation motion in solids

Dislocation motion in the glide plane (glide) is in the
direction of the Burgers vector for edge dislocations and
orthogonal to the Burgers vector for screw dislocations.
In addition, screw dislocations can cross slip from one
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glide plane to another. Climb is the motion of a disloca-
tion perpendicular to the glide plane.

us =u, (r,fr/r, ) (3)

where v, is the shear wave velocity, ~,z the effective shear
stress on dislocations, ~, the material stress constant, and
m the stress exponent.

Three different regions of the stress dependence de-
scribed by Eq. (3) have been found for many metals. '

The stress exponents for these regions are m, & 1, m» = 1,
and m&&& &1, with the maximum velocity limited by the
shear wave velocity. The velocity-stress relationship for
iron has been determined for a wide range of conditions
of stress and temperature. " We can characterize the
velocity-stress relationship for iron by three separate re-
gions of differing values of v; and exponent m. It is
found that the effective material stress constant can be re-
lated to the absolute temperature T and the shear
modulus p of the material by the following expression:

Glide velocity

The glide velocity of a dislocation is attributed to the
action of an effective force applied in the guide direction
of the dislocation. At lower temperatures, obstacles con-
trolling glide are overcome by stress-assisted thermal ac-
tivation. At higher temperatures, the obstacles control-
ling glide are athermal causing the How stress to be ap-
proximately constant with temperature. The glide veloci-

ty is generally given by

Ug =MgFg,

where M is the mobility for dislocation glide and F is

equal to the net force in the glide direction.
The glide mobility is characterized by the diffusive

properties of the material and is governed by the
diffusion of dislocations through the obstacles with the
shortest spacing:

Mg D$ b /kT

where D, is the self-diffusion coeIcient, b is the magni-
tude of the Burgers vector, k is the Boltzmann constant,
and T is absolute temperature.

This linear dependence of velocity on stress is valid
only for a limited range of applied stress. It has been
found experimentally, ' ' over a wide range of applied
stress, that the relationship between velocity and stress is
nonlinear. This dependence is given by the following ex-
pression

I
II
III

35.0
1.0
0.672

1 ~ 87 X 10
4.118X 10-'
5.35 X 10

obstacles is evaluated by the overall local stress field
determined by the short- and long-range interactions
with all other dislocations. The internal stress on a dislo-
cation is therefore a result of the integrated system effect
and not a predetermined material parameter.

2. Climb velocity

At higher temperatures, the process of climb consti-
tutes the dominant mode of dislocation motion. Disloca-
tion climb is thermally activated and is considered a
stress-assisted thermal process. It is therefore dependent
upon the diffusive properties of the material, particularly
the diffusion of vacancies to the dislocation core. A phe-
nomenological expression for the dislocation climb veloc-
ity is given by'

u, =uo(, /p), (&)

where ~, is the applied shear stress and vo is a charac-
teristic climb velocity given by

uu = 3 (D, /b )(pQ/kT)c (y/pb ) (6)

where A is the constant on the order 1000, 0 is the atom-
ic volume, c is the concentration of jogs, and y is the
stacking fault energy.

B. Long-range forces

Outside a core radius of about five Burgers vectors
from a dislocation, the force exerted by a dislocation on
another dislocation is inversely proportional to the sepa-
ration distance. This represents the long-range force of a
dislocation, because the local distortion of the lattice is
negligible compared with the elastic straining of the ma-
terial at large distances from the dislocation core. For
these long-range reactions, the property of linearity holds
and the total force on a given dislocation can be comput-
ed by summing the individual long-range forces resulting
from all other dislocations. The following is a discussion
of the methodologies used to define the long-range in-
teraction between elements in a system of dislocations.

TABLE I. Coefficients for the glide velocity-stress relation-

ship in iron.

Region

( pe ElmkT (4) 1. General methodology

Table I is a compilation of the constants C and the stress
exponent m for iron for the three different velocity-stress
regions. The value of the characteristic energy E in Eq.
(4) is 0.4876 eV.

This stress dependence is the direct effect of stress on
the movement of a single dislocation in the system,
without regard to the presence of other obstacles (includ-
ing other dislocations) which can drastically alter the
stress dependence. The effect of other dislocations and

Dislocations exhibit glide in different slip planes and
each glide direction may represent a local coordinate sys-
tem. For convenience, we refer to them as reference
dislocations R„(dislocations for which forces are comput-
ed) and test dislocations R, (dislocations which exhibit
the long-range forces). Figure 1 is an illustration of the
interaction of an arbitrary test dislocation with the refer-
ence dislocation. In order to compute the forces between
a test dislocation in one system and a reference disloca-
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bc
where, in Cartesian coordinates

CT XX
pb

2m(1 —v)
y(3x +y )

(x+y )

pb x(x —y )

2m(1 —v) (x +y )

a„,=0,

FIG. 1. General coordinate convection for two interacting
dislocations.

tion in another system, a conventional coordinate system
must be chosen to correctly implement the transforma-
tions. The force from the test dislocation is rotationally
transformed into the coordinate system of the reference
dislocation (the abscissa is represented by the direction of
glide and the ordinate is represented by the direction of
climb}. Another test dislocation is chosen, its forces on
the reference dislocation are computed, and the resultant
forces are added to the total force. These forces are
summed up linearly and then the velocity of the disloca-
tion based on this total force is computed.

For the general methodology, the x direction
represents the dislocation Burgers vector b, the y direc-
tion represents the dislocation climb vector b„and the z
direction represents the sense vector of the dislocation g.
This coordinate convention is graphically represented in
Fig. 1. If, for example, the system consists of three copla-
nar dislocations, all traveling on different (111) glide
planes, one of the dislocations represents the primary
dislocation. The three-dimensional (3D) characteristics
of this dislocation can then be expressed in general terms
as a tensor which consists of components

'b bx b b,

TD = b, = b,x b, b„
ky

This can be considered the dislocation tensor (DT). By
convention, the DT of a primary dislocation is given by
the identity matrix. All other dislocation types will have
DT's which are necessarily different from the primary
DT.

The force from a test dislocation on a reference dislo-
cation is given by the Peach-Koehler equation'

F=(b Xg'.
The stress tensor X is determined by transforming the
stress tensor of a test dislocation X, into the reference
coordinate system. The stress tensor X, of an arbitrary
test dislocation is given by'

Transforming the components of X, (i.e., a;J;
i,j Ex,y, z) into the primary coordinate system is accom-
plished by the following operation:

X=T, , T„, X, = Q g T)T& err
1=x m=x

(12)

A total long-range stress tensor is computed by summing
up contributions from all dislocations given by Eq. (12) in
addition to the applied stress. An effective stress tensor is
defined as this sum of applied and internal stress minus
the friction stress. the resulting force (Peach-Koehler) is
obtained by applying Eq. (8) to the effective stress tensor.
the resulting force components can be expressed as

Oyx=oxy ~

pb y(x —y )

2m (1—v) (x ~+y z)~

o x=0,
o,„=0,
0, =0,

pb y
(1—v. ) x~+y2

for edge dislocations with the sense direction vector g
coincident with the z axis, and

Vb
2' x +y
pb x

CT 2' x'+y' '

CJ' CT y 0
y

0
yy

CT 0

for screw dislocations with g lying along the z axis. v is
Poisson's ratio.

The rotational transform between two coordinate sys-
tems i and j is given by

T,.t =T;, =[TD;] [T ]D.

If system j is the primary coordinate system, the transfor-
mation becomes

C'xx

C yx

&xy CTxz

~yy

Ozy

F= F, (13)

where F and F, are the glide and climb force, respective-
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ly, and F& is the force along dislocation sense vector g'.

All are in the reference dislocation's coordinate system.
The glide velocity can then be calculated using the

velocity-stress relationship [Eq. (3)] and the c1imb veloci-

ty is determined by using Eqs. (5) and (6). The velocity
vector v„of the reference dislocation is then given by

(14)

The velocity component along g is assumed to be zero
since the dislocation has no mobility along g. The result-
ing displacement of the reference dislocation b,r„ is ob-
tained by explicit integration of Eq. (14):

hr„=Atv„,

where the time step At is chosen to satisfy local error
control criteria, as will be shown in Sec. III. This dis-
placement vector must be transformed into the globa1
dislocation coordinate system by projecting the corn-
ponents of the displacement onto the global system by the
dislocation tensor:

FIG. 2. Parallel dislocation coordinate convections.

T—rot

cosy sin y
—siny cosy

(19}

K =IJ,b/2n(1 —v), and R is the radial distance away from
the dislocation.

The rotational transform, which rotates the stress ten-
sor into the reference dislocation's coordinate system, is
given by

Dr=br, TD . (16) and therefore the stress in the reference dislocation's sys-
tem is given by

Finally, the new position rk is computed by adding the
displacement hr to the previous position of the disloca-
tion rk

X=T T X——rot —rot —t

~11 +12

021 022
(20)

rI, =rk I+Dr . (17) where

2. Parallel dislocations

If two dislocations are parallel, we can construct sim-

ple solutions to the above equations by eliminating the
dislocation sense vector direction, and solving the equa-
tions in cylindrical coordinates. Figure 2 illustrates the
coordinate system chosen for this special, yet important,
case. In the figure, 8 is the angle of the reference disloca-
tion with respect to the test dislocation, a, , are the glide
direction angles of the test and reference dislocations
with respect to the global coordinate system, and y is the
relative angle between the two dislocations.

Application of Eq. (8) in cylindrical coordinates results
in the following expressions of stress on the reference
dislocation from the test dislocation in the test coordinate
system:

~rr &re

&er O ee
(18)

where a „„=oss= K(sin8/R ), o „&=o—&„=K(cos8/R ),

Although the treatment of long-range forces can be
determined through the use of Eqs. (7)—(17), a practical
3D model would entail considerable computational
difficulties. One of the major aspects of a 3D model is the
accurate representation of dislocation curvature as the
dynamics progress in time. A simpler 2D model will be
presented in the remainder of this paper. Applications of
this 2D model will be given in paper II.

@lb' I lb' I sin8 —sin2y cos8
L 2n.(1—v) R

(21)

Plb)lib, l cos8cos2y
L 2m(1 —v) R

(22)

where b, „are, respectively, Burgers vectors of test and
reference dislocations. If we characterize these forces
into the vector notation described by Eq. (13), we can
compute the velocity vector and the displacement vector
as given by Eqs. (14}—(17).

C. Short-range reactions

Within a distance of several Burgers vectors from the
dislocation core, the displacement field around the dislo-
cation is not accurately described by linear elasticity.
This dependence breaks down at separation distances less
than R -Sb, hence the region enclosed by this radius is
referred to as the dislocation core. Large strains close to

e» = —K(sin8 —sin2y cos8)/R,

o,~=Kcos8cos2y/R =crz, ),
o zz

= —K(sin8+ sin2y cos8) /R .

Substituting Eq. (20) into Eq. (8), we arrive at the ex-
pression for force components on a dislocation, which are
given by the climb and glide components per unit length
1., as
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the dislocation core invalidate the assumption of linear
elasticity.

In experiments, it is found that many nonlinear pro-
cesses occur which are describable by a reaction rather
than by force-displacement relationships. Nonlinear in-
teractions between dislocations are phenomenologica11y
described as rate processes rather than force-
displacement relationships. Some of these nonlinear re-
actions, or dislocation events, are immobilization of dislo-
cations, annihilation of dislocations, dipole formation,
junction formation, and dislocation generation. These
nonconservative reactions can be characterized as
discrete events, and can therefore accurately represent
the phenomena in a controlled computer experiment.

1. Immobilization

If the stress on a mobile dislocation falls below the fric-
tion stress, the dislocation becomes immobilized. Once a
dislocation is immobilized, the only consequence is that
the total vector velocity is identically zero. An immobile
dislocation can still contribute its elastic strain energy to
the overall computation of internal stress on other dislo-
cations. Immobile dislocations can be remobilized if the
eft'ective stress is raised above the friction stress.

2. Annihilation

Annihilation is the cancellation of two dislocations of
opposite Burgers vectors which approach each other
within a certain critica1 distance of separation. This an-
nihilation has usually been treated as an average over the
crystal of the recovery process. ' ' Essmann and
Mughrabi have estimated a value for the critical dis-
tance for annihilation of two screw dislocations of oppo-
site Burgers vectors as

p b

2Ks
(23)

where y, is the annihilation width for screw dislocations
and ~g is the shear stress required for dislocation glide.
For copper, y, =- 1.8 pm; for molybdenum,

y, =0.19—2.25 pm. For mixed or edge dislocations, an-
nihilation will occur when the attractive elastic force be-
tween two dislocations exceeds the force required for
dislocation climb. ' The critical distance for annihilation
of mixed dislocations is thus given by

b4p
27rv Uf sing

(24)

where y is the annihilation width for mixed disloca-
tions, Uf is the energy of formation of atomic defects, 1(

is the angle between the Burgers vector and the sense vec-
tor of the dislocation, and ~ is 1 —v«& v. The critical
distance for edge dislocation annihilation has been found
to be on the order of 1.6 nm, ' which is much smaller
than the critical distance for screw dislocations. This
value is about an order of magnitude less than the aver-
age distance between dislocations within the cell bound-

ary. Prinz and co-workers determined this value to be
greater than 1.6 nm, but their experiments were carried
out at higher temperatures than those of Essmann and
Mughrabi.

3. Dipole formation

When two edge dislocations of opposite Burgers vec-
tors approach each other, they can achieve a stable
configuration if they remain at a distance greater than the
critical distance for annihilation. This configuration is
known as a dipole and it can exist as a vacancy or
interstitial-type configuration. Typical dipole lengths are
on the order of tenths of microns. ' Dipoles are com-
posed only of edge dislocations since screw dislocations
can easily annihilate by the cross-slip mechanism. Once
formed, a dipole does not move as a whole if the external
or internal stresses are changed, but it does change its
configuration slightly. Application of an applied stress
causes a slight change in the relative angle between the
dislocations which constitute the dipole.

Two dislocations separated by a sufticient distance to
form a dipole will not necessarily form a dipole
configuration. It is found ' that in order to form a
stable configuration, the stress on a dislocation must be
less than the passing shear stress for a dipole ~, i.e.,

p b

8'(1 —v)y
(25)

4. Junction formation

Attractive dislocations are those dislocations which ex-
perience a net attractive force with respect to each other.
If the dislocations are parallel, then the difFerence in
Burgers vectors between two attractive dislocations is be-
tween 90' and 270'. lf two attractive dislocations ap-
proach each other, they will eventually intersect each
other, the intersection being an annihilation event if the
two dislocations are of opposite Burgers vectors. If they
are not of opposite Burgers vectors, then one of three
events can occur: (1) They lock together, forming a
Lomer-Cottrell barrier; (2) they draw each other out,
forming a jog intersection; or (3) they intersect and then
pass each other. The two dislocations will pass each oth-
er if the net stress on one of the dislocations is approxi-
mately greater than the pinning stress for dislocations
which is given by

pb
2+k.d

(26)

where kd is the interdislocation separation distance.

where y is the slip plane spacing.
A dipole does not necessarily represent the perfect

alignment of two dislocations of opposite Burgers vec-
tors. In fact, the relative angle between two dislocations
in a dipole varies from 25' to 65', with an average
around 45'. The latter angle represents the position of
minimum interaction energy of dislocations within a di-
pole.
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5. Dislocation multiplication

Dislocation multiplication is primarily attributed to
the Frank-Read mechanism for glide processes. During
dislocation creep, the Frank-Read source is dominant
and multiplication occurs by pinning of the dislocation,
bowing out, and wrapping around the pinning points.
Caillard and Martin identified these points in aluminum
as primarily small precipitates or impurity clusters and,
to some degree, junction segments produced by two dislo-
cations. The latter mechanism is ruled out by the
aforementioned authors as a major source, because the
stress necessary to activate sources from these points is
usually high enough to cause junction recombination.
On the other hand, Prinz and Argon ' have identified an-
choring points as dislocation dipoles and multipole bun-
dles in the evolution of cell-wall-type structures. ' The
bowing out of free segments from these bundles is con-
sidered a major generation source. '

Multiplication occurs if the total force on a dislocation
exceeds the Orowan stress for dislocation reproduction.
The Orowan stress criterion is given by

(27)

where A, is the interobstacle spacing. If this criterion is
satisfied, dislocations are capable of multiplying at a rate

(28)

where p is the total dislocation density. Dislocation mul-
tiplication is also possible by a process of climb, similar
to the Frank-Read source, known as the Bardeen-Herring
mechanism. This process is dominant under conditions
of vacancy supersaturation, such as irradiation or
quenching conditions. The contribution to production
due to the bowing of dislocation links by climb has been
calculated by Nabarro. It has been determined, howev-
er, that this contribution is usually negligible compared
to the recovery creep component and is therefore not a
major source of production of new dislocations.

III. COMPUTER SIMULATION METHODOLOGY

The interaction physics outlined in the previous section
have been integrated into a computer code DISLODYN
(dislocation dynamics), which simulates the motion of
dislocations projected onto a 2D plane. For dislocations
on multiple slip systems, the general methodology for
long-range forces outlined in Sec. IIB1 is applied. For
parallel dislocations, the method outlined in Sec. II B 2 is
applied to reduce computation time. The short-range
forces are applied in all cases. The following section de-
scribes in detail the methodology used in DISLODYN. We
describe the dislocation by two sets of vectors (position
and velocity) which constitute the minimum information
necessary to characterize its existence in 2D space.

A. Simulation sequence

B. Time scales

1. Vector time steps

The maximum computational time step for the system
is limited by the minimum amount of time it would take
two dislocations to experience a reaction (collision or an-
nihilation). If we consider two dislocations of arbitrary
Burgers vectors approaching each other, the universal
vector time step is expressed by

At„=min (29)

where

is the grain size. The dislocations introduced into the
system are all mobile, and are allowed to experience a re-
laxation phase after introduction into the system. In this
phase, there is no stress applied to the system and dislo-
cations are allowed to reach equilibrium, dependent only
upon elastic long-range forces already present from the
existing configuration. The dislocations then become im-
mobilized upon reaching equilibrium. Once equilibrium
is achieved, the dislocations are then subjected to an
externally applied stress (monotonic or cyclic depending
upon the physical situation) and the simulation proceeds
for the desired length of time.

The simulation sequence ensures that the two disloca-
tions with the most potential for interaction (i.e., short-
range reactions) are determined first. All long-range
forces are then computed statistically. These forces are
used in the velocity-stress relationships to determine the
velocities of the mobile dislocations. Immobile disloca-
tions are passed over during this calculation. The time
step used for the entire system is then computed. If this
time step were infinitely short, the simulation would be
an exact computation of the trajectories but it would take
a large amount of computer time to execute the problem.
A time step must be determined which preserves the dy-
namics of the system but is long enough to reduce com-
putation time. This is the goal of the following section in
which the calculated time step is entirely determined by
the two dislocations which undergo the factor reaction,
thus preventing third- or multiple-body reactions from
occurring within the same time step. Once this time step
is known, new positions of the dislocations can be calcu-
lated and potential for dislocation multiplication can be
determined. The following is the computational se-
quence: (1) Determination of the short-range interac-
tions between pairs of dislocations within the minimum
distance of short-range interaction; (2) determination of
long-range forces for mobile and immobile dislocations;
(3) calculation of an effective stress; (4) evaluation of mo-
bility of dislocations; (5) computation of dislocation ve-
locities; (6) computation of the time step; (7) computation
of the new dislocation poisitions; and (8) computation of
dislocation sources.

Initially, a random set of dislocations is introduced
into the reaction space. The maximum size for this space

b,R, =(hX, b, Y, b Z ),""
is the difference in the position vector,

(3O)
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hvj = ( AU„, bU~, hu, );J. (31)

is the difference in the velocity vector. Positive values of
the time step are achieved if the two dislocations are
moving relatively towards each other vectorially. The
6 s signify relative Cartesian positions and velocities be-
tween the two dislocations. For dislocations which move
in two coordinate directions, this time step represents the
time until a collision between the two dislocations occurs.
If the dislocations are of like sign, the collision will be a
repulsive event. If the two dislocations are of opposite
sign, the collision will be either an annihilation, a dipole
formation, or a junction event.

For dislocations which only move in one coordinate
direction, this time step corresponds to the time to the
distance of closest approach. The value of the minimum
time is given by

I

(I~R~J I'l»~) I' —I~R;, »~J I')'"
V(V

(3&)

(33)

where 50 is the characteristic short-range interaction dis-
tance. This is a more stringent time-step requirement
than the previous one because the term in the inner
square brackets is ~ 1. This time step, however,
preserves the dynamics of the simulation and allows the
short-range interactions to properly proceed from one
simulation step to the next.

Close inspection reveals that this expression is equivalent
to the triangle inequality identity. If the two dislocations
are on a collision course, then the discriminant in Eq. (32)
for minimum separation is identically equal to zero. If
the two dislocations are incapable of short-range interac-
tion, then the value of the discriminant is positive.

Advancement time step. If two approaching disloca-
tions are of opposite Burgers vectors and their interaction
limits the system dynamics, then the calculated time step
should be the time it takes the dislocations to experience
a short-range interaction, not the time it takes for the
dislocations to occupy the same space. This advance-
ment vector time step is given by

I av;, I'
ht, =min(b, t„) 1 — 1—

laR, , »;, I'
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FIG. 3. Dynamic time stepping (copper at 23'C, 8 cycles, 1

Hz).

2.0

in time step from one iterative step to the next is termed
dynamic time stepping. Figure 3 is an example of dy-
namic time stepping for a condition of cyclic straining of
copper at 25'C.

(b) Equilibrium time step. If two dislocations have the
same Burgers vector sign, they can introduce an addition-
al constraint on the time step. We consider one mobile
dislocation constrained to glide motion toward an immo-
bile dislocation. We can represent the equilibrium situa-
tion by a plot of the potentials of the dynamic interaction
of these two dislocations. The elastic interaction poten-
tial for two dislocations in iron is depicted in Fig. 4. An
immobile dislocation is placed at the origin and the posi-
tion of the mobile dislocation is represented by the abscis-
sa. The potentials depicted by the solid lines represent
the potential due to the applied constant force and the
elastic interaction energy. The vertical line at position
0.374 pm is the equilibrium position of the mobile dislo-
cation for a stress o =108 dyn/cm . A logarithmic po-
tential with a singularity at the origin represents the I/R
interdislocation repulsive force. The dotted line is the
sum of the two potentials. It can be seen that a mobile
dislocation moving towards the immobile one will essen-
tially fall into a potential well. Accurate dynamic com-
puter simulations must show a smooth approach to equi-
librium without unphysical oscillations, as shown in
Fig. 5.

2. Interactive time steps

(a) Dynamical time step Dissimilar d. islocations which
determine the time step can be removed from the system
upon short-range interaction, thus allowing control of the
dynamics to be returned to other components of the sys-
tem. Similar dislocations can determine the system dy-
namics until the force between them becomes too large or
until stable dislocation patterns form. In either case, the
time step should not be fixed on any two dislocations for
more than two or three iterations. This condition is
satisfied in the DD methodology, and in most cases the
time step of two consecutive iterations is determined by
two completely different sets of dislocations. This change
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FIG. 4. Potential diagram for 1D motion.
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FIG. 5. Dislocation trajectories for 1D motion for various
time steps.

The trajectories of a mobile dislocation entering from
the bottom toward a locked dislocation at position 1.0
pm are shown in Fig. 5. Rotated 90' counterclockwise,
this figure corresponds exactly to the first 1-pm block of
Fig. 4 (i.e., the dotted horizontal equilibrium line in Fig.
5 corresponds to the solid vertical line in Fig. 4). The
scaled time to is the time it would take a dislocation at
the origin to arrive at the position of the lock in one time
step.

In the case of a dislocation interacting with a lock, we
define the equilibrium time step to be a fraction f of ht„,
1.e.,

l( t, =fb,t„. (34)

(~ /A)(x —xo —u t)
+xoe (35)

where x, =x (r, /A )
—is the equilibrium dislocation

position, xo is the initial dislocation position,
A =pb/2n. (1—v), v, is the velocity at the applied stress,
and t is elapsed time. The discrete points are applications
of the numerical algorithm and time-step criterion [Eq.
(34)]. It can be seen from the trajectories that if the time
step chosen is too large, the dislocation will occupy a po-
sition far away from equilibrium on the following time
step and take longer to converge to the equilibrium point.
The average relative error in the position of the disloca-
tion is found to be 36% for f=

—,', , 9% for f=
—,', and 3%

for f=
—,', . The dynamics of a 1D pileup and details of

the numerical scheme for a group of dislocations are
given in Ref. 37.

(c) Multiplication time step. Multiplication can only
occur if the dislocations satisfy the Orowan criterion [Eq.
(27)]. The rate of production of dislocations, given by Eq.
(28), is based on the average time it takes a dislocation to
pass through a set of obstacles and produce dislocation
loops. Over long periods of time, many loops are pro-
duced from the same dislocation. Equation (28) is ap-
proximated by

The exact trajectory of the mobile dislocation is
represented by the solid line in Fig. 5, and is given by

(t /A((x —
xO

—u t)x=x 1 —eeq

For multiplication processes, account must be taken of
the cumulative time over which multiplication can occur.
Therefore, for a given slip strip comprising a number of
parallel glide planes within which dislocations have
satisfied the Orowan stress criterion, the multiplication
time step is limited by the following value:

+loopht =min
vp

(37)

where N„,v
is the maximum number of loops allowed in

a given time step and v' is the frequency of dislocation
production and equals vs/A, .

The time step for each strip is accumulated and the
time to production of a new set of loops is computed.
Once a strip has experienced dislocation multiplication,
its cumulative time step is set to zero. Therefore each
strip experiences a di8'erent rate of production of disloca-
tions based on its own dislocation density and the force
requirements for dislocation multiplication.

3. System time step

The resultant time step for the system is the minimum
value of all the previous time steps,

l(.t =min(br„, br. , hr„hr ), (38)

and is the value of the time step used in Eq. (15) to evalu-
ate the displacement of each dislocation in the system.

IV. DISCUSSION OF THE DD METHODOLOGY

In conventional MD, the forces on each molecule are
computed and an expression for force is inserted into
Hamilton's EOM's. ' In traditional MD, the total energy
for a fixed number of atoms in a fixed volume is con-
served as the dynamics of the system evolve in time. The
dynamical equations are exphcitly integrated, yielding
particle positions and momenta. Some form of velocity
renormalization, or other constraints, are introduced to
represent isothermal or isobaric thermodynamic process-
es.

In standard constant-temperature MD approaches, it is
common to monitor the velocities of the particles and ap-
ply energy and momentum constraints. This is in accord
with the description of a microcanonical ensemble of par-
ticles in which the number of particles, the volume, and
the total energy are held constant. If the velocities of the
particles lead to a deviation in the constant value of tern-
perature above, then the velocities are rescaled until the
system reaches equilibrium.

Dislocation dynamics methodology has unique features
which are not necessarily embodied in conventional MD.
Dislocations represent line defects which interact with
each other through a long-range linear elastic field and a
short-range nonlinear field. The system size in disloca-
tion dynamics can represent an entire grain, for example,
with 10000 to 100000 dislocations. In MD, on the other
hand, systems containing up to 250000 particles have
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been simulated and are only considered as a statistical
sample of matter. Therefore statistical thermodynamical
principles can be used to renormalize velocities if the
studied phenomenon is near thermodynamic equilibrium.
Periodic boundary conditions can be invoked in view of
the statistical sampling argument. In DD, the applica-
tion of thermodynamical concepts and statistical sam-
pling is not yet established. The results of a dynamical
simulation of a dislocation system represent a possible
and not a sampled behavior of those dislocations con-
tained within a grain. The presence of a long-range vec-
tor field for dislocations is not known in the majority of
MD simulations where, for example, a Lennard-Jones-
type potential is used for spherically symmetric two-body
interactions. When short-range dislocation reactions
such as annihilation and production are considered, par-
ticle conservation principles are not applicable. In MD
simulations, particle conservation is a fundamental
feature. In a similar way, energy conservation is more
difficult to apply because of the various nonconservative
dislocation reactions.

It is argued here that such fundamental differences be-
tween the DD and MD methodologies are strong enough
to differentiate the two simulation approaches. The DD
methodology is viewed as a possible new tool for the
study of micromechanical problems where dislocations
play a significant role. In "Dislocation Dynamics. II."
we give several examples of the application of this
method to the formation of dislocation patterns.

Several comparisons can be drawn between the metho-
dology used for dislocation systems and those for atomic
and molecular systems.

1. Dislocations can glide into an obstacle and eventu-
ally become immobilized in their form of a pileup. There
is no spatial analogy in molecular systems because mole-
cules are not immobilized in space (even in plasma sys-
tems) where, at most, the ions are contained along mag-
netic field lines.

2. In molecular systems, all the physics of the molecu-
lar simulation is contained in the description of the in-
teratomic potential (e.g. , the Lennard-Jones potential '

or the embedded atom method).
The values of the constants in interatomic potential

representations are generally determined through experi-
mental calibration and not from first principles. The
forces are calculated from the potential gradient and the
accuracy of the forces is completely dependent upon the
accuracy of the effective potential in describing the
molecular or ionic system.

The forces in dislocation systems, however, are deter-
mined from continuum mechanics theory which relies
strictly on the distortion of a perfect lattice outside the
core of the dislocation. This force is proportional to
1/R, where R is the distance from the dislocation to the
reference point and is known to be exact outside the core
radius. This is true for a11 materials and therefore it is
not strictly necessary to compute a potential for the sys-

tern before calculating the forces necessary to execute a
physically meaningful simulation. The only other system
in which the forces are explicitly known is a plasma sys-
tem, in which the velocity EOM is calculated explicitly
using the Lorentz force.

3. The examples of the interatomic potentials present-
ed here are designed to represent the physics of a two-
molecular interaction by a repulsive force up to a critical
distance between the molecules. Less than this distance,
the potential becomes attractive and therefore large angle
collisions between molecules are avoided. The I /R force
for dislocation systems, however, does not lend itself to
this physical scenario. Dislocations of the same Burgers
vector sign cannot overlap, and hence particles of the
same sign will forever exert a repulsive force on each oth-
er. Because the dislocations have different Burgers vec-
tors, the Burgers vector direction also determines the
type of interaction. There is no analogy in molecular sys-
tems.

4. There are many short-range effects in DD which do
not exist in MD. The formation of immobilized struc-
tures in space (i.e., immobile dislocations, dipoles, and
junctions) has no analogy in MD. In DD, two opposite
particles can annihilate each other, whereas molecules
are incapable of doing this. Dislocations are also able to
reproduce in dislocation multiplication. No self-
reproduction mechanism exists in molecular theory. The
closest thing to a short-range effect in MD is a chemical
reaction. However, this depends upon direct collision of
molecules and these events are usually considered negligi-
ble in molecular simulations.

(5) One final difference between MD and DD simula-
tions is that dislocations are dipolar particles with a vec-
tor field while molecules are essentially monopolar parti-
cles with no orientation effects. This leads to a more
complicated formulation of simulation dynamics in DD
than in MD.

In this paper, we have attempted to introduce the DD
methodology as a potential computational tool which
may allow a study of complex micromechanical deforma-
tion phenomena. It is hoped that this method will form a
bridge across our knowledge gap between the behavior of
single dislocations and their collective influence on the
deformation of solids. In our companion paper we give
specific applications of the DD method and show that the
unique features of the vectorial dislocation elastic-stress
field, coupled with the nonlinearity of short-range reac-
tions, do indeed result in observed self-organization phe-
nomena such as persistent slip bands, planar arrays, and
dislocation cells.
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