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Monte Carlo study of two-step defect melting
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We present a detailed Monte Carlo study of the recently proposed model of defect melting in two

dimensions exhibiting a crossover from a single first-order melting transition to two successive tran-

sitions of the Kosterlitz-Thouless type. The distinguishing parameter of this model is the length

scale I of rotational stiffness.

I. INTRODUCTION

In 1979, Halperin, Nelson, and Young' (HNY) general-
ized the Kosterlitz-Thouless (KT) work on superfluid
films and suggested that melting in two dimensions
should proceed via two successive pair-unbinding transi-
tions. In the first transition, pairs of dislocations should
dissociate, while in the second, dislocations are supposed
to split into pairs of disclinations. The considerations
were phenomenological in character and did not permit
specifying the precise physical conditions under which
these processes would happen. In fact, when trying to
construct definite models that allow for lattice distortions
and defects as in the HNY theory, these models have al-
ways shown a single first-order melting transition.
Experimentalists, on the other hand, have indeed seen
two-step melting, although not in atomic lattices but
only in layers of molecular crystals. These consist of
rodlike molecules to which the original HNY theory does
not really apply. In these layers, the number of degrees
of freedom is larger than in an atomic crystal and cannot
be described satisfactorily by a single displacement field
with classical elastic energy.

Recently, it has been pointed out' that the experimen-
tal situation can be accounted for by the introduction of
an additional elastic term, accounting for the rotational
stiffness of the system,

E~2' =2pi~ Jd~x ((j,~)~, (1)

where

co(x) = —,
' [B,u2(x) —B2u, (x)]

is the local rotation angle of the displacement field u, (x).
This term is observable in the transverse frequency spec-
trum as the coeflicient of order k (Ref. 11),

=ck(1+l k +- . )

EI,"=Jd'x p, u, ', +—u, ',

the model is then constructed on the basis of the com-
bined second-gradient elastic energy

E =E[&~+E[2~
el el el

As usual, u, (x) is the strain tensor

u,, (x) =-,'[a, u, (x)+a, u, (x)] .

(4)

The energy E,~
is extended by plastic distortions and ro-

tations, replacing 8;u, u;. , and 8;co by' ' '
8 u"=8 u, —

p,', ,

u"=u —u' u'= '(p'+p')-
IJ iJ IJ & IJ 2 IJ Ji

Finally, the system is formulated on a lattice with spac-
ing a, replacing derivatives by a ' times the lattice
differences

7,f (x)=f (x+i)—f (x),

where i are the link vectors to the nearest neighbors. For
simplicity, the lattice was at first taken to be of the square
type. On the lattice, the plastic distortions are quantized,
being integer multiples of the lattice spacing a. Without
the l term, the model has been studied in great detail.
It undergoes a first-order melting transition in which
chains of dislocation-antidislocation pairs proliferate.
This is similar to the grain-boundary mechanism pro-
posed by Chui. ' As we shall now see, the l term allows
to split these transitions into two steps, each of them be-
ing of the Kosterlitz-Thouless type.

In a general anisotropic crystal, the coeScient l depends
on the direction of the momentum vector. For simplici-
ty, we shall assume the anisotropy to be suSciently small
to allow ignoring this dependence.

Together with the ordinary elastic energy

II. THE MODEL

As explained in the Introduction the combined energy,
E,&

—=E',~'+E'„~', is placed on a square lattice of spacing
a, with the gradients 8, replaced by (1/a)V, . Fur-

1990 The American Physical Society



41 MONTE CARLO STUDY OF TWO-STEP DEFECT MELTING 6849

thermo re, we shall rescale the displacements

u, E( —a/2, a/2) to y;=2mu, /a E( —sr, sr) and as to
—,'e, V;y . We can then replace the plastic distortions P;,
and ~, by the integer-values plastic quantities n; and I, .

These supply the Volterra jumping surfaces, whose boun-
daries are dislocations and disclinations. Setting
P—:a p/(2sr) k~T, the ensuing model partition function
has the "distortion-plus-defect" form' '

T

f d y g exp —p —,
' g (V;y, +V, y, 4~n—,', ) + g g [V,y, (x—i)—2m.n,', ( x—i)]

X n Xs ls J X l

m,

+ g [V, as —2m(m;+V;n; 2)]

X, l

where we have introduced n J:(n;—+ni; )/2 and nt2
—=(n~z —nz, )/2. ' For! =0, this partition function is easily seen

to reduce to the "strain-plus-defect" melting model studied previously (up to an overall infinite constant)

Z', = =g f d y g exp —P —,
' g(V, y2+V2y, —2srN, 2) +gg(V, y; 2srN;;)—

x IN, X X, l

l(j

+ g g [V;y;(x—i) —2srN, , (x—i)]
x

with integers N, 2
=n, 2+ n2„N;; =n.. . and the anisotropy parameter g=(c» —c,~ )/2c44 taken to be 1 (isotropic case).

III. ALTERNATIVE REPRESENTATIONS

For the theoretical as well as the numerical analysis of the model (8), it is more convenient to use one of the following
equivalent representations. By a quadratic completion one obtains, apart from a trivial overall factor,

Z=+ fdyfd fd, , fd,
X

X g 4[n; , m;]exp . ——g —cr;'—
X

lj
m,

+i g [cr,j(V, yi 2mn;~ e;J—co)+.r—, (V, as 2srm; )]— (10)

The auxilliary variables o, and r; are the stresses and torque stresses of the system, respectively, and o', . —:—,'(o; +cr; ).

Summations over i,j =1,2 are implied, and 0, stands short for

ol, = Crl, X 1

The parameter v=A, /(A. +2@) ( =A./[(D —1)A, +2@] in D dimensions) is Poisson's ratio. The functional 4[ , ,nm] is a

gauge fixing factor needed to remove the degeneracy with respect to the integer-valued local-defect gauge transforma-
tions ' ' '

co~a)+2vrM, m; ~m;+ V;M,

y, ~y,-+2~N, , n, ~n, +V N, —e, M .

Integrating out y, and as leads to the stress conservation laws [with the dual lattice difFerence V,.f (x)—=f (x)—f (x—i)]

V;o.;- =0
(12)

These are automatically satisfied by introducing the stress gauge fields A; and h via
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o,~ —e,k Vk

~; =e;.V-h + 3, .

In terms of these fields the partition function becomes ' ' '
(13)

Z3 = g 4[n...m; ]f dA; I dhexp ——g — (V, AI ) —— (V; A;)
IJ

m
I

+ (V, h —e, A, ) 2~—i g(A, b, +he) . ,
Sl /a

(14)

where

b,
—=e&V nk, +m, ,

e:—e,"V;m
(15)

are the integer-valued dislocation and disclination densities. They are invariant under the defect gauge transformations
(11),and sums over the defect gauge fields with gauge fixing are equal to the sum over the defect densities,

g C&[n,),m, ]= g (16)

IJ
m,

b,

e

Doing the summations over the defect densities, the stress gauge fields are squeezed onto integers, yielding the roughen-
ing representation

Z4= g exp ——g — (V, A )
—— (V, A, ) +1 1 1 —

2 1 1 —v— 1
(V;h —e, A)

I A, , AI xP 4 1+v ' ' 2 1+v ' '
8l /g

This form was found most useful for our numerical work. "
For I =0, the last term enforces

A;=e;, V,h,
and Z4 reduces to the Laplacian roughening (LR) model"

(17)

(18)

Z4 —=ZLR = g exp
II I

with

1

2P(1+v)

g(V Vh) (19)

(20)

This is, of course, the well-known dual representation of the "strain-plus-defect" partition function Z& [of Eq. (9)]
for g = 1. Notice that the A, term in (9) enters only through a multiplicative renormalization
P~P(1+v) =P[1+A /(A+2p)]. This is why we have put A, =O in our previous Monte Carlo simulation of Z',

Yet another representation of the model (8) is obtained by integrating out the stress gauge fields in (14), leading to the
pure defect representation

Z~= g exp 4' P(1+v) g—q
1

(V V)
e

Xexp —4m P(2l /a ) g e ' e+V, b, V b—V.V —V.V[1+( I /a )( —V.V ) ]

with the total defect density

(21)

g=O+e, ,V;b,- . (22)

For l =0, Eq. (21) reduces to
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Z5 =g exp —4' P(1+v) g g
1

tnI
(V.V)'

(23)

which is, of course, the defect representation of the "strain-plus-defect" partition function Z', or, equivalently, the
dual of the Laplacian roughening model, Z4 =ZLR [see Eqs. (9) and (19)].

The inverse lattice Laplacians in (21) and (23) describe long-range potentials between defects. In accordance with
universality, only their asymptotic behavior is relevant for phase transitions. in order to study these, it is useful to
rewrite the defect energy in (21) in a more explicit way

PE, =4m P(1+v) g [8(x)u "(x—x')8(x')+b;(x)v;"(x —x')b)(x')]+f (B,b, )+e„„,
X, X

(24)

where f (B,b, ) represents 8 and b, terms and e„„are core energies. Formally, the potential between disclinations is
given by

v (x)—:
z

(x,0)+ (x, 0) =
z

+ e'"'"=u4(x)+ u~z '(x),1 21/a 1 d k 1 21/a I;q.„21/a
(V V)

' 1+v ( —V V) —~(2n)2 (K K) I+& K K I+&

and that between dislocations by

d2k K K5;~ K;KJ —212/a 2

e ik'X

(K K)' 1+v K K[1+(1'/a')K K]
212/ 2= [—V V5;, —(

—V; V, ) ]u4(x)+ (
—V, VJ )[v', '(x) —u," "(x)],

(25)

(26)

where

e 1k'x

v,' '(x) =
—~(2m) K K+m

(27a)

is the two-dimensional Yukawa potential (which denotes
the Coulomb potential, for m =0) and

d k e'""—1+(x /4)K K
v4 (x)—: —~ (2n. ) (K K)

(29b)

On a finite square lattice with periodic boundary con-
ditions, j d k/(2~) has to be replaced by
(1/L )g„„' 0, with k=(2n/L)(n„nz).

d 2Q e Ek'x

v4(x) =
—~(2n) (K K)

with

(27b)

IV. THEORETICAL ANALYSIS

ik, —ik,
K; =(e ' —1)/i, K; = —(e ' —1)/i,

K K= g 2(1 —cosk, ) .
(28)

The potentials v4 and v 2
' are infrared divergent. The

divergence is, however, canceled for all defect
configurations that are neutral,

+8(x)=0, gb, (x)=0,
ZDo = g exp —Poo g ( V;h)

IhI X

(30)

Many properties of the phase structure of the model (8)
in the I —T(=1/P) plane (with A, /p fixed) can be de-
duced by mapping appropriate limiting cases onto the
well-known Laplacian roughening (LR) model (19) or the
discrete Gaussian (DG) model

and dipole neutral,

y xB(x)=0 .

Recall the two dually equivalent representations of this
model which are (a) the Coulomb gas formulation (analo-
gous to the defect partition function Z~ )

~(m)(
)

~ d k e'"'* 1
V2 I —~(2m) K K+m

(29a)

This condition is automatically fulfilled in the model
where the defects arise from defect gauge fields via (15)
with periodic boundary conditions. Only these have
finite energy. For these one can replace U2

' and U4 by
the subtracted potentials

1ZDo=const g exp —(m. /PDo) g m m, (31)
ImI

—V.V

with g„m (x)=0 and the lattice Coulomb potential
(
—1/V V)=vz' '. (b) The Villain form of the planar XY

model, corresponding to our starting point, the
"distortion-plus-defect" model Z„
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ZDG =~»« II f &'r
x . InI

(32}

The relation between the inverse temperatures of the two
representations is P„=I /(2PDG).

Pc PR c 0 '785
4

(35)

A. Phase diagram

with leo denoting the critical renormalized stiffness con-
stant. This rough estimate implies a phase boundary
along the line

l. 1=0limit
T2=8(1 /a )PDG=2ml /a =6.281 /a (36a)

As already mentioned, the LR model arises by con-
struction as 1=0 limit of the new model (8). A recent
Monte Carlo simulation of the LR model in the dual rep-
resentation Z', of Eq. (9) (with g= 1 and A, =O, for sim-

plicity) indicated a single first-order transition, with clear
evidence for metastable states and an entropy jump per
site, As =0.2. This happens around T, =(5.42+0.08)l /a (36b)

separating phases with rough (T & T2) and almost flat
( T) T2 ) h-field configurations. Using the more accurate
numerical result (see the following and Ref. 21),

poo =0.677+0.010,

the estimate (36a) can be improved to

or

P (1+v)=0.815+0.005 This phase transition can be deduced also from the defect
representation (21) which, in the present limit, reduces to
the Coulomb gas representation (31) of the DG model

Z5 g exp —8m P(1 /a )+8 8 . (37)
IeI „—V V

Hence, from our previous study we know that for I =0,
the new model (4) undergoes a first-order transition at

At large distances, the two-dimensional Coulomb poten-
tial 1/( —V V) behaves like

1 1+v
P 0.815

=2.454 (1=0) . (33)
(x,O)=v,' '(x) - — ln(2&2er~x~),

~xI ~ 271'
(38)

It should be noticed, however, that this does not agree
with the results of Bruce who claims to see in a simula-
tion of the LR representation (19) a sequence of two con-
tinuous transitions at Pzz =0.610 ( TL'R = l.64) and
PLR=0. 455 ( Tt it =2.20). On a triangular lattice, a siini-
lar controversy exists. '

In the opposite limit 1—+ oo we have to distinguish two
cases.

where y =0.5772 is Euler's constant. The standard
renormalization-group analysis shows that the effect of
few bound defects at low temperatures can effectively be
taken into account by replacing P by a renormalized
stiffness constant )33 . This simple picture breaks down
when the prefactor of the logarithmic potential in (37) be-
comes 2, i.e., if 4mPzl /a =2. Thus there is a pair-
unbinding transition at

2. 1~ oo, P-a /1~~0 (Pl /a axed)

pR— 1

I 2/a 2
(39)

Consider the roughening representation (17). For
small P, the fields A, are squeezed to zero and (17) be-
comes effectively a DG model (30) with

or, using (34},Pgo =m. /4. We see that in rotationally stiff
material (large 1), higher temperatures are needed to pro-
duce free, unbound disclinations. Approximating P=Pz~,
one arrives at the estimate (36a).

1

SPl /a
(34)

3. 1 ~ oo, P=l

which is well known to undergo a Kosterlitz-Thouless
phase transition around

Consider again first the roughening representation (17).
For P= 1 and 1 ~ oo, the field h can be treated effectively
as continuous and integrated out, yielding
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1 1 1 —
2 1 1 —v —

2 a 1
2

Z4~ g exp ——g — (V;A )
—— (V, A, ) + A, (

—V, V )A +
13 4 1+v ' 2 1+v ' '

81
' —V.V

I

(40)

For infinite I, the last term with the nonlocal corrections vanishes and we end up with a discrete Gaussian vector model

which, for v= 1 (incompressible material), decouples into two ordinary DG models with an inverse temperature

1
PDo (41)

implying a Kosterlitz-Thouless transition at

T, =8PDo=5. 42+0.08=2m=T. , (v= 1, I = ~ ) . (42)

For any finite I, however, the nonlocal corrections in (40) become important at long distance and, in fact, reduce the
transition temperature by a factor of about 2 (for v= 1 ). This is most easily seen in the defect representation (21), which

becomes effectively, for large but finite I,

Z5 ~g exp 4n. P(—1+v) g b; v ~"b~
Ib;I X

where the dislocation potential (26) can be taken in the regularized form

(43)

K K5;1 K;K~— 212/tt& K;Ki

(K K) 1+v K K[1+(I Ia )K K]
(44)

since only neutral dislocation configurations g„b; =0 give a finite contribution. For any finite I, the subtraction in the
second term is not really necessary, but does no harm and ensures a finite I = ~ limit.

Asymptotically as ~x
~

~~, the second term contributes only minor corrections since, for any finite I, it behaves like

[21 /a /(1+v)] (KK /K K) as k~0. Only in the singular limit of infinite I it becomes

[2/(1+ v)][K,K) l(K K) ]= [2/(1+ v)](1/k )

and does contribute to the asymptotic behavior. For v= 1, this combines with the first term to a Coulomb potential

U;J"(x)=I 2
(e'"'" 1)=5, u&' '—(x) (v= 1, I = oo )—~(2n') K K

(45)

and thus leads to the ordinary DG transition given in (41) and (42). For general v, we have at I = ~ the subtracted po-
tential between dislocations

K K5,J K,K)+ [2/(1—+v)]K,K)
v,',"(x)=

—~ (2ir) (K K)

—(VV5 —VV ) — VV v"(x).i j 1+ i j 4 (46)

From the asymptotic behavior of v4 (Ref. 16),

v4'(x) = [x ln(2v 2ei' '~x~) —
—,'ln(2v'2ei' '~ ~x~)],

/x/ ~ 8m'

we calculate

(47)

v i"(x)
/X/~ oo

1 1 1+ ln/x/5„= — 1+ in]x[5,,
1 2

2n 4ir 2m(v+ 1)
(48)

The factors are obvious by replacing approximately V.V by 8 and V, V by —,6, -8 . Applying the Coulomb gas criterion
as in (37)—(39), this gives

T, =T", =m[(1+v)+2]/2 (I = ~ ), (49)

in agreement with (42) for v= 1. The 2 inside the square brackets is due to the longitudinal modes in (46).
For the physical case ofPnite I, on the other hand, the longitudinal modes in (46) have finite range ~ I and thus do

not contribute to the asymptotic behavior. The phase transition is therefore determined alone from the transversal
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modes, for which the potential (46) —(48) is, at any v,

K K5;- —E;K-
u, ',"(x):I " ' ' (e'""—1)=—(V V6,, —V, V, )u4 (x) =

— in~x~5, ,—~ (2m) (K K) Ixi- 4' (50)

This yields the transition temperature

T, =T", =n(1+ v)I2~„=&=m (I finite) . (51)

20-

~ C peak

t

Compared with the i = ~ value (42) we see that the
screening of the longitudinal modes at large distance has
reduced the transition temperature T, for v= 1 by a fac-
tor of about 2. Let us recall that according to the
renormalization-group equations the distance between
the renormalized critical temperature T, and the actual
transition temperature T, decreases rapidly with the
fugacity of the excitations. Since the core energy c„„of
the excitations is only weakly dependent on l, the fugaci-

corety y—=e "" near the I = ~ transition temperature
T, =2~ is much larger than at T, =m for finite l. This is

why the approximation (51) is much more accurate than
(42). Consequently, the actual transition temperatures
for I = ~ and 1 =finite differ only roughly by a factor of
2. Via the fugacity, T] is only weakly dependent on I.
This is physically expected since the unbinding transition
of dislocation pairs, the translational defects, should be
only weakly influenced by the length scale 1 of rotational
stiffness.

In Fig. 1 the theoretically predicted phase diagram in
the 1 -T plane for v=1 is compared with the results of
our Monte Carlo simulations to be described in Sec. IV B.
In the diagram we have tentatively identified the three

phases according to their defect structures as solid, hex-
atic, and liquid, although we have not yet performed any
detailed structura1 investigations to confirm these phase
properties.

B. Correlation functions

Numerically, the phase diagram can be mapped out by
measuring appropriate corre1ation functions. Since we
have chosen to work with the roughening picture (17), we
shall discuss only the height-height correlation functions

—,'([ii(x) —h(x')] )=(h(x) ) —(h(x)h(x')) (52a)

and

—,
' ( [ A, (x) —A, (x') ] ), (52b)

where the angular brackets denote thermal averages with
respect to Z4 of Eq. (17). In the following we shall as-

sume large enough / to avoid degenerate cases. Let us
start by showing that, in the low-temperature solid phase,
these functions are proportional to the defect potentials
given in (24)—(26). For low temperatures, there are only
few defects, and the discrete variables h, A, can be treat-
ed effectively as massless continuous fields. The dilute
gas of bound defects (which is caused by the integerness
of the fields Ii, A, ) manifests itself only in a renormaliza-
tion of the temperature, i.e., P~P". This effect is ex-
ponentially small because of the finite activation energies,
i.e., low fugacities. Omitting in Z3 of Eq. (14) the sum
over defects and interpreting 2me and 2mb, - as fixed
external sources, the correlations (52) may be generated
by differentiation with respect to these sources. Applying
these differentiations then to the dual defect representa-
tion Z~ of Eq. (21) (and replacing P~P ), it is easy to
read off [using (24)]

—,'([h (x) —h (x')] ) = —413" [u "(x—x') —u "(0)],

solid
I

2 , ([A, (x)-A, (. )] )=-4P 1+
u,, (x .)

(53a)

(53b)

FIG. 1. The / -T phase diagram of the lattice-defect melting
model for v=1. The transition points (0) are determined from
measurements of correlation functions on 32X32 lattices. For
1 1, they lie significantly lower in temperature than the loca-
tion of the finite specific-heat peaks (), as expected for
Kosterlitz-Thouless-like transitions. The dashed and dotted
straight lines are calculated from the 1~~ limit in which the
melting model degenerates at both transitions to a pure DG
model. At the lower transition, the I = ao transition tempera-
ture is higher by a factor of about 2 due to a subtlety discussed
in the text. The solid lines are a guide to the eye.

with u" and u,j" given in (25) and (44), respectively. Note
that in the solid phase (which is extremely rough in the
dual picture) ([h (x)—h (0)] ) diverges for all x as lnV,
where V =L XL is the lattice volume.

Then, with increasing temperature, we expect at the
first phase transition around T, =~ the A correlations to
become effectively massive as a two-dimensional disorder
version of the Meissner effect in superconductivity. ' In
the roughening language this corresponds to almost-con-
stant fields A. As a consequence, in the intermediate
phase the h correlations are screened at long range to
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—,'([h(x) —h (x')]') = —4P"(1 /a )v," '(x —x'), (54) c"(x)=—4P (1 /a )c2 '(x) . (61)

and

c"(x —x')=——([h(x) —h(x')] )
2

=L[(h(x) ) —(h(x)h(x'))], (55)

c J"(x —x') =—( [ A;(x) —A (x') ] ), (56)

where L is the linear size of the square lattice, and the
bars denote a configuration average along one column (or
row), e.g. ,

h(x)= —g h(x, y) .
L

L

In momentum space, these averages amount to a projec-
tion onto the k, axis [x=(x,y ), It = ( 2n. /L )( n„,n ) ]:

1 g f (x—x'):— g g f (k„,k )e'"'*
y, y' y, y' L n„,n =0

1 1 ik„(x —x'}
g f (k„,O)eLL„ (57)

This leads to simple one-dimensional representations for
c"(x) and c;,"(x) which, in the free field case, can be eval-
uated analytically even on finite lattices (see the Appen-
dix). Applying these projections to (53) we get in the
low-temperature solid phase

which is exactly the behavior in the massless phase of the
DG model, where the field h is still rough.

When increasing the temperature further then, at the
second transition around T2 = 5.42I /a, also the h

correlations become massive corresponding to a phase
with almost constant fields A and h.

Since each phase is characterized by a special behavior
of the correlation functions (52), it is at least in principle
straightforward to map out the phase diagram. In an ac-
tual Monte Carlo simulation this can be quite time con-
suming since one needs large lattices and very good
statistics to disentangle the different asymptotic behav-
iors. It is therefore quite important to find related corre-
lations that can be measured and analyzed more
efficiently. We have chosen to study the projected corre-
lation functions

The 3 correlations are massive in this phase.

V. NUMERICAL ANALYSIS

A. The Monte Carlo simulation

As discussed in Sec. II, the new lattice defect model al-
lows for several equivalent representations, and it is not
at all obvious which one is best suited for simulations.
The situation is completely analogous to the much
simpler (planar) XY model, where the same sequence
"distortion-plus-defect, " "roughening, " and "defect gas"
representation is found. In this simpler case, all three
representation have been studied by Monte Carlo
methods. The "defect gas" representation has the most
obvious physical interpretation but is, unfortunately,
quite tedious to simulate. Also the "distortion-plus-
defect" representation has a very close relation to the
melting process, and, furthermore, it is possible to extract
the defect information by simple algebraic manipula-
tions. ' In the interesting low-temperature phase it is,
however, quite difficult to extract well equilibrated
thermal averages. In the dual roughening representation
this corresponds to the hot phase with very rough
configurations where no equilibration problems occur.
The obvious disadvantage is, of course, the loss of a
direct interpretation in terms of displacements of atoms
or in terms of crystalline defects. In fact, since the trans-
formation from (8) to (14) involves a change of integra-
tion (field) variables, it is only true after summing over all
configurations. This makes it impossible to extract from
a given surface configuration the corresponding defect
configuration. Nevertheless, in this work we have used
the roughening representation because of its numerical
advantages. This choice was also influenced by the fact
that the "distortion-plus-defect" representation (8) for
1@0 is much more involved than for 1 =0, where we ac-
tually used it. In the 1 =0 case (with 1I,/p =0) the sum-
mations over integers N, 2, N», and Nzz in (9) factorize
and can be done locally at each lattice site with any
desired accuracy. The Monte Carlo simulation involves
then only the y degrees of freedom

Z', ='=g f d y exp —g V , V, y2+—V2y,
2

c"(x)= —4P" c4(x)+ c2 '(x), (58).1+~
2 1+v

—g V(PJ, V;y;) (62)

where cz ' and c4 are the one-dimensional versions of
v~2

' and v4 [compare (27) and see the Appendix]. The
projections of v result in c &z =cz& =0 and

~here
—V(x, 6) ~ —x (6—2mn)

n

(63)

c '(x)—:c,", (x)= —4p"c2' "(x),

c '(x)—=c,",(x)= —4p~ c',"(x) .
2

In the intermediate phase, we find from (54)

(59)

(60)

For 1&0 this is no longer possible and we resorted to the
roughening representation (17).

To update the integer valued configurations, we ap-
plied the standard Metropolis algorithm with trial values
for h (x) and A, (x) chosen randomly from one above or
one below the current value at each site. In all simula-
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tions periodic boundary conditions were used. 1. Specific heats

B. Numerical results

The main results of our Monte Carlo study are summa-

rized in Fig. 1, which shows the l -T phase diagram for
v=1. We determined the transition points by measuring
first specific heats, for an estimate, and afterwards corre-
lation functions, for a precise determination.

Let us start with a discussion of the specific-heat
curves that serve at least for a rough estimate of the
phase boundaries. We emphasize rough since we expect
Kosterlitz-Thouless transitions in part of the phase dia-

gram, and it is well known that in this case transition
point and peak position of the specific heat do not agree.
For v= 1, the partition function reduces to

Z4= g exp
I A, hI

(V, A1)+ (Vh —e; A )
I2/a2 ' v

(64)

It is convenient to use pDG= 1/8p= T/8 as basic parameter and define the internal energy as

e=(e)=(U)/L = — (eZe= X (();A )'+ (Vh —e, A )

)
.1 i3 1 — 1

L2 t)p'
(65)

The specific heat is then defined as

c =C/L, = —pe =p' L, ((u ) —(u ) )
B(u)
~PDG

(66)

2L 2
Z4 =const exp — lnPDG ZDG(PDG)

2
(67)

Here, we have neglected all non-local corrections-a /l . From this we read off

g (V, A ) =2eDG,
L 2

(68)

a 1 —
2 1 4g(Vh —e, A )

I2 L 2 ' (J J 2p T
(69)

so that near the first transition

4
e 2eD~ +

T '

C 2CD~+ 2
(71)

For l ~ ao and p-a /1 ~0, the partition function be-
comes effectively

Z4 -- ZDG (PDG ),
where

1
pDG

=pDG/(I /a ) =
8Pl /a

Therefore, near the second transition

1

, eDG(pDG»
$2/g 2

(72)

(73)

Our measurements of the specific heat are all based on
the energy fluctuations on the right-hand side (rhs) of
(66).

As pointed out before, for I ~ oo and p= 1, near the
first transition, the h fields can be effectively integrated
out, leading to

C =CDG(PDG) . (74)

Since T = 8(l /a )pDG is proportional to I, the peak of c
becomes broader with increasing l when plotted against
T.

For I ~0, the model reduces to the LR model

Z4 LR(PLR) )

with PLR= 1/4P so that

2eLR(pLR)

C ~CLR

(75)

(76)

(77)

Let us now describe the results of our Monte Carlo
simulations. From now on we shall use natural units in
which a—:1 (=lattice spacing). In Fig. 1, the peak posi-
tions are shown as solid circles. Most of them were
determined on 16X16 lattices at fixed l by first running
a relatively fast thermal cycle over a wide temperature
range (see Fig. 2), and then by studying the tips of the
peaks with much higher statistics. At each temperature,
in the fast runs we used 5000 configurations for thermal
averages, after discarding 1000 configurations for equi)i-
bration. In the long runs we increased these parameters
by a factor 50 to 250000 and 50000, respectively, thus
reducing the statistical errors by about a factor 7. For an
estimate of these errors we applied the usual blocking
procedure, recording blocks of different lengths to make
sure that the "Monte Carlo time" correlation length was
much smaller than the length of the blocks used for the
final estimates. The results for the peak positions are
compiled in Table I (see also Fig. 2). For a few selected
values of l, we have also studied the finite-size scaling
behavior of the specific-heat peaks with increasing lattice
size. Our results for I =0.5, 1, and 3 are shown in Fig.
3. At I =3, the peaks associated with the two transitions
(compare with Fig. 1) show almost no finite-size depen-
dence as expected for Kosterlitz-Thouless type transi-
tions. In fact, the data for the high-temperature peak
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4p

I I

05 (2.08 ~ 1.0
finite-size dependence. It is, however, still somewhat dis-

placed with respect to the ideal I ~ oo limit, which is

again the DG model. We have checked that for larger
I ( = 10, . . . , 50), the peak position moves slowly upward
to

2 jll k
L wA

I I'

2-

~k)
I' ~ 1.2 l2. 2.0

~ 44

40

To)
C

~e

0
0 5 10

FIG. 2. The specific heat vs temperature on a 16X16 lattice
with increasing length scale 1 of rotational stiffness. The data
are averages over 5000 configurations, after discarding 1000
configurations for thermalization. In all plots, the temperature
scale is the same. The arrows indicate the transition points
determined from measurements of correlation functions. For
l'~ 1, they are clearly displaced to lower temperatures, corn-

pared with the peaks.

TP'" = 8Pgo" =6.89+0.04, (78c)

l2.3.0

~ ~h p
p

C
. &'-3.0

2-

confirming the above expectation. For I =1 [Fig. 3(c)],
there is only a single peak showing small size dependence.
At I =0.5 [Fig. 3(d)], we observe small but sizable size
dependence, which, however, seems to saturate at reason-
ably small L. Summarizing, we see that down to l =0.5

the specific-heat peaks show only a very weak size depen-
dence, and we conclude that the transitions are good can-
didates for the Kosterhtz-Thouless type.

This picture changes dramatically at l =0.2. The
specific heat displayed in Fig. 5 shows a clear finite-size

scaling behavior typical for a low-order phase transition,
possibly a first-order one. The speculation on the order
of the transition is born out mainly from a parallel study

PP)o" =0.861+0.005, (78a)

[Fig. 3(b)] are almost identical with those of the (properly
rescaled) DG model shown as solid (L =16) and dotted
(L =8) lines, respectively. For the position of the peak
in the DG model, we estimate (using a parabolic fit, see
Fig. 4)

L
o 8
h16
~ 32

I I I s

7 8 9
T

e I s I e

4 5 6

IDG model

(b)

0.5
17 19 21 23 25

which translates to

TP'" =81 PPo"=(6.89+0.04)l (78b)

I / I / I f e4

I, *1.0

7

C )z 05

For l =3, this gives 20.67+0. 12, in perfect agreement
with the direct estimate for this I (compare Table I).
For smaller I, we find values for TP'" that are somewhat
lower than those predicted by the DG model approxima-
tion. Also the shape of the peaks deviates with decreas-
ing l more and more from the DG curve, as can be in-
spected in Fig. 4. Let us now turn to the low-
temperature peak [Fig. 3(a)], which shows also almost no

3- ppp Og
p

p
p

0
p

0
()

L
o 8

16
m 32

(c)
I a I s I ~ I

4 5 6 7 8
T

4-

3

0
2 Q

0
3

~ 0

& p
p

p

L

16
32

I I I I

4 5 T 6

1.5
2
2.5
3.0
3.5

TPeak
2

9.75+0.50
13.33+0.33
17.30+0.40
20.75+0.50
24.21+0.60

T2" (1 /3)

19.5+1.0
20.0+0.5
20.75+0.5
20.75+0.5
20.75+0.5

TABLE I. Locations of the specific-heat peaks in the high-
temperature transition. FIG. 3. Scaling behavior of the specific-heat peaks with lat-

tice size L for decreasing length scale 1 of rotational stiffness. (a)
and (b) For 1'=3, the peaks at the low- and high-temperature
transition are both almost size independent, as expected for
Kosterlitz-Thouless transitions. The solid and dashed curves in

(b) show properly rescaled fits to data of the pure DG model.
(c) and (d) For decreasing 1, the finite-size scaling becomes
more pronounced, indicating a crossover to a first-order transi-
tion for small I .
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~ 2.0
v 25
~ 3.0

1.2-

1.0
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T(l' 3)
23

FIG. 4. Approach of the DG model limit (~ ) of the specific
heat at I'~ ~ on a 16X16 lattice. For an easier comparison,
we have moved the peak locations near to each other by rescal-

ing the temperature axis for I'=2.0 and I =2.5 with a factor
3/I'. The continuous line is a parabolic fit,
c =a +b ( T —T ""),through the five DG model points in the

range T = 19.5-21.5 with a = 1.182, b = —0.039, and
T~-"=ZO. 65 (pg;" = T~-"ZZ4=0. 8605).

of the internal energy: It shows (a) a clear hysteresis in
relatively slow thermal cycles (see Fig. 6), and (b) near the
estimated transition temperature the time evolutions of
runs starting with "hot" or "cold" configurations show
stable behavior over very many sweeps. It must be noted,
however, that although the peak height of the specific
heat scales quite strongly with L, it does not really reach
the behavior c,„-volume, expected for a first-order
transition. A possible explanation is that we have not yet
reached the asymptotic region that might set in only at
quite large L. A similar behavior has been recently seen

0--
2.6

I

2.8

I

3.0
I

3.2
I

34 3.6

FIG. 6. Internal energy vs temperature for I'=0.2 on a
64X 64 lattice. The stability of the hysteresis, even for long runs

with 12000 sweeps per data point (the last 10000 are used for
averages), supports the hypothesis of a crossover to first-order
transitions for I &0.2.

in the l =0 limit, the Laplacian roughening model, and,
in general, for many other models with weak first-order
transitions (e.g., the q =5 Potts model in two dimen-
sions).

In any case, the strong size dependence of the specific
heat seems to exclude a Kosterlitz-Thouless transition at
I =0.2.

30—

FIG. 5. Finite-size scaling behavior of the specific-heat peak
for I'=0.2. The pronounced size dependence does not support
a transition of the Kosterlitz-Thouless type. On the contrary, it
suggests a crossover to first-order transitions in this range of I .

2. Comparatiue study of correlation functions in DG model

Let us now turn to the discussion of the correlation
functions that will add additional information,
confirming and completing the overall picture derived so
far. To start, we have performed a comparative study of
the ordinary DG model that may serve as "gauge sys-
tem, " while analyzing the new model. As already men-
tioned earlier, the DG model has been studied in several
representations, so that there are enough sources for
comparison. There is, of course, still another motivation
for reanalyzing the DG model: A recent study' of the
(planar) XF model using projected correlation functions
has indicated a value for P' being quite different from
older estimates based on measurements of two-
dimensional correlations. ' Since the planar model is
mapped very accurately onto the dual version of the DG
model by a Villain approximation, it is interesting to in-
vestigate whether the old estimates of pDG, which are also
extracted from the behavior of two-dimensional correla-
tions, can be reproduced using the projection technique.

The results of our simulations on 32X32, 48X48, and
64X64 lattices are shown in Fig. 7. In Fig. 7(a), we have
plotted for the 64 X 64 lattice the raw data of c"(x) versus
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x in the massless phase. Here the temperature T is relat-
ed to PDo via PDo= T/24 [corresponding to I /a =3 in
(34)]. The continuous curves are fits to the expected be-
havior in the massless phase,

1c"(x)=—
z c2 '(x)+const,

2@o(P)
(79)

yielding directly the renormalized stiffness constant
pDo(p). The offset turned out to be approximately zero,
indicating that the asymptotic behavior -cz '(x) is
correct to surprisingly small distances —there are almost

no finite lattice spacing corrections.
In Fig. 7(b), we apply a finite-size scaling test for a van-

ishing mass ( ="infinite correlation length). For vanishing
mass the system is scale invariant, and this in turn im-
plies that all data for c "(x)/L, when plotted versus x /L,
should fall onto a universal curve independent of L. [As-
suming the ansatz (79) with const=0, this can be checked
explicitly. ] We see that this expectation is clearly
satisfied for T&16. For T=16.5, the data for L =32
and L =48 still fit quite well, while the data for L =64 lie
systematically lower, indicating an inverse mass (=corre-
lation length) around 48, . . . , 64. For T) 17, the sys-
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FIG. 7. (a) Projected correlation functions c"(x) vs x in the massless phase of the DG model on a 64X 64 lattice. In order to disen-
tangle the curves for different temperatures they are shifted by a constant {= 1). The continuous curves are fits to the theoretical pre-
diction c"(x)= —[I/2Pno(P)]cz '(x)+const, where Poo(P) is the renormalized stiffness constant and c P'(x)= —(x/2)(1 —x /L) is
the one-dimensional massless potential calculated in the Appendix. (b) Finite-size scaling plot of projected correlation functions
c"(x) of the DG model on 32 X 32 (+), 48 X 48 ( X ), and 64X 64 ( 0 ) lattices. In order to disentangle the curves for different tempera-
tures they are shifted by a constant (=0.01). In the massless phase ( T ~ 16.25), the data for the different lattices collapse onto a sin-
gle curve. In the massive phase (T 16.25), on the other hand, we observe a systematic dependence on the lattice size, becoming
stronger with increasing temperature. This qualitative change is a clear signal for a phase transition at
T, =16.25(Poo= T, /24=0. 677). (c) Projected correlations c"(x) of the DG model vs the massless ProPagator —cz '(x)/2Pno with
pno=m. /4 [see Eq. (35)]. Shown are data for L =64, as well as L =48 and L =32 (with limiting points at x values =4 and =2.5, re-
spectively). The straight line is the critical slope for T= T, =16.25, separating the massless and massive phases. In the massless
phase ( T & T, ), the data are well fitted by straight lines. In the massive phase ( T & T, ), a downward curvature is clearly visible.
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T, = 16.25+0.25 (80)

or

T
P~o= =0.677+0.010 .

24
(81)

Within error bars, this agrees with the value determined
by Shugard et al. ,

' from measurements of two-
dimensional (i.e., unprojected) correlation functions,

PDo =0.685+0.014.
In conclusion, our data on 64X64 lattices are in very

good agreement with go=a/4. Using this theoretical
prediction as input, the "slope criterion" leads to reliable
estimates of T, even on relatively small lattices. In the
following analysis of the melting model, we shall there-
fore use this criterion to identify the transition points.

3. Correlation functions

Let us start with the low-temperature solid phase,
where we expect [recall (58)—(60)]

—( [h (x)—h (x')]')
2

= —4p~ 1+v, 21 (o)
2 1+c (x —x')+ c (x —x')

tematic size dependence becomes more and more pro-
nounced. Not that such a test for the massless phase
does not assume any explicit form for c "(x) as input. The
disadvantage is the need of data on different lattice sizes,
which is of course very time consuming for more compli-
cated models.

We have therefore tried yet another way of presenting
the data in an informative way, namely by plotting c "(x)
versus the expected asymptotic behavior —c2 '(x)/
(2Pgo). In such a plot, we expect in the massless phase
straight lines with a minimal critical slope equal to 1

(provided that we have scaled the x axis by the renormal-
ized stiffness constant go=m. /4). In the massive phase,
on the other hand, the data should show a downward
curvature at large distances. If the lattice size is smaller
than the inverse mass (=correlation length), this curva-
ture is hardly detectable, but the slope of the apparently
straight line will be smaller than the critical slope. This
is demonstrated in Fig. 7(c), where we have plotted our
data for L =64 as well as for L =48 and L =32 (which
can be traced by the limiting points around x values =4
and =2.5). For T~16, the curves are indeed straight
lines with slope & 1. For T =16.5, on the 64X64 lattice
a small downward curvature is detectable that is hardly
seen on the smaller lattices [compare the scaling plot Fig.
7(b)]. The slope, however, is seen to be smaller than 1

even on the 32X32 lattice. Eventually, for T&17, the
downward curvature is obvious even on small lattices.
Thus, from this plot we read off that 16 & T, & 16.5, lead-
ing to the final estimate

—([A&(x)—A2(x')] ) = 4—f3" c2 (x —x') . (84)

Thus, plotting the measured correlation functions on the
left-hand side (lhs) versus the theoretical curves on the
rhs (see the Appendix), we expect straight lines with slope
4P (1+v)/2, 4P", and 4P"(1+v)/2, respectively. From
the aforementioned Coulomb gas argument we know that
in the low-temperature phase P" is bounded by P" ~P", ,
where

R
1

2 1

1+v m
(85)

is the renormalized inverse temperature at the transition.
Hence, with increasing temperature, the slopes I should
decrease until, at the transition, they reach a limiting
minimal value which, for v= 1, is in all three cases

4, = —=1.2732 .
4

(86)

A typical example for such measurements on 32X32
lattices is shown in Fig. 8 for l =3 and T=3. On the
left-hand side, we have plotted the projected correlations
versus distance, with crosses (circles) denoting projec-
tions onto the x axis (y axis). Although we used at least
250000 sweeps for equilibration and at least 500000
sweeps for measurements, the agreement at long dis-
tances is not very satisfying. On the right-hand side we
have averaged these data and plotted them versus the
theoretical curves in (82)—(84). We see that the three
correlation functions give consistent estimates for the
slope ( = l. 33). Since this is only slightly larger than the
critical value (86) we can estimate T, = 3. We have ana-
lyzed similar runs for various 1 and T (with up to
2000000 measurements). As a result we show in Fig. 9
the renormalized temperature, T"—= 1/P"=4/S. We see
that T = T, which confirms the above theoretical expec-
tations based on the dilute gas approximation for the de-
fects as discussed after Eq. (51).

Summarizing, we see that over a wide range of l the
first transition is located around

T] ~3 ~

—([h( )
—h( ')]')= —4P I '( — '), (88)

The fact that T, is almost independent of l agrees also
with our theoretical expectation on the grounds that
physically the transition is caused by the dissociation of
dislocation pairs, the translational defects of the model.
It is intuitively clear that their properties are only weakly
dependent on the additional rotational energy ~ I added
in (8), since the potential between dislocations is only
modified at short distances (l.

For higher temperatures, the fields A become
effectively massive and the h correlations are screened at
long range to

—([A, (x)—A, (x')] ) = —4P c~'i" (x —x'), (83)

which is exactly the behavior in the massless phase of the
DG model. At the second transition the renormalized in-
verse temperature is given by [recall (39)]



41 MONTE CARLO STUDY OF TWO-STEP DEFECT MELTING 6861

R 1
(89) l *10 l 50

Hence, plotting the h correlations in the intermediate
phase versus —cz ', we expect again straight lines with a
critical slope

T1 ~ 72
R

4, =—=0.6366 .=2=
7T

(90)

For l =1.5, a sequence of such plots for temperatures
around the transition point is shown in Fig. 10. Again,
the theoretical expectation is very well satisfied. Observe
the slight downward curvature for T) T2=8.6 indicat-
ing the massive phase. It is, however, much more sensi-

I I I ~ I I I I I

2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 5

FIG. 9. The renormalized temperature T vs T near the
low-temperature transition for increasing length scale I of rota-
tional stiffness.
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for l =3 and T=3 on a 32X32 lattice. The data points are
averages over 500000 configurations after discarding at least
250000 configurations for thermalization. On the lhs we have
plotted the projections onto the x axis ( o ) and y axis ( X ) sepa-
rately vs the distance x. On the rhs, x and y projections are
averaged and plotted vs the theoretically predicted behavior in
the massless phase. In such a plot, the data are thus expected to
lie on straight lines with slope 4P ~4/n =1.273. This is illus-
trated by our data for T =3, which can clearly be fitted by
straight lines with slope =1.33. Since this number is only
slightly larger than 4/m, we can estimate T& =3.
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FIG. 10. Projected correlation functions c"(x) of the melting
model near the high-temperature transition for I =1.5. The
lattice size is 32X32, and the data are averages over 500000
configurations. The organization of the plots on the left- and
right-hand side is the same as in Fig. 8. Since at the high-
temperature transition the critical slope is 2/m =0.637, the data

A]
for T=8.6 are almost critical. The correlations c (x) and

c (x) are not shown since they are massive on both sides of the
high-temperature transition.
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tive to use the critical slope criterion for locating T2. In
this way we estimate T =8.6+0.2 for l =1.5. Since as
a consequence of universality, the results for other values
of l look very similar we can refrain from showing them
here.

VI. CONCLUSION

The preceding Monte Carlo study confirms that the re-
cently proposed lattice defect mode1 with a rotational
sti6'ness term is sufficiently rich to describe a variety of
melting transitions. The distinguishing parameter is the
length scale 1 of rotational stiffness. For very small /,

there is a single first-order transition which, for increas-
ing l, separates into a sequence of two Kosterlitz-
Thouless transitions. The model should be relevant for
explaining the systematics observed in recent experimen-
tal studies of the melting transition in adsorbed layers of
long rodlike molecules. In such experiments one also
observes the splitting of a single sharp transition into a
translational and rotational transition with increasing
molecular length, which should be roughly proportional
to our model parameter l. Certainly, the model will need
considerable refinements to cope with realistic materials.
As it stands, it is certainly the simplest defect model to il-
lustrate the basic splitting mechanism observed in these
materials. It contains no more than the harmonic lattice
distortions of translations and rotations plus the associat-
ed defects.
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APPENDIX: ONE-DIMENSIONAL
CORRELATION FUNCTIONS

ON A FINITE SQUARE LATTICE

L —
1 ikx

c2 '(x)= —gL „—,2(l —cosk)+m

with

1 L L
chM x ———chM—

2shM sh[ML /2] 2 2

sh[(M/2)x]sh[(M/2)(L —x)]
shMsh[ML /2]

= ln [ m /2+ [(m /2 ) + 1 ]
'

2 2' 2

c2 '(x) is obviously symmetric around x =L/2 with

(A2)

( )
L 1 thML/4

C2
shM

and

c' '(0) =c '(L) =0 .

In the limit m ~0, it reduces to
2

1(0)( )—

X X
1 ——

2 L
(A3)

which is a parabola around x =L/2, c2 '(L/2) = L /8. —
Note that c2 '(x)/L is a universal curve of x =x/
L K [0, 1], independent of L. In order to calculate c4(x),
we consider [KK:—2(1 —cosk), k =2mn /L]

J —
1 ikx

c4 (x) —=—gL „=( KK(KK+m )

In this Appendix we give analytical expressions for the
one-dimensional correlation functions c2 '(x) and c4(x).
On a finite square L XL lattice with spacing a =—1 and
periodic boundary conditions, we find (k = 2rrn /L )

1 [c2"'(x)—cz '(x)] .
m

(A4)

Inserting (Al), (A3), and taking the limit m ~0, we get

L —1 ikx
c4'"(x)—=—yL „=, [2(1—cosk)]'

1 L1+
12L 2

L
X

2

2 2
1

2

4 4
L L

X
2 2

(A5)

Parametrizing x =L /2 yL /2 with y E [—1, 1], (—A5) can be rewritten as

C4
[o]

2 2

2
L 2 21+2 — — 2+2

(16)(12)2 L L
(A6)

The polynomial in the curly brackets looks like a double-well potential centered at y =0, i.e., x =L /2. For large L, the
point of inflection lies at y =&1/3 =0.5774 or x =0 4226(L /2), and the curvature at x =0 is twice that at x =L /2.
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