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Numerical solution of large s =—' and s = 1 Heisenberg antiferromagnetic spin chains
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A new method of determining the spectra of simple quantum-mechanical spin Hamiltonians by

direct Hamiltonian-matrix diagonalization is presented. The method is illustrated by applying it to
the isotropic one-dimensional Heisenberg antiferromagnet, for which calculations were performed

for longer spin chains than by previous direct Hamiltonian-matrix diagonalizations. For spin s =
~

it was possible to accurately determine the ground- and first-excited-state energies for chains of
length N =32 and 64. For s = 1 the longest chain for which a similar computation was performed

was N =32; the singlet-triplet Haldane gap is found to be 0.421+0.005 which is consistent with ear-

lier Monte Carlo results. Long-spin-chain calculations are performed iteratively by solving

smaller-chain problems, and constructing from their eigenvalues, and eigenstates, the longer-spin-

chain basis and Hamiltonian matrices. The computations were performed on a small computer,

which suggests that much larger problems could be handled with a parallel-processing supercom-

puter.

I. INTRODUCTION

Recently there has been renewed interest in simple
one-dimensional (1D) quantum-mechanical models of in-

teracting spins. In spite of the apparent simplicity of
these models, there is little understanding of their physi-
cal features, and what is known has been obtained
through very complex mathematical analysis, or via nu-

merical computations using small clusters of spins. Two
recent articles by Muller' and AfBeck provide an excel-
lent summary of current work.

This revival of interest is due to Haldane's conjecture
that the one-dimensional isotropic Heisenberg model has
a singlet-triplet energy gap for integral but not half-
integral spin. There are a variety of calculations, and
some experimental evidence, both supporting and
convicting with this conjecture. However, only the gap-
less s =

—,
' case has been solved exactly by Bethe in 1931.

Except for s =
—,', and 1 it has not been possible to deter-

mine the energy gap on a sufficiently long spin chain to
determine the infinite-chain limit.

Another interesting problem is the study of the aniso-
tropic s =

—,
' or 1 antiferromagnetic Heisenberg-Ising

ring, ' the XXZ model, with Hamiltonian

N

[J (SkS"+ t+SkS" + ~ }+J S"S'"+~]
k=1

with J, &0, and where S"=(S„",S",S,") is the spin opera-
tor on site k and N is the number of spins in the chain.
One introduces an anisotropy parameter 5 by setting
J„=1—6 and J,=b, . This includes three important
cases: (1) the XYcase when b, =0, (2} the Heisenberg case
when b, =0.5, and (3) the Ising case when 5=1. In the
XY phase with 6 &(1 the ground state is nondegenerate

S y 4~(sk Sk+l)~ (2)

in chains of length up to N=110 for s= —,'. A similar
Green-function Monte Carlo method' has also been used
to study chains of length up to N=32 for s=1. A new
Monte Carlo algorithm based on the Sutherland mapping

with no long-range magnetic order and a gapless excita-
tion spectrum. In the Neel phase, with 5=1, the ground
state is a well-defined doublet with long-range antiferro-
magnetic order and a spectrum with a nonzero gap.
There is a critical b in which the system undergoes a lo-
calization transition.

Betsuyaku and Betsuyaku and Yokota' have stud-
ied the anisotropic Heisenberg-Ising ring for both s= —,

and 1 by using the results for finite lattices, and then ex-
trapolating to the infinite-N limit. For s =

—,
' they recover

Bethe s analytical result for Eo/N in the infinite-chain
limit to six significant figures.

Finite-chain results may be obtained in a variety of
ways. Exact ground-state and excited-state energies have
been obtained by direct diagonalization of the Hamiltoni-
an matrix via the Lanczos method" for up to s =3, and
by the projector method ' for s= —,

' and 1. For the
Lanczos and projector methods the memory require-
ments increase as (2s+1) which restricts these calcula-
tions to relatively small N (N=24 for s =

—,', N=16 for
s=1, N=12 for s= —,', N=8 for s=2, N=6 for s= —,',
and N =4 for s =3).

For longer spin chains Monte Carlo methods have
been employed. Barnes and Daniell' used a random-
walk algorithm to calculate the ground-state energy and
energy gap for s= —,

' for spin chains of length up to
N=48. A Green-function Monte Carlo method' has
been used to study the structure factor

N
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has also been used to study long-range correlations for
15

2.
Also, real-space renormalization-group methods have

also been used to study quantum-mechanical spin systems
in both one and two dimensions. Mattis and Pan, ' Lin
and Pan, ' and Pan and Chen' have studied the infinite-
chain limit of the 1D Heisenberg model. In Ref. 16 the
Bethe result for the s= —,

' ground-state energy per spin
was obtained to three significant digits, while in Ref. 17
the s = 1 ground-state energy density and energy gap ob-
tained were consistent with the previous Monte Carlo
calculations of Nightengale and Blote. ' In Ref. 18
higher values of s were investigated. In addition, the XY
model has been studied for s= —,

' and 1.' Some earlier
renormalization-group results for the 1D Heisenberg
model with nearest- and next-nearest-neighbor interac-
tions are presented in Ref. 20.

The recent discovery of high-T, superconductors ' and
the possibility that their behavior may be described by
the magnetic properties of two-dimensional doped anti-
ferromagnets has stimulated considerable interest in the
anisotropic two-dimensional Heisenberg model. Monte
Carlo methods have been recently applied to the two-
dimensional s =

—,
' problem. References 24 and 26

cite various earlier two-dimensional results, including
variational, perturbative, spin-wave, mean-field-theory,
and direct-diagonalization calculations. Other recent re-
sults include a variational calculation of the ground-state
wave function and an exact diagonalization of a frus-
trated Heisenberg model on a 4X4 lattice. Also, the
2D Heisenberg model has recently been studied using the
renormalization-group method.

Finite-lattice results may be extrapolated to the
infinite-lattice limit, using, for example, the sequence-
transformation method of Vanden Broeck and
Schwartz. ' ' It is necessary to determine the energy gap
for sufficiently long spin chains to accurately extrapolate
to the infinite-chain limit. For s & 1 exact Hamiltonian-
diagonalization methods cannot be applied to sufficiently
large lattices, and Monte Carlo methods must be used.
As Monte Carlo methods, of course, have various sources
of statistical and systematic errors, it would be very use-
ful to assess the accuracy of the Monte Carlo results by
comparing to the exact values on very long spin chains
for large s. For this reason we have applied a
Hamiltonian-matrix-diagonalization method to the deter-
mination of energies on long spin chains; this method has
been previously applied to scalar-quantum-field theory on
a spatial lattice in 1+ 1 dimensions.

This paper is organized as follows. Section II contains
a brief introduction to the Heisenberg antiferromagnet.
In Sec. III the Hamiltonian-matrix-diag onalization
method is described. Section IV presents numerical re-
sults for s =

—,
' and 1 and compares these results to previ-

ous calculations. Finally, Sec. V contains conclusions
and suggestions for future work.

II. THE HEISENBERG ANTIFERROMAGNET

The Hamiltonian for a one-dimensional isotropic
Heisenberg model with N spins is

H=J g S".S"+'
k=1

(3)

—J y [ 1(gk gk+1+Sk /k+1 )+/krak+ j]
I& =]

(4)

where

S,"~m,') =m,'5,k~m, ')

and

S+ m,') =[s(s+1)—m,'(m,'+1)]' 5;k ~m,'+1), (7)

where s is the total spin, and m,' is the z component of the
spin at site i.

For s =
—,', the ground-state energy per spin and energy

gap in the infinite-chain limit have been obtained by
Bethe tobe

=—' —ln2 = —0.4431,
N

and E, ED=0. N—o similar exact solution for (3) has
been obtained for higher s. At each site i there are 2s+1
values of m,'. Thus, the complete basis for a chain of N
spins would have (2s+1) elements. Since the basis size
increases exponentially, this basis is impractical for Lanc-
zos computations for large N. The procedure followed in
this work is to truncate the basis space of the system; im-
plementation of this approach is described in the follow-
ing section.

III. METHOD

The method described below has been previously ap-
plied to scalar-quantum-field theory in 1+ 1 dimen-
sions. In the quantum-field-theory application, continu-
ous space is replaced by a lattice of points, and the Ham-
iltonian matrix is written in a basis which is constructed
from products of functions at each spatial site. These
one-site functions are chosen from one-site Hamiltonian
eigenstates, either harmonic or anharmonic eigenfunc-
tions in the scalar field. In principle, this method should
be applicable to larger spin systems than quantum-field-
theory lattices. This is because the quantum field at each
spatial site is continuous and can take on values from
—~ to + ~ whereas each spin can reach only 2s+ 1 lev-
els.

Our approach involves the construction of basis states
for a spin chain with N'=aN spins (a =2, 3, . . . ) from a
direct product of the eigenstates of a smaller chain
(N=2, 3, . . . ). The Hamiltonian H of the large chain
with aN spins may be written as a sum of a N-point spin-
chain Hamiltonians plus coupling terms

H=H)+H)2+H2+H23+ . +H, +H, i,

where S"=(S„,S,S,") is the quantum-mechanical spin
operator at site k with S+=S +iS . We impose a
periodic boundary condition through the identification
S +'—:S'. In this paper, J is taken to be unity.

A frequently chosen basis for this problem is

m'm', . . . m' = m' m' . ~ . m~
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where H is the Hamiltonian of chain j and H +) is the

coupling of the final spin of chain j and the initial spin of
chain j+1. The basis for the long spin chain is chosen to
be the product

n&, . . . , n, =n& . . . n, (10)

M„'= n S,'n (12)

for some state n of the new basis. The quantity M„' may

where the ~n; )'s are eigenstates of the N-spin chain.
Here,

Sk Sk+1
j,j+1

where k denotes the last spin of chain j, and k+1
denotes the first spin of chain j +1.

This process may be iterated so that chains of
N"=bN' spins may be constructed using the energy
eigenstates of the N' chain, although it becomes increas-

ingly difficult to determine the N'-chain basis states for a
specified accuracy in the final energy.

In the calculations for the subchains of length N we use
free boundary conditions, with a coupling of two adjacent
chains through H .+ &

terms in the Hamiltonian. If the
N' chain is a subchain of a longer chain, the wraparound
is not restored. If the N' chain is not a subchain of a still
longer chain, the wraparound is restored in that step of
the calculation.

For the results presented here the initial subchain had
four spins and longer spin chains were constructed by
doubling. The 4-spin chain was solved using the basis (5).
To reach N =32 we iterated the procedure using chains
of length 4, 8, and 16. At each stage of the calculation
one determines the Nb lowest eigenvalues and eigenstates
and then computes the matrix elements of S„S+,and
S at the two endpoints of the chain using these states.
This information is used in the next iteration.

The number of states used at each stage should, in
principle, be as large as possible to minimize the error in
the final result. We find that, in practice, Nb may be
chosen to be very much less than the total number of sub-
chain eigenstates. For instance, for a 32-spin chain we
chose Nb =300 16-spin eigenstates while the total number
of such states is (2s+1)' . This fortuitous circumstance
is a result of the lowest eigenstates of the 32-spin chain
being strongly dominated by the states formed from the
lowest eigenstates of the 16-spin subchain. In fact, the
lowest 32-spin eigenstates are so strongly dominated by
the lowest product state, the state giving the lowest diago-
nal element in the Hamiltonian matrix, that a good esti-
mate of systematic bias may be obtained from under-
standing this effect. This is described in detail in Sec. IV.

For both s= —,
' and 1 the complete set of eigenstates

from the 4-spin chain [(2s+1) states] was retained for
the 8-spin calculation. The lowest 100 states of the 8-spin
calculation were then retained for the 16-spin calculation.

The 16-spin-chain basis constructed from the 100
eigenstates of the 8-spin chain has 100 elements. %'e
then introduce a truncation procedure to reduce the size
of the basis. We define

be written

M„' =Mk+M-, (13)

where ~n ) = ~k )
~j ) and ~k ) and

~j ) are two 8-spin-
chain eigenstates. Our truncation involves keeping only
those 8-spin-chain eigenstates with ~Mk ~

less than some
cutoff, which is then increased to study the resulting bias
in the final energies. In these calculations, we decided to
keep only those states with ~M„~ ~2. With this trunca-
tion it was possible to reproduce previously published re-
sults to within a very small error.

One may accelerate the computation by employing the
fact that Hamiltonian matrix only has nonzero entries
corresponding to states with the same ~M'~. Thus, order-
ing the basis according to ~M'~ gives a block diagonal
Hamiltonian matrix. Each block may then be diagonal-
ized separate1y. For example, in the s =

—,
' case, keeping

only ~M'~ =0 (total S, =0) states this would reduce the
complete (2s+1) dimensional basis to one with only
[N'!/(N'/2)!(N'/2)!) states.

Also, given that the S+ and S are raising and lower-

ing operators, respectively, and that S, leaves the z com-
ponent of the spin unchanged, the values of ~M ~

of the
states from which the new basis is constructed can be
quickly used to determine which of the matrix elements
are zero. Suppose a basis state of a N'=2N spin chain is
given by ~ab ) i2= ~a ) i~b )2, where ~a ) i and ~b )2 are two
eigenstates of the ¹pin chain. Then the matrix element

,2(a b ~H, z ~a„b„),2 is always zero unless (1)
M —M =+1 and M —M = —1 or (2) M —M

1 2 b, b2 a& a2
= —1 and Mb —Mb =+1 or (3) M, =M, and

Mb =Mb ~

Most of the computations reported here were carried
out on a VAX 6230 computer with three processors, each
of which was equivalent to approximately 3 micro
VAX's.

The method of matrix diagonalization used is the
method of residual minimization and direct inversion in
the iterative subspace (RMM-DIIS) of Wood and
Zunger. The RMM/DIIS method is particulary well
suited to large nonsparse matrices. A major advantage of
this method is that the CPU time required scales as the
square of the matrix dimension rather than as the cube,
assuming that one is interested in computing only the
lowest few eigenstates. If the computer program recalcu-
lates the matrix elements as needed rather than storing
them in computer memory, it is possible to diagonalize
very large matrices using this method. For example, to
determine the lowest two eigenvalues of a 20000X20000
matrix (with Nb —300) in the last step of a 32-spin calcu-
lation (for either s =

—,
' or 1) required 1.5 VAX-6230 CPU

d (using one of the three processors).
The largest memory requirement, approximately 40

megabytes, occurred in the 16- and 32-spin-subchain
iterations for s =

—,', and for the 16-spin subchain for s = 1.
The total time required for one of these subchain itera-
tions was approximately 10—15 VAX-6230 CPU d, de-
pending on the total load of the machine and whether N
was 16 or 32. The 32-spin-subchain calculation took
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slightly longer than the 16-spin calculation because the
eigenvalues are more closely spaced, and the eigenvectors
have, in general, a larger number of significant com-
ponents. The determination of the eigenvalues took ap-
proximately 40% of the time, with the rest spent in the
computation of the matrix elements of S+,S, and S, in

the eigenstates. The computations were performed to
only seven-figure accuracy to reduce the CPU-time re-
quirements.

EO

—/'. 00—

—/. 05

IV. RESULTS

A. s=——1

2

-7. /0—

TABLE I. Fo and F. , for various values of ~M~ for N=16
and s = —'. Also shown are exact ( ~M =4), random walk (RW),

and Lanczos (L) results. Here, M is the sum of the z corn-

ponents of the spins of the 8-spin-chain eigenstates.

IM

0
1

2
Exact
L
RW

Eo

—6.833 446 34
—7.140 15640
—7 ~ 142 296 07
—7.142 296 11
—7.1424
—7.138+0.003

El

—6.582 840 16
—6.871 134 80
—6.872 106 30
—6.872 106 51
—6.8722
—6.864+0.004

First we wish to estimate the systematic error arising
from the basis truncation iMi(k, where k=0, 1,2, . . . .
In Table I we present results for the s =

—,
' 16-spin chain

using 8-spin-chain eigenstates with k=0, 1, 2, and 4.
The exact result is given by the case iM i 4. For com-
parison, we also show the random-walk and Lanczos
values of Barnes and Daniell. ' There is close agreement
between the exact result and that obtained using the trun-
cation iM~ 2. It is clear that the effect of this trunca-
tion is generally larger for longer chains, since with each
doubling of the chain length additional information is
lost.

In Fig. 1 we plot Eo versus 1/Nb for the 16-spin chain.
The graph shows a very smooth and very rapid approach
to the exact result. This smooth behavior is typical only
of problems where one uses a basis which contains a very
large proportion of the complete basis. In this case the
complete basis with total S,=0 has 12 870 states con-
structed from Nb =256 8-spin eigenstates. Generally, for
longer chains, one is forced to extrapolate to the Nb = ~
limit using some fitting function, chosen to be a linear
form for the longer spin chains.

In general, the energy eigenvalues obtained by this
method of diagonalization in a truncated Hilbert space
give upper bounds to the true values of the energy, the
larger the Nb the better the upper bound. The flatness of
Fig. 1 indicates that Eo has converged to within a very
small error of the true value for a basis much smaller
than the complete one. Thus, in general, a linear fit may
not be a good extrapolation technique. However, we find
that, for spin chains with Nb ) 16, for which the largest

—7. /5—

—7.'Z 0
o.o

I

0.5

—/'. /5
O.O l O.ZX/0 '

Ny
I

/Ox lO '

FIG. 1. Eo vs 1/Nb for N=16 and s =
2

~ The largest attain-

able value for Nb is Nb =256 with 1/Nb =0.004.

value of Nb used is considerably smaller than that re-
quired to give the flattening behavior of Fig. 1, the nu-
merical results for the energy eigenvalues are approxi-
mately linear in 1/Nb. In these cases, the energy eigen-
values and energy differences show a substantial change
as Nb is increased, even for large Nb. The linear fit may
be seen to be a guide to the behavior of the eigenvalues,
and gaps as Nb is increased. The "best" upper bound for
a eigenvalue obtained using the largest Nb may be a long
way from the true value in these cases, and the fitted in-
tercept may give a better value for the eigenvalue (al-
though not necessarily an upper bound). Thus, in accor-
dance with this observed behavior we chose to fit the
longer-spin-chain results with a linear form. If the flat re-
gion of the graph occurs for Nb much larger than the
maximum Nb used (i.e., in the region where 1/N„ is very
small), the intercept may provide a good approximation
to the true value of the energy eigenvalue.

In Figs. 2(a) and 2(b) we display Eo and E, versus

1/Nb for N=32 and s= —,'. Here Nb is the number of
16-spin eigenstates saved from the previous step of the
calculation. In Fig. 3 we show the energy gap
hE=E, Eo versus I/Nb—. For comparison, in Figs. 2(a)
and 2(b) we also show the random-walk results of Barnes
and Daniell' (BD). The random-walk result of
b,E =0.164+0.017 is off the scale of Fig. 3 (the lower lim-
it of 0. 164—0.017=0.147 is marked with an X). Also
plotted are values obtained by extrapolating (E) previous
finite-chain results for N ~24 for Eo and N 20 for E,
and E, —Eo also taken from Ref. 12. The new results for
N =32 are much closer to the extrapolated results than to
the results obtained from the random walk. The first
thing that one notices upon examination of these graphs
is that in Fig. 3 hE has converged to approximately
0. 1405+0.0005 when Nb =160, at which point the values
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of Eo and E, are still far from the extrapolated values.
When Nb has reached the maximum value of 300 the
values of Eo and E, are approximately 0.003 above the
extrapolated values, while hE still shows signs of fluc-
tuating around the above quoted value. To estimate the
Nb~ complete basis limit, the graphs were fitted with

0./50

0./45

—/4. /8—

—/4. /9 r ~

~ Oy ~~o ~
O. /4 0

—/4. zo
0.0

I

0.5
I

/. Ox /0 ~

—/4. Z/

~BD

FIG. 3 ~ AE =E l Ep vs 1!N& for N =32 and s =
—,
' . Also

shown is an extrapolation of smaller lattice results (E). The re-
sult of Barnes and Daniell is off the scale of the 6gure. The X
indicates the lower bound of the error in the random-walk re-
sult.

/4 pg ~ i

0.0
I

0.5
I

/. Ox /0 ~
I

Ny

(b)

—/4. 05

—/4. 04

—/405 '

—/4. 06

—/4 0/';

—/4. 08
0.0

I

0.5 /. 0 x/0
/

Ng

FIG. 2. (a) Ep vs 1/Nb for N=32 and s =
—,'. Also shown is

the random-walk result of Barnes and Daniell (BD), and an ex-
trapolation using smaller lattice results (E). The X's indicate
the bounds of the error in the random-walk result. (b) E& vs

1/Nb for N=32 and s = 2. Also shown is the random-walk re-

sult of Barnes and Daniell (BD), and an extrapolation of smaller
lattice results (E). The X's indicate the bounds of the error in
the random-walk result.

straight lines and the intercepts determined. Fitting Figs.
2(a) and 2(b) with straight lines yields intercepts for Eo
and E, of —14.212+0.003 (giving Eo /N = —0.4440
compared to the extrapolated value of —0.4439) and
—14.075+0.003, respectively. We note in passing that
Eo [Fig. 2(a)] is much less linear than Ei [Fig. 2(b)]. In
Fig. 2(a) one sees "terraces" in the slope, which may indi-
cate that Eo is strongly dominated by a few very impor-
tant basis states. These terraces are much more pro-
nounced at N=64. The errors quoted for the intercepts
reflect the statistical error in the fit, and do not include
the systematic uncertainty associated with the deviation
from linearity.

The region in which the behavior is roughly linear in
1/Nb occurs for smaller values of Nb. When it is possible
to do so, it is preferable to use larger values of Nb to go
beyond this region to where the graphs tend to flatten
out. In these situations the linear 1/Nb fit using small N&

will not give as good a result as can be obtained by going
to larger values. In Fig. 1, the graph of ED versus 1/Nb
is flat when N& =256 (1/Nb =0.004), but a linear fit in-
cluding points with Nb & 100 will clearly yield a good re-
sult. For N=32 the intercepts are substantially lower
than the extrapolated values, and yield AE =0.13, which
is much lower than both the extrapolated value and the
AE obtained by the Hamiltonian-matrix-diagonalization
method. In any case, the linear fit yields an error of no
more than 0.01 from the exact value. Figure 3 is con-
sistent with an extrapolated value of hE =0.14. In Fig. 3
for Nb & 160 the gap was found to cluster around a value
of approximately 0.1405. This suggests that there must
be an error associated with the linear approximation
made in fitting Figs. 2(a) and 2(b). Neither Figs. 2(a) nor
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2(b) show convincing convergence with increasing Nb.
The estimated error of the extrapolated values is approxi-
mately +0.003. Given the proximity of the Nb=300
values of Eo and E& to the extrapolated values, it is possi-
ble that a dramatic flattening out of the graphs could
occur for only slightly larger Nb, assuming, of course,

0./0

0.09

-28./0— Q08

—28./5
E/

oor P
-28.20

-28.25

0.06
0.0

I

0.5 I

Ny

-28so—

-28.$5 —
g

FIG. 5. 5E =El Ep vs 1/Nb for N =64 and s = 2. The

upper line is a result of a linear fit of the data points while the
lower is shifted down by the correction 5Ep +5E',

2$Ep =$E
&

QEp . (E) is the extrapolated value based on
smaller chain results.

-28.~O
0.0

(b)

-28.05

—28./0

-28. /5

-282o—

—28.25—

—2 8.50
0.0

I

0.5

I

0.5

I

/Ox/0 ~ I

Ny

I

/. ox /0 /

that the extrapolated values are accurate.
In Figs. 4(a), 4(b), and 5, we show the same information

for N=64 and s= —,'. Fitting Figs. 4(a) and 4(b) with

straight lines yields EQ = —28.221+0.005(EQ /N
= —0.4410) and E, = —28. 146+0.005, with an energy

gap of DE=0.075+0.004. The relatively small error of
AE is from the fit of Fig. 5. The terracing seen in Fig.
2(a) is considerably more pronounced in Fig. 4(a). This
suggests that a simple linear fit of the data points may in-
corporate an important systematic error. These numbers
are far above what one would expect, given the Bethe re-
sult EQIN= —0.4431 and DE=0 as N~ao. Previous
results' suggest that EE=0.07 for N=64. Some of this
discrepancy can be easily explained by considering the
accuracy of the eigenstates of the 32-spin subchain corn-
putation. The results for the 32-spin chain presented in
Figs. 2(a), 2(b), and 3 were obtained using linear fits with
Nb's up to 300. In the 32-spin-subchain calculation only

Nb =100 states were used, giving a substantial error. We
shall now give an estimate of the size of this systematic
bias.

The ground-state energy can be written

EQ cQQ 32&01 32&0IHIo&3210&32

+ g c jckl 32&~i 32&~lHlk &32 li 32 (14)

FIG. 4. (a) Ep vs 1/Nb for n =64 and s= —'. The upper line

is a result of a linear fit of the data points while the lower is
shifted down by the correction 25Ep . (B) is the Bethe result
for Ep/N= —0.4431 in the infinite-N limit. (b) EI vs 1/N& for
N=64 and s = 2. The upper line is a result of a linear fit of the
data points while the lower is shifted down by the correction
gE32 +gE32

i,j,k, I

where the c „'s are the components of the normalized
eigenvector corresponding to Eo, and where the summa-
tion is carried out over all the terms in the series exclud-
ing the ij, kl =00,00 term, and where the li &32's are the
Nb eigenstates of the 32-spin subchain with free boundary
conditions. In the diagonal approximation this becomes
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Ep cQO 32(01 32(oIHIo&3i 10~32

X ij 32(i I 32~2 IHIP' ~32 IJ ~32 (15)

EO
(a)

—4 4.65

The diagonal approximation is a reasonable one to make
since the off-diagonal Hamiltonian-matrix elements are
very small ( «0. 1) and have very small absolute errors,
and their contribution to the energy eigenvalue is further
reduced by the product of the corresponding coefficients
of the eigenvector. The first term of (15) is equal to

-44,70

-44,75

c (E +E )=2c~ (16)

where Eo is the lowest energy of the 32-spin subchain. In
general,

-«.Bo

5E ~5E for i &0 (17)

since excited states usually converge much more slowly.
We also use the further approximation 5E, =5EO for
i &0. The systematic correction to Eo is then approxi-
mately 2X5EO. Since the ground state is dominantly

I0)32I0)32 this is probably a reasonable estimate of this
bias. The value of 5EO is implicit in Fig. 2(a); 5EO is ap-
proximately one-half the difference between Eo at
Nb=100 and the fitted intercept, giving 5E032=0.0183.
The factor of one-half occurs because we are dealing with
a subchain without wraparound, so that there are
effectively half as many interactions as are present with
periodic boundary conditions. The bias in the diagonal
element is then approximately 2 X5EO =0.0366. Apply-
ing this as a correction to the lowest eigenvalue of the
64-spin chain gives Eo = —28.258+0.005, which leads to
EQ /N = —0.4415.

Similarly the bias in E, is determined from that of the
diagonal elements corresponding to states IO) 32 I

1 ) i2 and

ll)32 IO)3z (where IO)3z and ll)32 have M=O) which are
the dominant components of the first excited state of the
64-spin chain. This correction is given by 5EO +5E,
where 5Ei is taken from Fig. 2(b) as was 5Eo . 5Ei was
found to be 0.0245, giving a correction of
0.0183+0.0245 =0.0428 and a corrected value of
E) = —28. 189+0.005.

The corrected value of the energy gap is b E
=0.069+0.004. This is very close to the estimated value
of -0.07, and supports our procedure for removing this
systematic bias from the energies. The outstanding
significant discrepancy between the ground-state energy
and Bethe's result suggests, however, that this approxi-
mation may not be sufficiently accurate. It is possible
that a study of the errors of the excited states of the 32-
chain basis could resolve this discrepancy.

We have also tried fitting Figs. 4(a) and 4(b) after dis-
carding the points in the two large terraces between
Nb =100 and 180. This gave Eo= —28.258+0.005 and
E

&

= 28 ~ 187+0.005 respectively, so that we find
hE =0.071+0.004. The corrected values are then
Eo = —28.295+0.005 and E& = —28.230+0.005, giving
E /N = —0.4421 and AE =0.065+0.004. Given the
large errors in these numerical fits, it seems that for
N=64 hE cannot be determined to better than approxi-

-44.85

-4 4.90
0.0 0.5

I

/0~ /0 ~

—44/5
(b)

—44.zo

—4 4.Z5

—4 4.+0

—4 4,g5

-44.40

—4 4.45,;
—4450

o.o
I

0.5
l

/. ox/0 ~
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FIG. 6. (a) Eo vs 1/Nb for N=32 and s=1. The upper line
is a result of a linear fit of the data points while the lower is
shifted down by the correction 25EO . Also shown is the result
of Nightengale and Blote (NB). The X 's indicate the bounds of
the error in the result of Nightengale and Blote. (b) E& vs 1!Nb
for N=32 and s =1. The upper line is a result of a linear fit of
the data points while the lower is shifted down by the correction
5EO +5E& . Also shown is the result of Nightengale and Blote
(NB). The X 's indicate the bounds of the error in the result of
Nightengale and Blote.
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FIG. 7. hE=E& —Eo vs 1/Nb for N=32 and s=1. The
upper line is a result of a linear fit of the data points while the
lower is shifted down by the correction 5EO +6El —25EO=5E

& 5EO . Also shown is the result of Nightengale and
Blote (NB). The X 's indicate the bounds of the error in the re-
sult of Nightengale and Blote.

mately +0.005 with our present understanding of sys-
tematic e6ects and statistical errors.

B. s=1
For N = 16 and s = 1 we obtained Eo = —22.446

+0.005 and E, = —22.005+0.005 while the results of

Nightengale and Blote' are —22.4463+0.005 and
—22.0049+0.005. The size of the error quoted with the
results of Nightengale and Blote were estimated from a
visual inspection of Fig. 2 of their paper. The Nb~~
values were obtained from linear fit of the numerical re-
sults versus I/Nb for Nb up to 200.

In Figs. 6(a) and 6(b) we plot Eo and E, versus I /Nb
for N=32 and s =1. In Fig. 7 we plot the energy gap
AE =E

& Eo versus 1 /Nb . For comparison, we also
show the Green-function Monte Carlo results of Nighten-
gale and Blote. ' Again, we fitted the data with a linear
form; the intercepts determined gave Eo = —44. 820
+0.005 and E, = —44. 391+0.005 while those of
Nightengale and Blote are —44. 8497+0.015 and
—44.4364+0.015. The two sets of numbers are within
acceptable error of each other. The results of the
Hamiltonian-matrix diagonalization were consistently
higher than those of Nightengale and Blote. The N=16
results quoted above suggest that choosing ~M ~2 is
probably suScient. However, in the next to last step
where the 16-spin lattice was solved, only Nb =100 basis
states were used, while the extrapolation for the 16-spin
chain with wraparound quoted above was obtained using
Nb's up to 200. These results suggest that for Nb =100
the 16-spin-subchain results cannot be well converged.
Thus, it was necessary to correct the results following the
prescription described above, obtaining 5EO =0.0125
and 5E

&

=0.0195, giving Eo = —44. 845+0.005 and
E, = —44.424+0.005. The agreement between the
corrected numbers and those of Nightengale and Blote is
remarkable. The Nightengale and Blote numbers give
AE =0.4133+0.02 while the corrected Hamiltonian-
matrix diagionalization gives hE =0.421+0.005. This

TABLE EI. Summary of Eo, E&, and bE at indicated maximum values of Nb, corrected values at the
indicated maximum values of Nb (corr. ), linear extrapolations (lin. ext. ), corrected linear extrapolations
(corr. lin. ext. ), extrapolations using results with chains with N (32 (ext.), and the random-walk results
of Barnes and Daniell (RW) for s= —,'. The values for Eo and E& obtained at Nb=300 are the best

upper bounds for these eigenvalues for 32 and 64, respectively. The N = 16 results are exact.

Nb =256 —7. 142 296 11

N=16
El

—6.872 106 51

AE

0.270 189 60

Nb =300
Lin. ext.
R%'
Ext. N &32

—14.201 975 74
—14.212+0.003
—14.224+0.010
—14.2048

N=32
—14.061 392 21
—14.075+0.003
—14.06+0.02
—14.065

0.140 583 53
0.13+0.01'
0.164+0.017
0.14

Nb =300
Nb —300 corr
Lin. ext.
Corr. lin. ext.
Ext. N~32

—28.188 320 05
—28.2249
—28.221+0.005
—28.258+0.005

—28.109 342 76
—28.1521
—28.146+0.005
—28.189+0.005

0.078 977 29
0.0728
0.075+0.004
0.069+0.004
0.07

'hE obtained from El —Eo and not from a fit of Fig. 3.
hE extrapolated from finite-chain gaps with N 32 and not from the difference of the extrapolations of

the corresponding finite-energy eigenvalues.
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TABLE III. Eo, E„and hE at indicated maximum value of Nb, corrected values at the indicated
maximum value of Nb (corr. ), linear extrapolations (lin. ext. ), corrected linear extrapolations {corr. lin.
ext. ), and the results of Nightengale and Blote (NB) for s=1. The values for Eo and E& obtained at
Nb =300 are the best upper bounds for these eigenvalues.

E
N= 16

Nb
——195

Lin. ext.
NB

—22.440 275 72
—22.446+0.005
—22.4463+0.005

—21.991 180 77
—22.005+0.005
—22.0049+0.005

0.449 014 95
0.441+0.005
0.4414+0.007

N= 32

Nb =300
Nb =300 corr.
Lin. ext.
Corr. lin. ext.
NB

—44.761 730 76
—44.7867
—44.820+0.005
—44.845+0.005
—44.8497+0.015

—44.313 232 95
—44.3452
—44.391+0.005
—44.424+0.005
—44.4364+0.015

0.447 497 81
0.4415
0.429+0.005
0.421+0.005
0.4133+0.02

was obtained in two ways, by fitting Figs. 6(a) and 6(b)
with straight lines, and taking the difference of the inter-
cepts, and also by fitting Fig. 7 with a straight line direct-
ly, and then applying the correction. The uncorrected
energy gap was bE =0.430+0.005. Figures 6(a) and 6(b)
were remarkably linear for the range of Nb studied. Fig-
ure 7 showed linear behavior only for large Nb between
240 and 300. This lends credibility to the expectation
that were Nb to be increased, no change in the behavior
of the graph would occur, and a linear fit should be
sufficient.

V. CONCLUSIONS

curate determinations of quite long-spin-chain energies in
future applications.

In particular, it would be very interesting to apply this
method to the two-dimensional anisotropic Heisenberg
model which is a model for magnetic effects in high-T,
superconductors. Barnes et al. have shown that a rec-
tangular 8 X 8 spin array with 64 spins is sufficiently large
for numerical study of various aspects of anisotropic
Heisenberg models. Since the longest spin chain studied
in this work had 64 spins, it seems plausible that the new
method could be easily modified to study the two-
dimensional Heisenberg models and related systems with
comparable basis-size requirements.

In this paper we have demonstrated a new method of
determining the spectra of the one-dimensional isotropic
Heisenberg model. Using a direct-diagonalization algo-
rithm with a truncated basis, calculations were performed
for s =

—,
' and 1 on spin chains which were much longer

than those for which computations had previously been
done by direct matrix diagonalization. We summarize
our numerical results in Tables II and III for s =

—,
' and 1,

respectively. We compare our values for Eo E& and AE
(best upper bounds, linear extrapolations, and corrected
linear extrapolations) with previously published results,
where available. We found that our results agreed to
within a small error with those obtained by other
methods.

The new method is time and computer-memory inten-
sive, but it seems likely that implemenation of this
method on fast-parallel or vector machines may allow ac-
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