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We discuss central questions in weak, first-order structural transitions by means of a magnetic
analog model. A theory including fluctuation effects is developed for the model, showing a dynami-

cal response with softening, fading modes and a growing central peak. The model is also analyzed

by a two-dimensional Monte Carlo simulation, showing clear precursor phenomena near the first-

order transition and spontaneous nucleation. The kinetics of the domain growth is studied and
found to be exceedingly slow. The results are applicable for martensitic transformations and
structural surface-reconstructive transitions.

I. INTRODUCTION

Many crystals, metallic or insulating, that at low tem-
peratures have closed packed structures, undergo before
melting a structural transformation to the more open
body-centered-cubic (bcc) structure. This is called a mar-
tensitic transformation. ' It is displacive in the sense that
the atoms in the low-temperature unit cell are relocated
into high-symmetry positions by finite displacements,
with no exchange of atoms between cells, i.e., no
diffusion. In spite of its universality and technological
importance, the understanding of the underlying mecha-
nism and the transformation process is still incomplete
and the subject of vivid discussion. Open questions are,
for example: why is there no soft mode, is there a central
peak, are there precursor effects, and are impurities
necessary for nucleation or is it a spontaneous transition?
We shall present here the results of a study that gives an
answer to these questions for a model system of a marten-
sitic transformation. Some of these results were briefly
described previously. Recently, it has been possible
from first principles to calculate the free energies of the
transforming structures for actual materials, and thereby
shed light on the thermodynamic driving forces, and the
relevance of entropy, soft modes, strains, etc. For a
high-temperature transition, this has so far only been
done for the (hcp)~(bcc) transition in Zr at 114D K, with
results in very satisfactory agreement with experimental
measurements. The temperature effects were calculated
using anharmonic phonon theory. Since the atomic dis-
placernents of the order of the unit-cell dimension are
large, the application of the small amplitude phonon
theory is not fully satisfactory and cannot be used to dis-
cuss an important question such as nucleation.

Here we take a different approach and sacrifice the de-
tailed description of a particular material for a principal
phenomenological discussion of the physics involved in

the martensitic transformation. Let us focus on the low-
energy path an atom takes between the two structures.
In coordinate space the path can be considered to be on a
surface, and an atom on the path will feel large restoring
forces perpendicular to the surface, while being able to
perform large-amplitude fluctuations on the surface, larg-
est along the path. In this picture the atoms may be
thought of as the mass points of interacting pendulums,
swinging in anisotropic potentials. They are attached to
an imaginary reference lattice. If we now replace the
pendulums by continuous spin variables, we are led to a
magnetic analog model of the martensitic transformation
which contains the principal dynamics and statistics of
the atomic displacements. The advantage of the magnet-
ic analogic model is that theories are developed to de-
scribe large-amplitude vibrations, making it possible to
describe temperature renormalization, soft modes, central
peak and line-shape effects more reliably than by anhar-
monic, small-amplitude theory. Further, the magnetic
model is suitable for computer simulation, and the ther-
modynamic phase diagram and important aspects like
nucleation and domain growth kinetics can be studied
with available computer resources. The advantage of us-
ing continuous spin variables, versus discrete Potts or Is-
ing variables as in the axial next-nearest-neighbor interac-
tion (ANNNI) model, is that the former describe the sta-
tistical behavior, as well as the dynamics which the latter
do not. Pseudospin models have previously been used for
structural phase transitions. Although we have used the
magnetic analog model, discussed in this paper, for the
martensitic transformation, it should be noted that the
general results will be applicable to a large class of other
transitions including surface reconstruction, and transi-
tions in metallurgy, ' and earth science. "

In the following we first discuss the construction of
magnetic analog models for the martensitic transforma-
tion. The properties obtained by the mean-field theory is
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then discussed, prior to a discussion by means of a corre-
lation theory of the excitation spectrum, the free energies
and the line shape. Subsequently, the model is investigat-
ed by the Monte Carlo computer simulation method.

II. MODEL HAMILTONIANS
FOR THE MARTKNSITIC TRANSFORMATION

MARTENSITIC TRANSFORMATION

CC

o~
hcp

~o~ o og

fcc bcc

(i PE I'l

Cubic (z} Hexagonal (+x} Hexagonal (y}

In order to understand the physics and statistical
mechanics of the martensitic transformation in detail, it
is advantageous to consider simple models which are
tractable for numerical simulation and theoretical stud-
ies. There are several possible ways in which a bcc struc-
ture can transform to a closed-packed (cp) structure. Let
us here consider the transformation shown in Fig. 1 in
which, by moving all atoms in neighboring planes by an
internal strain e2, it is possible to go from the bcc to the
hcp or fcc structures with a certain relation between the
symmetry axis in the different structures. This model is
called the shufHing model and corresponds to the
Nishiyama-Wasserman rule' for the bcc~fcc transition.
The conserved planes are (110)b„~(111)&„or(0001)h,~
and directions [110]b„~[121]r„or[1100]„,~. In order
to complete the closed-packed symmetry a uniform strain
s, is also needed along z=(001)b„perpendicular to the
conserved plane in order to reduce the angle 8, =125.3'
to 8&=120'. Considering a projection of the structure
along the [001]b„direction, the rearrangement can be

depicted as a transformation in two dimensions between a
square lattice to a triangular lattice, where the latter
represents both the hcp and fcc phases. This is shown in
the lower part of Fig. 1. The movements can equivalently
occur either in the kx or ky direction and therefore give

an order parameter of dimensionality n =2 and degenera-
cy nd =4. It should be noted that for the real, structural
bcc~cp transition there are three equivalents (110)b„
planes, out of which we by the projection have chosen
one. The real bcc~cp transformation therefore has an
order parameter with a degeneracy corresponding to
nd =12. Although the value of n does inhuence the criti-
cal behavior of the transition, we expect that the n =2
model contains the essential physics of the martensitic
transformation. For a further simplification of the sta-
tistical mechanics of the atomic displacements depicted
by arrows, we represent the atomic positions in the unit
cells by actual spin S;=(S,",St', S ) on a square reference
lattice, where r; represents a vector connecting nearest-
neighbor spins S; and S . The physical content of this re-
placement will be discussed further in the following. The
triangular lattices then correspond to antiferromagnetic
structures with the ordered moments along either the x
or y directions and the square lattice corresponds to a fer-
romagnetic structure with the moment along the z direc-
tion. We thus arrive at the magnetic Hamiltonian

8= $ (J[S; S~
—2(r, S, )(r, .S )]

res, 's;.—} py(s, 4—+s,4 ),

p(S~+S4)=p(,'Of+ —,
' 00~ —S2+1) for S =1 . (2)

which at low temperatures for large K has the required
ferromagnetic structure (called cubic z or phase 1), and
for large J the required antiferromagnetic structure
(called hexagonal x, y, or phase 2), the parameter P )0
stabilizes the x or y directions in the plane. We have used
P =2J. There is a first-order transition between the cubic
and hexagonal structures for a temperature-dependent ra-
tio between E and J. For fixed K/J, the transition tem-
perature TM corresponds to the martensitic transforma-
tion temperature. At higher temperatures the model Eq.
(1), of course, also has transitions to the paramagnetic
phase (corresponding to melting in the real case), but this
will not be of primary concern in this context. The mod-
el Eq. (1) for classical spina (S= 00) is well suited for nu-
merical simulations. For a theoretical investigation it is
advantageous to consider a quantum mechanical S =1
model for which a theory for correlation effects has been
developed. For S =1 the P term in Eq. (1) can be writ-
ten exactly in terms of tensor operators as

FIG. 1. A simple picture of the atomic displacements in a
martensitic transformation. At the top left is shown a three-
dimensional representation of a bcc structure, including some
next-nearest neighbors connected with thin lines. The orienta-
tion is chosen such that it is evident that a shufBing of the hor-
izontal planes as indicated by the arrows, leads to the closed
packed hcp or fcc structures, after a further small adjustment of
the angle 0,~8I, =120' by a uniform compression along the z
axis. The top right shows that one could equivalently shufHe
vertical planes. The lower part shows the same situation in a
projection along the bcc {001)z axis. This reduces the problem,
effectively, to a two-dimensional spin problem, representing the
displacements by spins.

Es,'s'}+D g s,, — (3)

Here the D term with D =P =2J tends to stabilize the
spins into the xy plane, but without preferring any
specific directions; further, it introduces a singlet
ground-state aspect into the problem. The dimensionali-

Since tensor operators OI with 1=4 do not have finite
matrix elements for S=1, these can be neglected. So for
S=1 the Hamiltonian Eq. (1) maps exactly onto the
simpler one

A= —g ( J[S; S~
—2(r;~ S, )(r,, SJ )]
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ty of the order parameter in the triangular phase is still
n =2, but with continuous degeneracy. The model Eq.
(3) is suitable for calculations using the correlation
theory, but less so for numerical studies.

The advantage of using spin variables to describe the
atomic motion, rather than the more conventional pho-
non variables, is that theories exist for describing large-
amplitude spin vibrations, corresponding to large-
amplitude atomic displacements. Phonon theory is basi-
cally only applicable for small-amplitude displacements.
Previously, ' it has been common to use Ising spin vari-
ables, such as in the ANNNI model, but then the dynam-
ics of the transition cannot be described. The models
Eqs. (1) and (3) are more appropriate for a dynamical
description. This will be discussed in more detail in Sec.
IV C.

III. MEAN-FIELD THEORY
FOR THE MARTENSITIC TRANSFORMATION

In order to discuss the first-order transition between
the cubic and the hexagonal phases, in the following in-
dexed by 1 and 2, respectively, we need to calculate and
cotnpare the corresponding free energies F, ( T) and

F2( T) In mea. n-field (MF) theory the difference is

where the molecular fields are

H, =(Hll+4KM, ), H~=(H, +4JM2)

including an external uniform field H~~ or staggered field

H~, and M, and Mz are the order parameters. Diagonal-
izing Eq. (5) gives the eigenvalues and eigenfunctions tab-
ulated in Table I, which yields the thermodynamic prop-
erties from the definitions of the partition function

Z~ =+exp( PE~—"'), p = 1,2,

and free energy

F =E —k&TlnZ

where E is the first term in Eq. (5). The corresponding
classical expressions are obtained by replacing the sum by
an integral giving

Z (classical) =I exp[ —P&~(8)]d 8

with S, =cos8 and S„=sin8in & (8), cf. Eq. (5). The
models can easily be examined analytically in the limits
T~0 and at T- T„where the magnetization is small.

Consider first T =0. The free energy reduces to
F = (%) r =0. For the classical case this gives directly

—P')V
l

AF=F) F2 = k~ T ln
Tre

(4)

F, = —2K+D, F, = —2J (classical, T=0) . (7)

where P= I/ks T. The mean-field Hamiltonians for the
two structures are for Eq. (3)

&,=2KM, + g (DS„H,S„), —

(5)
&2=2JMt+ g (DS;, H2S,„),—

For D =2J the phase transition is therefore at K/J =2.
The transition is of first order since F, and F2 meet with
a different slope as a function of K/J at K/J=2. For
the S =1 case, F equals E plus the lowest eigenvalue,
and we find from Table I at T =0 the following:

M/ =1, M =1—(D/8J) = —"

Fi =2K +D —4K, Fq =2JMq+D/2 —b = —9J/8 .

(S =1,T =0) (8)

TABLE I. Mean-field eigenvalues E~"' and wave functions %~"'. The eigenfunctions for S, are denoted ~0) and ~+I) and
~x ) =(~1)+

~

—1))&2, with (O~S„~x) =1. The mixing angle is given by sin2@=Hz/h. The partition function Z~, free energy F~
and magnetization M, follow directly from the definitions. Finally the internal fields Hp are listed.

E(n)
I

Case p =1
(cubic)

qp(n)
1

E(n)
2

Case p =2
(hexagonal)

gg( n)
2

1

2
3

Z

M

D —Hl
0
D +Hl

—
PD( I+e I

)

2AM I
—k~ T lnZ I

e ~ (e ' —e ')/Z
4EM,

II)
io&

D/2 —g g= I (D +4H2)I/2

D
D/2+ 5
e ~+e ~ (e»+e ~ )

2JMq —kg T 1nZ2

(H /g)e-»/2(e» —e-»)/Z
4JM2

cos&~0)+sin@~x )
(I 1 &

—
I

—I&/&2
cos4)x ) —sin@~0)
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This gives a first-order phase transition at
K/J= —'„'=1.56. If, as is often the case, the anisotropy
had been included only as a linear effect, i.e., neglecting
terms of order (D/8J) and assuming M2=1, one would
obtain the first-order transition at E/J =

—,
' at T =0.

Consider then T-T, . For the S=1 case one finds

from Table I by expanding for small M the local suscep-
tibilities in the disordered phase for ordering in the z or x
directions.

2 a „21 —a
k~ T 1+2a D 1+2a (9)

where a=exp( 13D)—. These formulas were first derived
by Van Vleck. ' A second-order phase transition takes
place when the inverse, interacting susceptibility vanishes

1/y) = 1/yo' —4K, 1/y2 = 1/y(~) —4J . (10)

or

The ordering of the antiferromagnetic x phase occurs at
1/F2 =0, which for D =2J gives

(1+2a)/(1 —a) =4

I I—MF t
&C ~

Classical (S=~)
—MF Quantum (S =1)

I

I

Hexagonal
I
I
I
I
I
sl

Disordered

kBT/J

FIG. 2. Phase diagram showing a traditional bicritical point
for the classical spin Hamiltonian Eq. (1) using mean-Geld

theory and Monte Carlo simulation. Also shown is the mean-

6eld phase digram for the quantum (S =1) model Eq. (3). A
martensitic transformation corresponds to a crossing of the
first-order line between the cubic and hexagonal phases as a
function of temperature at a given ratio K/J.

—1a ——.
2

From this, the (exact) MF-transition temperature is
found to be

k&T, =2J/ln(2) =2.89J .

The z order occurs at 1/y)=0 and is favorable for
K/J ~ 1/ln(2) =1.44. This is less than the ratio
K/J=1.56 found at T =0. The phase transition between
the ordered phases is obtained by a numerical calcula-
tion; see Fig. 2. If, as is often the case, one uses the linear
high-temperature expansion giving

tonian Eq. (3) into a more general form, which has been
discussed previously. As demonstrated above, conven-
tional linearization procedures lead to incorrect results.
Similarly it will be demonstrated that conventional linear
spin-wave theory' is inadequate. Instead we shall use a
theory that allows a consistent treatment of correlation
effects.

IV. THE EXCITATATION SPECTRUM

A. Two-sublattice Hamiltonian

and

o 3k~ T/2+D/2

1/yo" =3ki) T/2 D, —

In order to develop the correlation theory for the exci-
tation spectrum it is convenient to consider two sublat-
tices, A and B, and rewrite the Hamiltonian Eq. (3) in the
following general form, which has previously been stud-
ied

the bicritical point is found at ki) T, =3J and X/J =—'„
i.e., the same ratio as at T =0. In the linear approxima-
tion the critical ratio EC /J =—', is independent of tempera-
ture, and there is no (martensitic) transformation as a
function of temperature. We emphasize the fatal sensi-
tivity of the phase diagram to fairly standard theoretical
linearization approximations. In the next section we
shall see that the same sensitivity holds true for the calcu-
lation of the excitation spectrum. For the classical case
the expansion and integration of the partition function
can be done, but is a bit cumbersome, so the total MF-
phase diagram is calculated numerically for the full Ham-
iltonian Eq. (1); see Fig. 2. This can be compared with
the result of the Monte Carlo simulation (dashed line),
which includes correlation effects.

In order to discuss the correlation effects theoretically
we need to calculate the excitation spectrum for the mod-
els. We will do this explicitly for the S =1 model. For
this purpose it is appropriate to reformulate the Hamil-

%=&;„,+&,„=——,
' g g [d"; (S;„S„+S;i)Si))

+ an~

+8',) (S;„S~i)+S;i)Sg„)]

i a=A, B
(DS,', H~ S;; ) Hi g (S—;q

——
S~i) ),

where a=x,y, z are Cartesian components. We here ex-

plicitly include the uniform and staggered external fields,

H~~ in the z direction and H~ in the x direction. It is fur-
ther convenient to introduce the uniform and staggered
Fourier transformed variables U and V as

U =&1/2(S „+Si)) and V =&1/2(S „—Sqi)),

(12)
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and the new interaction constants, I =g +g '

Iq =Pq —d'q . For the Hamiltonian Eq. (3) these are
given explicitly for the two-dimensional lattice by

tells us that the spectrum does not consist of 6 functions,
but the excitations have a finite linewidth. Next, since
i ( AB ) = ( [ A, B ] ) one can from Eq. (16) derive the ex-
act relation

J"= —J~ =Jy', J' =Kg

I
q

I
q Jpq I

q Kpq (13)
L,=(co, & (co, ) =II, ', (19)

(20)

y =2(cosq„+cosq ), yq=2(cosq„—cosq ) .

In terms of the variables, Eq. (12), the pair interaction,
first term in Eq. (11), is diagonalized with respect to the
sublattices and becomes

(J U U q+IqVqV q)
qa

(14)

The advantage of this procedure is that the uniform and
staggered modes can then be discussed. We now define
the following quadrupolar operators for each sublattice:

Q„=2(S,—Sy ), Q y
=2(S, —S„),

Q, =2(S„—Sy ), L"=(S'S~+Si'S'),
(15)

B. Summary of the general correlation theory

with the remaining L obtained by cyclic permutations.
These operators are needed in order to treat the anisotro-
py term correctly. With indices u and U we indicate the
linear combinations corresponding to Eq. (12).

Commutators between spin and quadrupolar operators
give again quadrupolar operators, and commutators be-
tween two quadrupolar operators give spin operators for
S =1. These are derived from the definitions Eqs. (12)
and (15).

We emphasize this important exact result, that the sus-
ceptibility is inversely proportional to the first frequency
moment and vice versa. The matrix I only involves
thermal averages of single-site operators. Similarly using
Eq. (17) we can alternatively, and still exactly, write

q=hq pq ~ (q) =Ipq

p, ——&[X,, A,']) .

(21)

(22)

( A A ), =Xq[z I—i~Q+~X(z)]

r,(z) =(X,X,'),q,-',
( Aq A q)„=Re(Aq A q),
( AqAq) = J (AqA )„/(1—e ~'")codes,

(co")= f co"(A A ) dcoX

(23)

The advantage of using the second derivative Eq. (17) for
defining the susceptibility is that it includes explicitly the
average of the time-dependent variations of the neighbor-
hood of the operator we are dealing with. Therefore
correlation with the neighborhood is explicitly involved.
Using Eq. (19) all these correlation effects are hidden in
the thermal single-site averages. Equation (21) is a useful
starting point for approximations. Likewise is the follow-
ing exact forrnal solution by Mori' for the frequency
dependence of the Laplace transformed dynamical relax-
ation function. Let us summarize a number of exact re-
sults:

The idea of the correlation theory is to calculate both
the static and dynamic properties self-consistently, in-

cluding correlation eA'ects in a mode-mode coupling ap-
proximation. The theory has previously been reviewed in
detail, so here we only give a few basic steps. First a
dynamical vector variable A is constructed consisting of
a relevant number of the operato'rs Eqs. (12) and (15).
For A the exact first- and second-order equations of
motion can, by separating out all terms proportional to
A, be written as

iAq=[Aq, &]=(~q) A +Xq, (16)

—
Aq =(cuq) A +Xq ', (17)

&q=&~q& —&~q&',

Here X and X„' ' are so-called random forces, not pro-
portional to A . (co") are the frequency moments of the
relaxation function (A A ) . If b, is nonzero, it directly

The relation to the frequency-dependent relaxation func-
tion and the static correlation functions is also given.
This completes the description of the formally exact
theory. The approximation made in the correlation
theory consists of the following three assumptions: (a)
that the effects of the remaining operator X' ' in Eq. (17)
can be neglected, (b) that the terms in A Eq. (16) pro-
portional to A obtained by the random-phase approxi-
mation (RPA) decoupling, and the terms in A (17) pro-
portional to A, obtained by a mode-mode decoupling of
all triple products of operators like

Aac-( Aa &c+( Ac)a+(ac) A,
are sufficiently close to the exact projections so we can
use the Mori result Eq. (23), and finally (c) the dynamical
assumption that the frequency dependence of the
second-order random force relaxation function is unim-
portant in the frequency range of interest. Let us now
apply this theory to the two specific cases.
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A
q
=column( U', L»„,U» L"„) (25)

describing the uniform or acoustic modes, and similarly
the V operators for the optic modes. The L~„operators
are generated by the equations of motion. The first mo-
ment matrix is directly found from Eq. (16) by a RPA
decoupling of operators on different sites, for example,

&~Jf+qUI+qU' t- Jq(-Uo & Uq .

Operators on the same site are treated exactly,

—q—q

(AqAq)

0 0

0 0

H~ —D
q

—D~ H
q 1

—H"
q

D 0 0

D" —H
q 1

0 0

We define the q-dependent field and anisotropy terms

H =H —JM D =D —JQq 1 q 1& q q

and the squared frequencies

(27)

co,„=H"H», co =D (D JQ ) =DD— , (28)

where Q = ( Qa ) from Eq. (15) and by symmetry
Q"=Q». Here roq,

„

is the exchange frequency found in
the absence of the anistropy D, and mqD is the exciton
frequency found in the absence of magnetic order. The
eigenvalues for Eq. (26) are the solutions to the deter-
minant equation, which can be written

g2 1 II2[ 1+( 1 4~2 /II2)1/2]

C. RPA theory of "cubic" excitations
in the ferromagnetically z-ordered phase

Case 1 is the analog to the cubic phase, for which the
order parameter and the molecular field are

M, =(S'„+Sz)/2=(UO)/&2, H~ Hll+ OM& ' ( )

and H~ =0. The theory is sufficiently general to also ap-
ply for the disordered phase for which M& =Hj =0. For
the transverse excitations corresponding to Sq and Sq
modes we need the dynamical variable vector

from Eq. (19) we need the matrix I which can be directly
found from (20):

I=([A
q, Aq] =i

»
1

M( —Q"
—Q» M,

(30)

0 0

(31)

yq„,=(UqUq )=1/(R; —Jq),
ya ( Va pat )

—1/(R a Ia )qu1 q q 1 q (32)

The staggered susceptibility is obtained by analogy, using
the result Eq. (14). The R a& term is the inverse local sus-
ceptibility, which is found to be

H —D
R a —

1 /gaa—
H, M, DQ— (33)

If M, and Q are evaluated in the mean-field approxima-
tion, Eq. (33) agrees exactly with the directly calculated
mean-field susceptibility, as given by the Van Vleck' for-
mula for Eq. (9). This shows that the decoupling in the
theory is exact, with respect to the single-site properties.
Using Eqs. (33) and (27) we can reformulate coq„& in Eq.
(29) and find the more general expression for the spin-
wave frequency for the uniform mode

co „,=E,M, [(R, —J")(R,—J )]'

=E,M, /(y"„y» )' ' (34)

For the staggered mode we replace Jq by I, and the in-

dex u by v, K, is a weakly q-dependent constant of order
1. This shows explicitly that the first moment frequency
vanishes at the temperature at which g diverges for
some q, here at q=0, as expected from the general
definition Eq. (19). Using the mean-field theory, Table I,
at T =0 we find M& =1, Q = —1, and hence from Eq.
(33)

Using Eq. (26) and (30), and the (1,1) and (3,3) elements of
(31), the RPA susceptibilities for the uniform and stag-
gered fields are

0 =coqD+a)"D+co,„+H,, (29)
R ) =H) —D =4K —2J .

If we neglect the transverse part of &;„,Eq. (11), i.e., all

Jq and Jq terms we get A, +=(D+H, ) . This shows that
A, + corresponds to resonances for transitions between the
excited levels 2 and 3 in Table I. At temperatures where
the order parameter M, is close to the saturation value
(typically for T &75% T, ) we can neglect the population
of the excited level and thus the effect of the A. + reso-
nance. The other eigenvalue A. corresponds to excita-
tions between the ground state and the first excited state
(1 and 2 in Table I). In the same temperature range we
can expand A, and find the low-frequency excitation

coque ] This determines the RPA spin-wave frequen-
cy coq„&for case 1. In order to derive the susceptibility g

Now yq =0 diverges for R, —4J =0 or for E/J =
—,'.

This ratio is lower than the ratio 1.56 found previously
for the first-order transition. There is therefore no soft
mode when approaching the transition from the z phase
(or cubic phase). It is interesting, however, that the ratio
is higher than the critical ratio K/J = 1.44 at T = T, . In
the interval 1.44 & K/J & l. 5 the model Eq. (3) represents
a case for which the cubic order is not stable at low tem-
peratures, but is stabilized at high temperatures by
anharmonic effects. This was precisely the case found for
the real martensitic transformation in Zr, where the
linear phonon theory for the potential, calculated from
first principles, yielded imaginary frequencies at low tem-
peratures. Whereas anharmonic phonon theory gave a
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X[J' D(2S —1)—J—]]' (35)

This agrees with Eq. (34) for S =1. The limit for classical
spins (S~oo) is obtained by replacing 2S —1 by 2, the
coefficient to the highest power of S. Now cu „,vanishes
at

H) —2D —Jo =4L —SJ=O,

stable cubic phase at higher temperature, the anharmonie
theory for phonons is very difficult and basically restrict-
ed to perturbation theory. For spin dynamics, which is
inherently anharmonic, since the spin operators are
infinite expansions of Bose operators, ' theories like the
correlation theory are developed for dealing with such
anharmonicity. The spin operators can be thought of as
infinite expansions in Bose operators, which could be
atomic displacement operators or phonon operators.
Treating such appropriate infinite groups of operators
consistently, allows a description of finite atomic dis-
placements, and not just the infinitesimal displacements
discussed by a linear phonon theory. In the martensitic
transformation the involved displacements are within the
atomic unit cell. The spin analogy, where the head of the
spin represents the actual atomic position relative to a
reference lattice, is therefore quite realistic. In this model
the atomic large-amplitude displacements are confined to
a sphere. Although this is probably too simplified, the
description gives an approximation for the minimum en-
ergy path for the atoms between two structural positions,
while neglecting any effect of small vibrations perpendic-
ular to the surface for this path. In this picture it is also
possible, physically, to understand the difference between
the quantum and the classical model. The latter allows
the atom to be anywhere on the globe. The quantum
S=1 model prefers the atoms to jump from the poles
(S,=+1), corresponding to the cubic positions, to the
equatorial plane (S, =0), corresponding to the hexagonal
phase. This model may be more realistic than the classi-
cal one and also allows for tunneling effects. The
minimum path and energy barrier between the S,=+1
and S,=0 positions could be modeled more realistically
by modifying the interaction and potential terms in Eqs.
(1) and (3) if desired

It is interesting to compare Eq. (34) with the result of a
harmonic, linear spin-wave theory using Bose operators a
and a from a truncated Holstein-Primakoff (HP) trans-
formation, ' which replaces the spin operators as follows:
S+=&2Sa, S =&2Sa, S, =S—a a, for large S. The
familar result for Eq. (3) is

coq„,=M, I [Jo D(2S —1)—J—"]

where the expansion to Bose operators is found using the
large S limit of the well-ordered expansions of the OI
operators' (direct HP transformation of S„+Sleads to
erroneous results). The P term Eq. (36) represents a
strongly anharmonic term, which give no contribution in
a simple harmonic theory. The spin-wave frequency
coq„,, for Eq. (1), is hence given by an expression like Eq.
(35) with D =0. This frequency is zero for K/J =1. For
the classical case linear spin-wave theory for Eq. (I)
therefore gives no soft mode at the first-order transition
at E/J=2. Further, the cubic phase for Eq. (1) is in-
herently stable in the whole martensitic transformation
interval 1.5 & E/J & 2, see Fig. 2.

D. RPA theory of "hexagonal" excitations

in the antiferromagnetically x-ordered phase

Aq =column (U», Lq„Vq, L»q )

The first moment matrix is

(37)

(ru )=i

0 0

0 0

H' D

Dq H2

0 0
(38)

—D~ —H 02

using the same notation as in Eq. (27), but with

Di IzQz
q q

H, —H, —I,M H, =H, —J,M2

and

2 HyHz z2 DDz
qex q q & qD q

H«e Q'=2(S, —
S» ) from Eq. (15). The eigenvalues are

solutions to the determinant equation giving results simi-
lar to Eq. (29). The spin-wave excitation from the ground
state has now the squared frequency

cuq„2 H2H (H2H co D)/(egg d+~ +H2)
The matrix I and the susceptibility in Eq. (19) are

Case 2 is analogous to the closed-packed phase for
which the order parameter and molecular field are

Mq = (S"„—Ss ) /2= ( Vo ) /v'2, H2 =Hi+loM2

and H~~
=0. For the transverse excitations we need the

dynamical variable vector

i.e., at I( /J= 2. The classical, harmonic spin-wave
theory for Eq. (3), therefore, predicts a soft mode at the
first-order transition at K/J =2 and similarly, when ap-
plied to the S =1 case, a soft mode at the linear first-
order transition at K/J= —,'. On the other hand the P
term in Eq. (1) can for classical spins be written

—M 2

0 M2 Q»

0 Q' M~

—Q' 0 0 (39)

y, =(co ) 'I .

The (1,1) and (3,3) elements give the RPA susceptibihties
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=( U»U» 1
qu2 q

—
q Ry Jy

2

y'„,=( Vqv' q)= 1

where the local inverse susceptibilities are

R 2 =1/yyy=H, /M, =4J,
R 2

= I /y() =H2 /(H2M2 D—Q') .

(40)

(41)

E. Eft'ect of fluctuations

In order to find the fluctuation effects on the first mo-
ment we use the result Eq. (21) and calculate and decou-
ple the second-order equations of motion for the dynami-
cal variable Eqs. (25) and (37). Both for the cubic and the
hexagonal order we find that the p and 6 matrices are
diagonal with matrix elements for the spin operators of
the general form

co „=EM [(Ry I )(R'——J')]'
=E~M2/(yq„~q„2)'

(42)

Again, if M2 and Q' are calculated using the mean-field
theory, (41) agrees exactly with the directly calculated
Van Vleck susceptibilities Eq. (9) and gives R2 = ,'D at—
T =0. Similarly to Eq. (34) we can reformulate co~2 and
the corresponding ~qU2 as

a)q„2=E2M~[(R~
—Jq )(R 2 Iq )]'—

—E2M2/(yq„~q„2)'

2=
Pq Cql ~q q2 q1 q (45)

where Cq1 and Cq2 are correlation functions in various
combinations and Jq is the interaction constants Jq or Iq.
According to Eq. (21} one therefore finds the important
result that the general RPA form for the enhanced sus-
ceptibility Eqs. (32} and (40), and furthermore the first
moment frequencies Eqs. (34) and (42) are recovered, but
the local susceptibilities 1/R' are replaced by renormal-
ized, and in principle wave-vector-dependent susceptibili-
ties 1/Rq, which depend on correlations within a small
cluster. Explicitly for the cubic order we find that Ry in
Eq. (34) for the uniform (U) mode must be replaced by

where K2 is a weakly q-dependent constant of order 1.
Using the mean-field theory, Table I, we find at T=O for
this case with D =2J a reduced magnetization Mz =—'„'
and Q'= —

—,'. The instability towards the z order occurs
for yqu2~0 or at R 2

=4 K. This gives a stability range
for the x order for E/J (—', =1.67. This is higher than
the ratio 1.56 found for the first-order transition. There
is, therefore, no soft mode when approaching the transi-
tion from the x phase (or cubic phase} either.

The harmonic, linear spin-wave theory using the HP
transformation gives

Rf Rq„)=C"„2/C"„),
Cq„„=g [(Jf, —Jf q)Jf,

'" "(5Uf 5U' „)
k

+(J$ J )J$(
—)) ( U/U» )

+(If, Iy), q)If,
'" —"(Vf, V' ~)

+(I)—I'„,)I$'"-"(V(v „)],

(46)

co =M j(I" Iy )[I"+D(—2S —1)—J']I'y . (43)

Since this includes only effects linear in D it does not
agree with the RPA result Eq. (42) and a soft mode is ob-
tained at E/J= ,'. The linear t—heories therefore predict
soft modes when approaching the first-order transition at
low temperatures from both phases. This shows first of
all that the accuracy of standard linear theories is not
sufficient for discussing a delicate phenomenon such as
martensitic transformation. We expect that this state-
ment also holds for the application of linear phonon
theory.

The P term in (1) can, with x as the quantization axis,
be written as'

where 5Uf, =Uf, —(Uo) and J'" "is 1 and J for n =1
and 2, respectively. By symmetry, R qu1 R qu1 For the
staggered mode, Cq„„is obtained from Eq. (46) when

J1, q
is replaced by I1, q

and vice versa. In general,
Rq„,ARq„,. At low temperature the longitudinal (z)
fiuctuations can be neglected. Since X),J&(S&S ), ) is a
nearest-neighbor correlation function and X&Jf, (S),S ), )
is a sum of an on-site and a next-nearest-neighbor corre-
lation function, R u1 and R, 1 are nonlocal inverse sus-
ceptibilities for a small cluster.

For the hexagonal order we similarly find that R2 in

coq„zin Eq. (42) must be replaced by

2
—

Cqu2 qu1, 2 qU2 qU2 / qU1

—1 —4a a+ —,'(a +a ) . (44) (47)

The spin-wave frequency co „2for (1) is given by an ex-
pression like Eq. (43) with D(2S —1) replaced by 4P.
This frequency is zero for K/J=3. Therefore, linear
spin-wave theory for the classical Hamiltonian Eq. (1)
gives no soft mode at the transition at K /J =2, when ap-
proaching it from neither the cubic-orderered nor the
hexagonal-ordered phases.

where Cq„„areobtained from Eq. (46) by cyclic perrnuta-
tions, and now 5Vk is inserted instead of Vk but where
now these longitudinal terms can be neglected at low
temperatures.

Let us now evaluate the correlation functions using the
aforementioned formulas and the general formula found
in Eq. (23). In a quasiharmonic approximation we as-



696 PER-ANK. ER LINDGARD AND OLE G. MOURITSEN 41

sume that the spectrum can be represented by 5 functions
at the first moment frequency, i.e., we neglect the damp-
ing term X (z) in Eq. (23). The scattering function for
the cases p = 1 and 2 then assumes the form

p &Qp [~ ~up+~ + ~p)]f~p

(48)

from the longitudinal fluctuations is negligible. Then the
internal energy for @=1 and 2 [averaging the q depen-
dence of R

&
( -R ), which was added in Eq. (51) in or-

der to cancel gq& in Eq. (49)] can be written

E, ( T) = —2KM, +D (S, &, ,' (—R—",(S„&,+R P( S &, ),
(53)

where f
„

is a factor of order 1 when the order parame-
ter is close to the saturation value (i.e., the upper mode at
0 can be neglected). Consequently, Eq. (23) can now be
integrated over co to yield the correlation function

q —q &p =Xqup qup qup+ 2~

n „=1/[exp(co&„p/ks T) —1],
(49)

(&&r= —
—,
' g(Jq(UqU q&+Iq(VqV q&)

qa

+D g((U'U' &+( V'V' &) . (50}

The free energy can be exactly written as'

F=(a&, rS=(,a&,=,—

'rJ ((W&,—, —(W&, ,},. (51)

Using Eq. (49},and assuming the temperature variation is
dominated by the population factor, Eq. (51) can be in-
tegrated and written as

Fp =Ep(T)+E +k~T ,' g [ln(1 —e ""~—)

k

+ln(1 —e "")] (52)

where Ep= 4+&~i,& is the qua—ntum-mechanical zero-
point energy.

The last term is the familiar entropy contribution, '
—TS, from bosonlike, transverse spin-wave excitations.
At low temperature the energy and entropy contribution

where nq„ is the spin-wave population factor for the U
modes in phase p. At T~O this vanishes and the corre-
lation functions reduce to the value of the small
quantum-mechanical zero-point motion effect. At T ap-
proaching the second-order transition, where the suscep-
tibility diverges faster than the first moment frequency
decreases, Eq. (49) shows that the transverse fiuctuations
diverge. This is also true when the upper mode at 0 is
included. It is also clear that the most diverging correla-
tions are those corresponding to the competing phase.
(The discussion of the V modes is completely analogous. )

As the potential second-order boundaries were found to
be quite close to the first-order transition, we predict a
substantial growth of the short-range order correspond-
ing to the competing phase, when the first-order bound-
ary is approached, be it as a function of temperature as in
the martensitic transformation or by varying the parame-
ters j'and J.

We can now alamo calculate the free energies including
the fluctuation effects. First we rewrite the thermal aver-
ages of Eq. (11)exactly as (for H~~ =Hi =0)

E2(T)= 2JM—2+D(S, &2
—

—,'(Rq(S, &2+RE(Sp &2) .

The last terms are the energy contributions from the
transverse excitations. They have the form of a Landau
expansion for the local transuerse fluctuations, with
coefficients equal to minus one half of the inverse renor-
malized susceptibilities Ro from Eqs. (46) and (47). At
low temperatures, when the order parameter is close to
the maximum value, the transverse correction is clearly
small and the phase boundary is accurately given by the
mean-field theory. At higher temperatures (or large D)
the corrections become large, in particular close to the
martensitic transition, where the short-range order of the
competing phase become large. However, the correction
gives to a first approximation the same contribution,
—kz T, for both phases, since (S~ & -ks T/R, and only
corrections to this (equipartition result) shift the phase
boundary. The entropy term, the last in Eq. (52), can be-
come large if a mode goes soft. However, since we have
shown this does not happen, the entropy term is not ex-
pected to shift the boundary significantly, either. The
conclusion is that the explicit energy and entropy contri-
butions from the transverse excitations do not "drive"
the martensitic transformation, i.e., determine the first-
order boundary. This is predominantly determined by
the longitudinal contributions to the internal energy, the
first two terms in Eq. (53). However, here the transverse
mode plays a significant implicit role in the calculation of
the thermal averages M and (S, & . This amounts to a
renormalization of the temperature scale such that the
order parameter M vanishes at a temperature T, givenCP

by the renormalized R, instead of at the T, ", given by
R from the mean-field or RPA theory. This tempera-
ture renormalization can be very large, in particular in
two dimensions. We expect the expressions for the free
energy Eqs. (52) and (53) to be quite general, and conse-
quently the conclusion should apply also to the classical
case.

Let us now discuss the real structural martensitic
transformation in the light of these results. In the model
we allow the atoms to perform large-amplitude collective
oscillations with each atom confined to a given surface
(sphere). The response function Eq. (48) has precisely the
form expected for renormalized phonons, ' where the U
and V modes correspond to the acoustic and optic modes
and the a index denotes the two degrees of freedom for
motions on the sphere. Vibrations perpendicular to the
surface are assumed to have high frequencies and will
therefore not have significant effects on the temperature
dependence of the free energy. However, the large-
amplitude motions on the surface result in strains in the
crystal. A uniform strain e] corresponding to M, and an
internal strain e2 corresponding to M2. The internal en-
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ergy of the two phases [first terms in Eq. (53)] therefore
depends on temperature and this mainly determines the
martensitic phase boundary. This mechanism is
sufficient. The entropy of the two phases [last term in
Eq. (52)] is presumably quite similar and is not a deter-
mining "driving force" for the transition unless (a) one
phase has a much softer mode than the other (Zener's
mechanism' ) or (b) the whole spectrum of frequencies

co&&z is significantly smaller for one phase than the other
(Friedel's mechanism' }. The maximum frequencies are
at E= l. 5J and D =2J, from Eqs. (34) and (42),
m, (max) =4JM, and coz(max) =4.9JMz for S = I,
whereas for the classical case at K =2J one finds
coi(max) =4JMi and co2(max) =5.7JM2. Although the
difference is small, co, (max) is indeed smaller than
co2(max), as assumed by Friedel. Consequently the entro-

py S, & S2 and the larger cubic entropy tend to stabilize
the cubic structure at high temperature, i.e., push the
phase boundary to a lower E/J ratio. From this we con-
clude that the internal strain energies are most impor-
tant, and Friedel s mechanism (b) is assisting, whereas the
soft-mode (Zener) mechanism (a) is not decisive, for our
model at least. Nonetheless let us discuss the soft-mode
aspect a bit further since this has been the subject of
several experimental efforts. ' '

F. Dynamical response function near a soft-mode transition

In the preceding sections we have shown that the first
moment, say coq„ in Eq. (48), of the response function
Eq. (23) does soften considerably, although not complete-
ly, when approaching the weak first-order transition. If
the spectrum was of the quasiharmonic form Eq. (48),
this would imply that the observable excitation frequen-
cy, co „k,should also soften. This argument is the basis
for the often discussed, expected soft-mode behavior at a
martensitic transformation. However, when the first mo-
ment gets softer (or equivalently the susceptibility in-
creases) it is clear from Eq. (49) that the short-range
correlations increase. This makes the combined correla-
tion functions Eq. (46), which enter in the excess second
moment b,

q
in Eq. (45), increase. A decreasing first mo-

ment, or an expected-soft-mode transition, is therefore in-

variably accompanied by a change in the dynamical line
shape away from the simple 5-function spectrum Eq. (48).
Whereas Eq. (48), using an accurate first moment fre-
quency gives a good approximation for thermodynamic
functions, which are integrated over frequency, this first
moment is not to be identified with observed peak fre-
quency. It is clear from Eq. (23} that the line-shape
correction X (z), which is proportional to b, , must be in-

cluded when the excess moment grows large. In a sim-
plest approximation, we use in the correlation theory the
form

X (z)=b, /(zl+E),
which means that the random force correlation (XqX q),
is supposed to decay exponentially —we call this a two-
pole approximation because in the case of a single
dynamical variable (i.e., no matrices) a response would be
described by just two poles. Now for two or more

dynamical variables the response will be described by
twice the number of poles. It has been discussed previ-
ously, both for the S =1 singlet-doublet model and for
the antiferromagnet model, ' that close to the expected
soft-mode transition the spectrum for two dynamical
variables has four complex poles, with the two complex
poles at co=+ai+i Pi, with the real part larger than the
first frequency ~a, ~ &coq„~ Eq. (48), and two complex
poles at co =+az+i P2, with a very small real part
~a2~ =0, which appear as a central peak in the spectrum
Eq. (48). The response at the frequency co „,which is

sharp for small 5&, will therefore renormalize to higher
frequencies co „„=ka, +iP, and simultaneously broaden
when b grows, and furthermore a response develops at
low frequencies. The observed peak frequency co „kis
therefore not expected to go soft. Now the intensity of
the central peak is proportional to 6q and inversely pro-
portional to the first moment frequency. This intensity is
therefore expected to grow strongly relative to the inten-
sity of the peaks, since the total intensity is constant.
The width and intensity of the central peak can be calcu-
lated self-consistently using the mode-mode coupling
theory. This is shown in Fig. 3. However, in this theory
only the correlation effects of two simultaneous excita-
tions on neighboring sites are considered. The intensity
grows because the probability for this to happen grows
when there are many excitations in the system. This pic-
ture covers of course only the very beginning of spon-
taneous nucleations of the competing order correspond-
ing to the excitations. The width is therefore usually
found to be much larger than observed experimentally.
The physical interpretation of the central peak is that it is
the response of the nucleating clusters. The mode-mode
coupling considers only clusters of two, whereas the ex-
periments monitor much larger clusters, which have

(4=,
~i iW~

0 FREQUENCY u)

FIG. 3. The typical normalized dynamical response predict-
ed by the correlation theory, showing that the finite frequency
excitations (corresponding to phonons) do not soften, when ap-
proaching the martensitic transformation T~, but loose intensi-

ty to a central peak, describing the time evolution of minority
domains.
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slower dynamics —and therefore give a more narrow cen-
tral peak. However, the interesting result of the correla-
tion theory is that, theoretically, spontaneous nucleation
is predicted to occur. Nucleation stimulated by imperfec-
tions of one kind or another may of course in a practical
situation dominate the physics. It is therefore important
that by Monte Carlo computer simulation we can "exper-
imentally" study a perfect case and, indeed, find spon-
taneous nucleation occurring. The discussed theory is for
a system in thermodynamical equilibrium, and applies
close to the transition region. However, with the simula-
tion technique we can further study quenches to far from
equilibrium situations and follow the kinetics of the
domain growth. This will be discussed in the next sec-
tion.

V. COMPUTER SIMULATION
OF THE MARTENSITIC TRANSITION

Simulation of structural phase transitions by means of
a lattice spin model, Eq. (1), circumvents many of the
problems which are related to the boundary conditions in
molecular dynamics calculations of nonlattice mod-
els. The two types of ordered structures can be host-
ed within the same unit cell. Furthermore, the details of
the transition can be studied in more detail by lattice
model simulations since such simulations are practicable
for larger systems. This fact has been used before to
study structural phase transitions by means of P -lattice
models. ' In particular, by means of the Monte Carlo
method it is possible to study nonequilibrium aspects of
the phase transition in relation to nucleation events and
responses to rapid changes in the thermodynamic condi-
tions.

A. Monte Carlo techniques for spin lattices

A general review of computer simulation techniques
devised to study phase transitions in lattice spin models is
given in Ref. 28. For the present model, Eq. (1), we have
used conventional Monte Carlo importance sampling
built on a stochastic Glauber-type single-site spin excita-
tion mechanism by which the individual classical spin
vectors are rotated through a random angle (rotational
diffusion). Although the model Hamiltonian in Eq. (1)
has its own nontrivia1 deterministic dynamics, we have
imposed the more artificial Glauber dynamics in order to
facilitate a careful study of the phase transition region, as
well as an investigation of responses to rapid temperature
changes. Molecular dynamics calculations exploiting the
true dynamics will not be feasible for such purposes.
Despite the artificial Glauber dynamics, the temporal
evolution of the spin system towards thermal equilibrium
after a change in the temperature will still mimic the ki-
netics of the spin model to the extent that the elementary
excitations may be considered as composed of single-spin
rotations. The time scale of these dynamics is then given
in units of attempted Monte Carlo steps per site
(MCS/S).

The simulations are carried out on finite lattices subject
to the toroidal periodic boundary conditions. Effects due
to finite size are assessed by a systematic study of a
series of different lattice sizes, %=20, 30, 40, 60, and

The phase diagram of the S= ~ model, Fig. 4, as
spanned by the coupling-constant ratio K/J and temper-
ature is derived from the behavior of the total internal en-
ergy, E = (&)lN, and the order parameter M, as well as
the corresponding response quantities, i.e., specific heat
and ordering susceptibility, as derived from the fluctua-
tion theorem. The order parameter is defined as that
component of the order-parameter vector

iV

M, (T)=N ' g S;,e ' '), u=x, y, z
i =-1

(&4)

in which —in equilibrium —the actual long-range order
resides. For ferromagnetic order (n =1), q =q, =0, and
for antiferromagnetic order (n =2), q =q„=mlro(1,0) or
q =q~ =m. lro(0, 1) where ro is the lattice parameter.

Selected scans of E and M along paths of constant K/J
or temperature are shown in Figs. 5 —7, which clearly sig-
nal the occurrence of phase transitions. The order of
these phase transitions is determined by standard tech-
niques that involve a systematic study of the finite-size

Cubic

Hexagonal
I

Disordered

0.0 0.5
kB T/J

1.0 1.5

FIG. 4. Phase diagram spanned by coupling-constant ratio
K/J and temperature for the S= oc model of Eq. (1) with

D =2J. The results are obtained from Monte Carlo simula-

tions. The cubic phase is the n =1 ferromagnetic phase and the
hexagonal phase is the n =2 antiferromagnetic phase. First-
order transitions are indicated by and continuous transitions

by o.

100. The statistical ensembles incorporate from 10 to
10" microconfigurations, depending on temperature. The
systematics of the calculations for each set of values of
the model parameters in Eq. (1) are as follows: Scans of
increasing and decreasing series of temperatures and cou-

pling constant ratios K/J are performed for systems ini-

tiated in the uniformly ordered triangular or quadratic
phases, as well as in the disordered phase, in order to
detect possible metastable behavior and hysteresis associ-
ated with the phase transformations. Some thermal
quenches are performed in the neighborhood of the
structural transition by suddenly changing the tempera-
ture across the transition. Similar quenches are per-
formed from the disordered phase deep into either of the
two ordered phases.

B. Energy, order parameters, and phase diagrams
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FIG. 7. Same as Fig. 6, except for K/J =1.8.

K/J

FIG. 5. Energy, E, and order parameter, M as functions of
coupling-constant ratio, K/J, for selected values of the temper-
ature. Monte Carlo results are shown for a system with N =400
spins and D =2J, Eq. (1). For increasing K/J, the system
passes through a first-order transition from an antiferromagnet-
ic to a ferromagnetic phase, cf. Fig. 4.

effects also seen on Figs. 6 and 7. The resulting phase di-
agram for D =2J is shown in Fig. 4. Similar phase dia-
grams have been derived for other values of D. The dia-
grams consist of a first-order line separating the two or-
dered phases and two lines of continuous transitions

3
LU

I

1.0

0.8

0.2

0.0
0.0 0.5

kB T/J
1.0 1.5

FIG. 6. Energy, E(T), and order parameter, M(T), as func-
tions of temperature for K/J=1. 9 and D =2J, Eq. (1). Data
are obtained from Monte Carlo calculations on systems with N
spins, V: N =400,C'. N =900, 6: N =1600, : N =3600, and
0: N =10000. For increasing temperature, the system passes
through two consecutive transitions, one of first order at T~
from the antiferromagnetic to the ferromagnetic phase and a
continuous one at T, from the ferromagnetic to the disordered
phase, cf. Fig. 4. The dashed lines indicate a metastable path of
supercooling the ferromagnetic phase.

separating the ordered phases from the disordered one.
The three lines meet in a bicritical point of a convention-
al type. The first-order line of structural transitions is
seen to be nonhorizontal, exposing the bicritical region as
a region where the antiferromagnetic phase is suppressed.
This suppression is enhanced when the value of D is in-
creased. It is this suppression which furnishes the spin
model proposed in the present paper with thermally
driven structural transitions and, among other things,
makes it a suitable candidate for modeling martensitic
transformations.

Obviously, as K/J is decreased towards its bicritical
value, the thermal range of the intermediate ferromagnet-
ic phase is diminished and becomes more difFicult
to establish accurately by numerical simulations. Pro-
gressively larger systems have then to be simulated. It is
interesting to note, cf. Fig. 7, that the order parameter in
the intermediate phase is nonmonotonic in temperature,
an effect which is clearly induced by Quctuations not ac-
counted for in the mean-field theory.

The equilibrium data in Figs. 6 and 7 near the structur-
al transition are obtained by approaching the transition
region from both sides using systems with the-pertinent
uniform global ordering. Attempts to cross the transition
region and generate new equilibrium order out of the old
order proved not to be possible within reasonable times
(~10 MCS/S), except for the smallest systems which,
however, seriously smear the transition. The extremely
slow kinetics of the structural transition is discussed in
Sec. VD. The kinetics of the thermal transitions be-
comes slower for larger values of K/J at which the cross-
ing of the phase boundary occurs more tangentially. The
dashed curves in Fig. 6 show a striking effect of this be-
havior: the ferromagnetic phase for K/J= 1.9 can be re-
tained as metastable all the way down to zero tempera-
ture.

C. Fluctuations and correlation length of short-range order

A detailed study of the equilibrium fluctuation effects
accompanying the thermally induced structural transi-
tion at T~ has been conducted for a selected value of the
coupling ratio, E/J = l. 8; cf. Fig. 7. A qualitative repre-
sentation of the correlated spin Auctuations is provided
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FIG. 8. Snapshots of minority-phase clusters in the vicinity of the structural transition at T~, for K/J =1.8; cf. Fig. 7. Below T~,
the black dots indicate spins with predominantly ferromagnetic order, and above TM, the black dots indicate predominantly antifer-
romagnetic order.

by Fig. 8, which shows typical snapshots of the cluster
distributions of the minority domains in the two phases
in the vicinity of TM. In this figure, the nuclei of "oppo-
site" order are pictured by black patches and dots, i.e.,
the black patches indicate spins which for T & TM are
predominantly ferromagnetically ordered and for T & T~
predominantly antiferromagnetically ordered. The cri-
terion used to determine whether individual spins at a
given temperature participate in a given type of ordering
is chosen (somewhat arbitrarily) to be ~S; ~

& M ( T). The
snapshots of Fig. 8 clearly show that the "opposite"
phase is nucleated very extensively near the structural
phase transition, despite the fact that the two phases are
not symmetry connected. The fluctuating clusters bear
some resemblance to the fluctuations in long-range order
near a critical point. '

A quantitative measure of the correlation length of
short-range order is obtained via the first two moments

k =g'~q —
q ~

(S'S ) g'(S S' ), m=1, 2
q

(55}

of the static correlation function

with

I =1+Q g (60)

It then follows, in the limit Qg »1, that the correlation-
length is given by

k
exp[2k2/(k, ) ] . (61)

In Fig. 9 are given the Monte Carlo results for certain
powers of the first two moments of the correlation func-
tion of short-range order, Eq. (57}, i.e., of the ordering
"opposite" to that of the equilibrium ordering in the host
phase. These powers are chosen in order to associate the
moments with dimensions of length. Both (k& } ' and
(k2 )

'~ have a pronounced peak at the structural transi-
tion. The position and intensity of the peak are found,
within the numerical accuracy, to be the same for the two
larger systems, thus indicating that the correlations con-
tributions to k, and k2 are not seriously invalidated by
finite-size effects. The numerical accuracy is not
sufficient to resolve a possible discontinuity in the two

(S S' )=eN e'( X S,,e
j=1

where

(56)

K/J =1.8

q =2' /&N, j = &N /2, . . . , 0—, . . . , &N /2 .

The primed sums of Eq. (55) are restricted by an ultravio-
let cutoff, ~q~ &Q. From k, and k2, the correlation
lengths of short-range order, g in units of 2n. times the
lattice constant, may be derived by the following approxi-
mate procedure. We assume that the correlation function
is of Lorentzian form

(S S ~)= 2
for ~q~(Q,

C

g
—2+ 2

(57)

where C is a constant. The first two moments are then
given by

0.0 0.5 1.0 1.5

and

k, =2[Q —
g 'arctan( Q g ) ]/ln I

k2 =(Q —
g 'lnI )/lnI

(58)

(59)

FIGe 9. Powers of first and second moments of the correla-
tion function of short-range order, Eqs. (55) and (56), as func-
tions of temperature in the vicinity of the structural phase tran-
sition at T~. The data are derived from Monte Carlo calcula-
tions on systems of different sizes; cf. the caption to Fig. 6, in
the case K/J= 1.8.
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moments at T~. The large scatter in the data for
different system sizes found in the high-temperature wing
of the graphs in Fig. 9 is due to crossing the critical line
in the phase diagram, cf. Figs. 4 and 7. There are no in-
dications of a critical anomaly in k, or kz at T„howev-
er. The correlation length derived from the data
displayed in Fig. 9 using Eq. (61) is shown in Fig. 10,
which substantiates quantitatively the observation from
Fig. 8 that the correlation of short-range order increases
very dramatically approaching T~ from both sides. The
spin density fluctuations are thus very strong, although
finite, at the structural transition. This behavior bears
some resemblance to pseudocritical behavior. For
larger values of E/J, g retains its sharp peak, although
with less intensity. There is an overall asymmetry in g
as seen in Fig. 10. The larger values of g above TM may
to some extent be caused by the proximity of the critical
line. In the immediate vicinity of TM, there are, however,
no indications of any pronounced asymmetry. The ap-
parent difference in cluster sizes seen in Fig. 8 for
T=0.993 TM and T=1.007T~ is simply caused by a
visual coalescence of degenerate x and y clusters in the
ferromagnetic phase. In fact, it is found semiquantita-
tively that the cluster density at T=1.007T~ is about
twice that at T =0.993TM. A quantitative analysis of the
cluster distribution functions similar to that of Ref. 33 is
not feasible for the present model due to the ambiguity
associated with defining the borders of the clusters in a
strongly fluctuating system with continuous site vari-
ables.

D. Kinetics of first-order structural transitions

The kinetics of the ordering processes involved in the
structural transiton has been studied numerically by
several types of simulated thermal quenches across TM.
The kinetics of the structural transition is particularly in-

teresting since it involves competition between two
different ordering processes of different symmetry.

The Monte Carlo temperature quenches from T, to Tf
are performed globally by initiating the system in a spin

I (t)=[k (t)] " —[k (t=0)] (62)

and

KE(t)-t (63)

Dynamical scaling would imply that the two growth ex-
ponents are identical. Regarding technical details con-
cerned with the handling of structure factors of inhomo-
geneous systems and the finite-size symmetry breaking in
systems with degenerate order parameters, the reader is
referred to Refs. 36 and 37. Here, we give the main re-
sults of our simulated quenches.

The following types of quenches have been performed:
deep down temperature quenches, (i) T; = ao —+ Tf =0 and
(ii) T; = 1.03T~~ Tf =0; and quenches within the transi-
tion region, (iii) T; =1.03TM ~Tf =0.97TM and (iv)

T, =0.97TM ~Tf = 1.03T~. In Fig. 11 are shown the re-

configuration, which is typical of the temperature T, .
The system is then at time t =0 subject to instant cooling
or heating by assigning the new temperature, Tf, to the
heat bath to which the spin system is coupled. A global
temperature quench provides a time series of spin
configurations, each of which is characterized by a
domain distribution. A number of quantities can be used
to monitor quantitatively the growth of ordered domains
as time lapses. We shall here use (a) the length scale
measures derived from the moments of the dynamical
correlation function (S (t)S (t)), i.e., [k'(t)] I™,cf.
Eqs. (55) and (56), and (b) the excess internal energy
bE(t)=E(t) —E(Tf), where E(Tf) is the equilibrium
energy at Tf. bE(t) is a measure of the nonequilibrium

energy associated with the entire domain-boundary net-
work which forms spontaneously after the quench is ini-
tiated. The domain-growth kinetics is usually analyzed in
terms of simple powers laws,
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FIG. 10. Correlation length of short-range order, g, Eq. (61),
shown in a semilog plot as a function of temperature in the vi-

cinity of the structural phase transition. For clarity, only
large-system data representing the therrnodynarnic limit are
displayed in this figure: K /J = 1.8.

FIG. 11. Log-log plot vs time of length scales
I «(t)= —'[I'"+I"(t)], Eq. (62), and excess energy BE(t), Eq.
(63), for a deep down temperature quench, T, = 1.03T~
~Tf =0, simulated on a lattice with N=100 spins. The time
is measured in units of MCS/S. The solid lines denote asymp-
totic growth laws, Eqs. (62) and (63), with a common growth ex-

ponent n =0.13+0.03.
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suits for the simulated domain-growth kinetics in an
N= 100 system subject to a quench of type (ii). During
this quench, the equilibrium clusters of the antiferromag-
netic minority domains seen in Fig. 8 [with finite values
of k (t =0), cf Eq. (62)], act as nucleation centers for an-

tiferromagnetic domains. There are four thermodynami-
cally equivalent antiferromagnetic domains which, during
their growth processes, will mutually compete in their at-
tempt to destroy the ferromagnetic order. The domain
growth process has been followed up to =4000 MCS/S,
beyond which finite-size effects come seriously into play:
the extent of the four types of order is no longer approxi-
mately the same and the largest domains have sizes com-
parable to that of the entire system. It is noted that the
antiferromagnetic domains actually grow at zero temper-
ature. Figure 11 demonstrates that the growth kinetics is
accurately described by the power laws in Eqs. (62) and
(63) for t ~ 200 MCS/S. Furthermore, all three quantities
are characterized by the same growth exponent

n =nF -—nI -—0. 13+0.03 .

The value of the growth exponent is very low and thus
the formation of the uniform antiferromagnetic phase
from the ferromagnetic phase is a very slow process.

The growth after a deep quench was recently studied in

a similar model as Eq. (1), but restricted to only two
equivalent antiferromagnetic domains. Here one finds

the growth exponent n- —,'. The slow growth was ana-

lyzed and found to be due to a time dependent self-

pinning. It is possible that there are additional topologi-
cal pinnings operating in the present unrestricted four
domain models, which further slows down the growth.
This is currently under further investigation.

The other deep quench (i) takes the system all the way
from the disordered phase to the antiferromagnetic phase
by crossing two phase transitions and the intermediate
ferromagnetic phase. It is found that during the early
time regime t &1000 MCS/S, antiferromagnetic as well

as ferromagnetic domains are formed and mutually com-
pete. In this regime, the length scales of all six types of
domains, [k (t)] ', a=x,y, z obey simple growth laws

with the same exponent whose value is again around 0.13.
For t ~ 1000 MCS/S, the correlation length of the fer-
romagnetic domains starts to decrease, whereas the anti-
ferromagnetic domains grow steadily.

The results of the quenches (iii) and (iv) within the
structural transition region are less conclusive. In analo-

gy with findings for other models quenched into transi-
tion regions, in particular close to critical points, we
find that the ftuctuations near T~ slow down the growth,
and the effective exponent value becomes very small. Our
data are insuScient to sustain a quantitative analysis of
the growth in this region.

VI. DISCUSSIQN

We have constructed a magnetic analog model of a
displacive first-order structural transition. Thereby one
can effectively model and focus the attention on the most
relevant large amplitude vibrations the atoms perform
during the displacements. For description of a displacive

phase transition even a very sophisticated self-consistent
phonon theory is of limited applicability. An advantage
of a spin model is that a theory can be developed for
large-amplitude vibrations. Furthermore, consideration
of only the limited, most relevant atomic motions as
modeled by the spin model, makes computer simulation
of the transition much simpler than a full molecular dy-
namics calculation including all the possible atomic
movements. The analysis of the model shows that the
martensitic transformation within this model belongs to
the problem of an ordinary bicritical point phase diagram
with a weak first-order transition line, terminating as a
function of temperature at a bicritical point. The interest
here is in what happens along the line. Comparing the
mean-field phase diagram with the two-dimensional
Monte Carlo results for classical spin shows agreement at
T=0, but expected very large temperature renormaliza-
tion, reducing the temperature scale by as much as 60%,
and some further modifications close to the bicritical
point. The important conclusion is that correlation
effects play a significant role determining the phase line.
In the classical spin case the transition is in simple, linear
theories as well as in the simulation found to be of first
order and possible as a function of temperature without
soft modes. The theory for the quantum S=1 model
shows that this model is much more sensitive to the accu-
racy of the theoretical treatment. Thus in simple linear
theories, the transition is of first order and simultaneous-
ly accompanied by a soft mode when approaching from
both ordered phases and with a temperature independent
phase line (in mean-field theory). The linear theory corre-
sponds to harmonic phonon theory. This exemplifies
clearly that a phenomenon as a martensitic transforma-
tion cannot be described by simple linear (small-
amplitude) theory. With nonlinear efFects taken into ac-
count, the S =1 model exhibits a martensitic transforma-
tion versus temperature, and exemplifies the case where
the cubic structure is unstable at low temperatures, but is
stabilized by large-amplitude vibrations at high tempera-
ture. This is a situation which is probably very common
in the displacive double-well transition problem —and
definitely found in Zr. The calculation shows that the
transition is weakly first order and the susceptibility of
the competing order is growing when approaching the
transition. This implies that the first frequency moment
of the dynamical response decreases (softens) although
not completely, simultaneously with increase of the
short-range order. The latter has been directly observed
in the Monte Carlo simulations. Because of the large-
amplitude vibrations the resonances in frequency spec-
trum not only renorrnalizes to higher frequencies, but
simultaneously a central peak develops. This is associat-
ed with the dynamics of the dynamically nucleating clus-
ters. In the theory only the initial effect of the simultane-
ous displacement of two neighboring atoms is considered
in the simplest mode-mode coupling approximation. The
pair can fluctuate or move relatively fast and therefore
gives a broad central peak. Experiments are dominated
by the behavior of larger clusters, which move slower and
consequently give a sharper central peak. The computer
simulation shows that the ordered phase indeed grows
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out of the thermally created fluctuations of the minority
phase close to the phase separation line. This is a spon-
taneous nucleation process very similar to the critical
fluctuations near a continuous phase transition.

All these phenomena therefore shows that precursor
effects are indeed expected at the martensitic transforma-
tion. In our model we have not included long-range in-
teractions, like the strain in real systems. These have the
symmetry of the dipole interaction and would give rise to
rather anisotropic clusters. This can be modeled in a
simple fashion by increasing the anisotropy parameter P
(here chosen as 2P. When this is done one finds domain
boundaries dominated by stacking fault boundaries be-
tween twins.

The Monte Carlo simulation results confirm the
theoretical predictions for the equilibrium properties near

the transition. However, it also allows a study of the far-
from-equilibrium behavior in a quench from one ordered
phase to another. The kinetics of the domain growth is
found to be algebraic t ", but with an exceedingly small
exponent n -0.13. This is well outside any of the expect-
ed universality classes with n =

—,
' or —,'. The slow behav-

ior is probably due to pinning effects of the simultaneous-
ly growing equivalent domains. This is analyzed further
in a subsequent paper.
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