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Growth and dynamical roughening of ideal quasicrystal facets
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guasicrystal growth is studied in three dimensions via Monte Carlo simulation of a solid-on-
solid quasiperiodic structure. Our results are consistent with an infinite roughening temperature,
and in agreement with equilibrium studies. Surfaces plots and growth rates show that for any
temperature T growth takes place via two-dimensional nucleation at sufFiciently small chemical-
potential driving forces (Dts). However, interfaces dynamically roughen for a large range of T at
a nonzero value of Ap, that tends toward zero as T is increased. The average squared height of
the growing surfaces is shown to diverge algebraically with the linear system size. Comparison
is made with a similar crystal model.

I. INTRODUCTION

Recently, certain quasicrystals that are believed to be
bulk equilibrium phases have been synthesized, revealing
faceted shapes that beautifully exhibit their noncrystallo-
graphic syrrirnetry. To date, theoretical treatments of
quasicrystal shapes have focused virtually exclusively on
equilibrium properties. Here we present a dynamical
study of quasicrystal growth. Specifically, within a par-
ticular model we study nucleated growth, which for in-

creased driving force undergoes dynamical roughening.
Recent experiments on Al-Mn alloys, discussed below,
may have displayed such behavior. z

We note at the outset that our model is based on
a perfect quasicrystal. Most quasicrystals in fact pos-
sess disorder5 characterized by dift'raction peaks hav-

ing finite intrinsic widths characteristic of positional or-
der correlation lengths of several hundred to a thou-
sand angstroms. Notable exceptions appear to be Al-
Cu-Fe (Ref. 6) and Al-Cu-Ru (Ref. 7) alloys, which have
diffraction peak widths limited by experimental resolu-
tion. Strictly speaking then, our work models Al-Cu-

Fe, Al-Cu-Ru, and possibly the new decagonal Al-Co-Cu
(Ref. 3) classes of materials. The extent to which our
conclusions apply to disordered quasicrystals is unclears
and is the subject of further investigations.

To briefly summarize previous work, we note that
several authors have addressed the theoretical question
of equilibrium shapes of quasicrystals in two and three
dimensions at zero temperature and, recently, at
nonzero temperatures. These studies show that;
long-range periodic positional order is not necessary
for faceting and, in fact, suggests that interfaces in
ideal three-dimensional quasiperiodic structures do not
roughen at finite temperature. While equilibrium shapes
are dificult to observe experimentally, they are impor-
tant for understanding observed growth shapes. Since
much recent experimental effort has focused on grow-
ing larger single grains, in particular for x-ray-difI'raction
studies, the growth behavior of interfaces in quasiperi-

odic systems has come to be of direct interest. Published
theoretical work to date on quasicrystal growth has been
limited to two studies. i The first showed that perfect
Penrose tilings can be grown via strictly local attach-
ment rules. 8 The second paper treats the possibility of
spiral growth in quasicrystalsis. Neither of these studies,
however, has directly addressed growth dynamics.

Our dynamical studies consist of Monte Carlo (MC)
growth simulationszo for a simple quasiperiodic solid-
on-solid (SOS) model in three dimensions. The results

are independent of any surface metastabilityi questions,
since the interface moves through a large number of en-

vironments in the quasiperiodic system (/PS). We find

that, as in periodic structures, optimal (faceted at tem-

perature T = 0) interfaces in quasiperiodic systems grow
via two-dimensional nucleation at low Ap, and do un-

dergo dynamical roughening at sufficiently large Lp, . The

temperature dependence of the onset of dynamical rough-

ening is consistent with equilibrium theories and
simulations's that suggest an infinite roughening tem-

perature for quasiperiodic systems.

II. DY'NAMICAL ROUGHENING

It is well known that faceted interfaces in crystals can
undergo a roughening transition as a function of tempera-
ture, in which the flat facets disappear, becoming curved
and microscopically rough. Facets can also roughen un-
der growth conditions as a function of the chemical po-
tential driving force (Ap) through a process called dy-
namical roughening.

A faceted interface at T less than the roughening tem-
perature T~ has a nonzero step free energy g. For such
a system with a chemical potential at Lp above coexis-
tence, a nucleus of height h has a critical diameter d, for
growth given by

C2 7/

ciApph'

where p is the density, and ci and c2 are shape-dependent
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constants, equal to x/4 and z/2, respectively, for a cylin-
drical nucleus. For b,p sufficiently small the in-plane cor-
relation length (~~ (Ref. 24) is less than d„and growth
takes place by two-dimensional nucleation with a free-
energy barrier E~ ——(.2gd, . The growth rate is exponen-
tial in E~—and therefore also in —1/Ey, from the Ar-
rhenius equation. For sufficiently large Ap, d, ( (~~,
I'~T & E~, and thermal fluctuations provide nuclei of
sufficient size such that the growth is no longer exponen-
tial but linear in Ap (as for a rough surface at T & TR).
Let the b.p for which growth changes from linear to ex-
ponential be Ap, . Then from Eq. (1) for the critical
diameter, we have the crossover driving force

where we have taken the height h of the relevant steps s

(which is just a lattice spacing for crystals) to be of the
order of the perpendicular correlation length, Q (Refs.
16 and 27) for the quasiperiodic system. For a faceted
interface, the correlation lengths are related by~8

MC moves with 0 less than or equal to zero were auto-

matically accepted, while moves that cost energy 0 & 0
were accepted with probability exp (—PQ) by comparison
with a random number.

Simulations were performed on surfaces of 45 x 45 sites

using periodic boundary conditions. Surfaces of up to
141x 141 sites were studied for finite-size effects. Surfaces
were equilibrated for 2x10 MC moves per site at b,p = 0
before growing. The surface-averaged column heights,

(z)„were monitored as a function of time, t, measured

in units of the number of MC passes through the lattice.
For the QPS, Fig. 2 shows average surface height as a

function of the MC lattice passes (time) for a range of
driving forces, b,p, at k~T/J = 0.6. The existence of
the plateaus at smaller Lp suggests that new layers are
formed via nucleation. Figure 3 shows the surface dur-
ing the creation of the plateau near MC time 10000 af,
b p/J = 0.085 in Fig. 2. These surfaces clearly demon-

where (T is the microscopic surface stiffness. For a crystal,

(~~ diverges as T ~ TR from below according to

exp [A/(TR —T) ],

where A is a constant.

(4)

III. SIMULATION RESULTS
AND DISCUSSION

As in our recent paperis on the equilibrium proper-
ties of interfaces in quasiperiodic structures, we abandon
the perfect Penrose tiling in favor of a simpler structure
based on a tetragonal lattice. In analogy to the Pen-
rose tiling, where tiles can be added to a surface within
a lane (of quasiperiodic widthi4) at no additional cost in
surface energy, we construct the "lattice" by quasiperi-
odically spacing layers normal to z that cost no energy
to cross (free layers), between layers that do cost energy
to cross (bond cost layers). We define J as the nonzero
bond energy. Any given layer in the lattice will quasiperi-
odically have zero or one additional layer through which
an interface can wander at no additional energy cost [see
Fig. 1(a)]. For comparison, simulations were performed
for an entropic crystal model s (ECM) consisting of one
free layer per every two bond cost layers [Fig. 1(b)].

Employing the SOS constraint disallowing vacancies
in the bulk or overhangs on the surface, the interface
is described by integer column heights z(r). A single
MC move consists of sequentially selecting a site on the
surface, choosing to add or remove one particle, and cal-
culating the change in energy, 0 = LE~ —Lp AN, for
the proposed move. LEy is the change in broken bond
energy, and 4N = +1 is the change in particle number.

(a)

(b)
FIG. 1. Sample sequence of free layers (dashed lines)

among bond cost layers (solid lines) for (a) the @PS, and
for (b) the ECM.
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b,p, exp [—2A/(Trr —T)'/ ],

800

0
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from (1) and (4). On the other hand, for the @PS, Fig. 5
suggests that Ap, ~ 0 only as T ~ ao, consistent with
Tir —oo. This might be expected from (2), since (~~

~ oo
as T ~ oo, provided that rl not, diverge too fast. In fact,
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FIG. 2. The average surface height (z)„/c as a. function

of time (MC passes through the lattice) at ksT/J = 0.6 for
several AIJ/ J. (c is a lattice constant. )
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strate two-dimensional nucleation and subsequent growth
of the new layer, which was completed by 11000 MC
lattice passes. Plateaus similar to those in Fig. 2 were
observed at all temperatures up to k~T/J = 2.8 for suf-
ficiently small Lp implying that equilibrium surfaces in
the QPS are faceted at least up to these temperatures.
The height difference between plateaus shows the step
height at a given temperature and are in agreement with
the relevant step heights investigated in Ref. 16.

Growth rates, v(b, p), were measured as b, (z}„/t,, where
b, (z}„is the change in the surface-averaged height during
a time t Figure 4.shows sample growth rates v(b, IM) for
several temperatures for both the @PS and the ECM.
F'or the @PS, v(b, p) is exponential at low b.p at all tem-
peratures, but becomes linear at suNciently high Ap, in-
dicating that the /PS dynamically roughens. We note,
however, that at high temperatures only a very small Ap
is required to dynamically roughen the interface. Sim-
ilarly, the ECM shows dynamical roughening at low T
On the other hand, for the ECM, we find v(Ap) is always
linear in Ep for k~2/J ) 1.2, indicating a roughening
transition between kIiT/J = 1.0 and 1.2, in agreement
with the results of Ref. 16.

The crossover driving force, Ap„ is graphed as a func-
tion of temperature for the /PS and the ECM in Fig. 5.
The error bars indicate the width of the crossover of Ap, ,
from an exponential variation in —I/b, p to one linear in
Ap. The deviation of the @PScurve from the ECIII curve
provides independent evidence consistent with an infinite
roughening temperature for the @PS.For the ECM, Ap,
goes to zero as T approaches TR from below as

(b)
r

Lr

eHI
r

(c)
r

FIG. 3. Perspective view of 45 x 45 surfaces in the
quasiperiodic structure at ksT/ J = 0.6 and b, p/ J = 0.085 at
(a) 9800, (b) 10200, and (c) 10600 MC lattice passes. Only
fluctuations across bond cost layers are shown.
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FIGG. 4. Growth rates v(b, p)/c for a range of tempera-
tures. The dashed lines are for the ECM and the solid lines
are for the QPS.

rI ~ const as T ~ oo, since it is bounded from above by
the step energy, and equilibrium studies in Refs. 16 and
31 show that step energies tend to a constant as T ~ oo.
In addition, recent renormalization-group calculations b

oner also show that g ~ const as T ~ oo. More

'ns y

precisely, after modifying the expression for the crossover
driving force (2) (Ref. 26), Toner has predictedsz that
b,p, (T) ~ 0 as T / for T -+ oo, consistent with our
results at the higher temperatures s and in contrast to
Eq. (5).

The average (over the surface and over ensembles)
squared surface height (zz) was measured as a func-
tion of the linear system size I for knT/J = 1.0 and
b.p/ J = 0.03. As shown in Fig. 6, over a range of I from
51 to 141 lattice sites, (z ) diverges almost linearly with

This algebraic divergence, even under conditions of
nucleated growth, is expected for both crystals and qua-
sicrystals according to recent theories. ~ However, in
our simulations of the ECM, (zz) diverged at most log-
arithmically with L, where the most extreme divergence
was observed, as expected, under conditions of high tem-
perature and large driving force. This diR'erence between
the @PS and the ECM is unexpected and is under further
study.

Finally, we note that a columnar morphology has been
observed in the decagonal phase of Al-Mn alloys, with
10 facets appearing parallel to the 10-fold axis. In
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FrG. 5. Z up„~ as a function of temperature. The solid
and dashed lines correspond to the QPS and ECM, respec-
tively. Error bars indicate the width of the crossover region.
The inset is a detail of the curves at the higher temperatures.

FIG. 6. Average squared surface height, ( )/c as a
functron of the hnear system size L/a The error bars repre-.
sent standard deviations over two to four independent simu-
lations. The straight line is a least-squares fit to the data. (a
and c are lattice constants. )
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an ideal tiling model, these facets are not expected to
roughen in equilibrium. However, other morphologies
have been observed with a facet normal to the 10-fold
axis but curved around the axis, where 10 facets would
be expected in equilibrium. 4 Our dynamical studies indi-
cate that these observations are consistent with the ideal
tiling model if dynamical roughening plays a role.

In conclusion, we have simulated the growth of an in-
terface in a three-dimensional quasiperiodic system and
find that at all finite temperatures growth proceeds via
two-dimensional nucleation at sufficiently small chemi-
cal potential driving forces 6p. This result provides
independent evidence consistent with an infinite TR in
quasiperiodic systems. Likewise, at all temperatures,
the interface dynamically roughens at sufficiently large
b, p, = b,p, . Since b.p, -+ 0 as T -+ oo, dynamical behav-
ior at high temperatures is indistinguishable from that of
a rough crystal for most practical purposes. Dynamical
roughening can resolve apparent inconsistencies between
the observed morphologies of decagonal quasicrystals and

predictions based on ideal tiling models. Finally, the av-

erage of the squared height of the growing surface was
seen to diverge algebraically with the linear system size

(L), in contrast to the logarithmic divergence observed
for the crystal model simulated.
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