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We have developed a novel statistical theory of fcc ternary Mn-Fe-Ni alloys based on a decompo-
sition of the fcc lattice into space-filling atomic tetrahedra whose magnetic properties are estimated
from the magnetic properties of analogous tetrahedra in ordered fcc ternary compounds. Using this
theory, we have calculated the average total moment and root-mean-square moment per atom as a
function of alloy composition and lattice constant. As an application of this statistical theory, we
discuss the magnetic properties of the permalloy—MnFe-alloy interface, which is an example of a
two-dimensional disordered fcc ternary Mn-Fe-Ni alloy. Because of the hybrid nature of the atomic
environment at this interface, there is a ferrimagnetic transition layer between ferromagnetic per-
malloy and antiferromagnetic MnFe regions. This feature has been largely ignored in discussions of
this structure but should be taken into account in treating the magnetic properties of this interface.

INTRODUCTION

We have recently calculated the magnetic structure of
15 ordered fcc Mn-Fe-Ni compounds and determined the
spin arrangements as a function of lattice constant and
composition.! These compounds may be regarded as
crystals having the translational periodicity of a simple-
cubic lattice with four atoms per unit cell. These com-
pounds are defined by the chemical formula
Mn, Fe,Ni,_, _,, 0=m, n =4, where m and n are in-
tegers. In the present paper we carry our study of the
Mn-Fe-Ni system further, developing a statistical theory
of the magnetic structure of disordered fcc Mn-Fe-Ni al-
loys (solid substitutional solutions). The novel feature of
our theory is the decomposition of the fcc alloy into
space-filling atomic tetrahedra whose magnetic properties
can be inferred from the magnetic properties of closely
related ordered fcc compounds. As an application, we
will consider ferromagnetic-antiferromagnetic interfaces
represented by the permalloy (Fe,sNi;s)/MnsgFes, sys-
tem. These interfaces are two-dimensional examples of
disordered fcc Mn-Fe-Ni alloys and as such can be de-
scribed by the present statistical theory.

In an earlier study,? we investigated permalloy-MnFe
interfaces by carrying out spin-polarized superlattice cal-
culations using ultrathin slabs of ordered FeNi; and
MnFe as model systems. In the present paper we deal
with this interface more directly as a ternary fcc Mn-Fe-
Ni alloy. As already indicated in our preceding paper,!
ferromagnetic-antiferromagnetic interfaces are of interest
for scientific as well as technological reasons. Rapid ad-
vances in vacuum technology and surface characteriza-
tion techniques have increased the likelihood that nearly
atomically abrupt ferromagnetic-antiferromagnetic inter-
faces will soon be grown by molecular-beam epitaxy.’
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Accordingly, the magnetic properties of ultrathin
ferromagnetic-antiferromagnetic multilayers and super-
lattices will become increasingly important subjects for
theoretical and experimental studies. The present theory
provides a means for studying such interfaces in a rela-
tively straightforward manner.

MODELS FOR SOLID SUBSTITUTIONAL ALLOYS

In this section we will develop a statistical theory of al-
loys with a view to estimating the magnetic properties of
solid substitutional fcc ternary Mn-Fe-Ni alloys. We will
start with the results given in Ref. 1 for the atomic mo-
ments of 15 fcc ternary Mn-Fe-Ni compounds as a func-
tion of lattice constant. In order to avoid repetition, we
will assume that the reader is familiar with Ref. 1. We
will denote the magnetic moment of an atom of type ¢
(t=Mn, Fe, Ni) at site s in compound ¢ by u,,(g), so
that the average total moment per atom and the root-
mean-square (rms) moment per atom for compound g are
given by
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If atoms of the same type have different moments at
different positions in the 4-atom unit cell, they can be dis-
tinguished from one another by the site index s. It will be
understood that all atomic moments are lattice-constant
dependent, although our notation does not indicate this
explicitly. In Ref. 1, the individual atomic and average
total moments are listed for three different lattice con-
stants; values at intermediate lattice constants are readily
determined by interpolation. The 15 ordered compounds
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belonging to our so-called basic model and some of their
properties are listed in Table 1.

Our treatment of the Mn-Fe-Ni alloys will be based on
a number of simplifying assumptions. We will assume
that the atoms are arranged at random on a fcc lattice
having an average lattice constant that depends only on
composition. We will neglect slight variations in intera-
tomic distances that may occur because of fluctuating lo-
cal atomic environments. Since no long-range or short-
range chemical order is assumed, the occupancy of each
atomic site is determined solely by the atomic composi-
tion, which is denoted by ¢, where ¢ = {cyp,Cpe,Cni }» and
Cmn T Cpe T =1

In traditional statistical theories of magnetic alloys,
the magnetic moment of an atom is usually assumed to
depend on its local environment, which is normally de-
scribed by the number of nearest-neighbor atoms of each
type, n, where n ={ny,ng.,ny;}. The effects of more
distant neighbors are typically neglected, as are the
effects of different spatial arrangements of nearest- (and
further-) neighbor atoms. This approach works reason-
ably well for ferromagnetic systems, where all the atoms
have the same spin, but may become unwieldy for antifer-
romagnetic systems, where the magnetic environment
(spatial arrangement of up and down spins) must also be
taken into account.

If atomic moments in disordered fcc ternary Mn-Fe-Ni
alloys depended only on the number of nearest neighbors
of each type, we could easily calculate these moments:
For a given alloy stoichiometry, we could calculate the
average numbers of Mn, Fe, and Ni atoms surrounding
each type of atom in the alloy. For those sets of numbers
that occur in the 15 ordered compounds of our basic
model (cf. Table I), the magnetic moment of the central
atom could be taken as the moment of that particular
atom in one of the compounds that has exactly the same
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set of nearest-neighbor numbers. For other sets of num-
bers, the central-atom moment could be obtained by in-
terpolation. We could then carry out a statistical calcula-
tion taking fluctuations in the nearest-neighbor numbers
into account, and averaging over different types of atoms,
ultimately obtaining the average total moment, as in trad-
itional statistical theories.*®

However, in antiferromagnetic systems the atomic mo-
ments also depend on the local magnetic environment,
that is to say, on the signs as well as the magnitudes of
the nearest-neighbor moments. Thus, the information
contained in Table I is insufficient for investigating the
Mn-Fe-Ni system, which is antiferromagnetic over a sub-
stantial portion of the phase diagram (cf. Fig. 1). There-
fore, we will have to proceed differently. Instead of
focusing on individual atoms and their chemical and
magnetic environments, we will take advantage of the
fact that a fcc lattice can be regarded as a simple-cubic
lattice having four atoms per unit cell. Thus, a disor-
dered fcc ternary alloy can be decomposed into a periodic
array of space-filling atomic tetrahedra.

In the spirit of a mean-field theory, we will begin by as-
suming that the average atomic moment of each type of
tetrahedron depends only on its chemical composition,
i.e., on the number of Mn, Fe, and Ni atoms belonging to
this tetrahedron. We would expect some variation in the
atomic moments of a given type of tetrahedron embedded
in different alloy environments, but we will proceed on
the assumption that the average over all possible local en-
vironments is roughly equal to the average atomic mo-
ment of the corresponding atomic tetrahedron in one of
the 15 ordered fcc Mn-Fe-Ni compounds. At a later
stage we will improve upon this simplified model by tak-
ing magnetic correlations between adjacent tetrahedra
into account.

The present treatment involving tetrahedral spatial

TABLE I. Number of nearest Mn, Fe, and Ni neighbors surrounding central Mn, Fe, and Ni atoms in the 4-atom compounds (ig-
noring spin). The compound serial number is denoted by g. The spin patterns of the compounds are denoted by plus and minus
signs. Missing signs denote zero atomic moments. In the right-hand column, FM denotes a ferromagnetic compound, while AFM1
and AFM2 denote antiferromagnetic compounds of the first and second kind, respectively. Weakly ferrimagnetic spin arrangements

are represented by the closest antiferromagnetic spin arragnements.

Central Mn Central Fe Central Ni

q Compound Mn Fe Ni Mn Fe Ni Mn  Fe Ni FM-AFM
1 Mn+ Mn— Mn+ Mn— 12 AFM1
2 Mn+ Mn+ Mn— Fe+ 8 12 AFM2
3 Mn+ Mn— Fe+ Fe— 4 8 4 AFM1
4 Mn— Fe+ Fe+ Fe+ 12 4 8 AFM2
5 Fe+ Fe— Fe+ Fe— 12 AFM1
6 Mn+ Mn + Mn— Ni 8 4 12 AFM2
7 Mn+ Mn— Fe— Ni+ 4 4 8 4 8 4 AFMI1
8 Mn— Fe+ Fe+ Ni—+ 4 4 4 4 4 8 AFM2
9 Fe+ Fe+ Fe+ Ni+ 8 4 12 FM

10 Mn+ Mn— Ni Ni 4 8 8 4 AFM1
11 Mn+ Fe— Ni Ni 8 4 8 4 4 4 AFM1
12 Fe+ Fe+ Ni+ Ni+ 4 8 8 4 FM

13 Mn+ Ni+ Ni+ Ni+ 12 4 8 M
14 Fe+ Ni+ Ni+ Ni+ 12 4 8 FM

15 Ni+ Ni+ Ni+ Ni+ 12 FM
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FIG. 1. Schematic phase diagram of ternary Mn-Fe-Ni sys-
tem.

decomposition is obviously geared to the fact that we al-
ready know the magnetic properties of 15 compounds,
each constructed entirely from such tetrahedra.! In view
of the one-to-one correspondence between any atomic
tetrahedron chosen at random in the fcc Mn-Fe-Ni alloy
system, and the 4-atom unit cell of one of the 15 com-
pounds g, we can label each alloy tetrahedra by the corre-
sponding compound serial number g.

We will now introduce a phase factor f,,(q,r)==1,
partly to allow for the arbitrariness of spin-up and spin-
down directions,’ and partly to simplify the treatment of
magnetic correlations between adjacent tetrahedra, which
we will come to in due course. The phase factor f,,(q,7)
is common to all the atoms in a given tetrahedron, but
may be different for different types of tetrahedra ¢, and
for different spatial orientations r of the same tetrahedral
type. The orientation index r can range from 1 to 12 de-
pending on the symmetry of the tetrahedron.!® The
phase factor will also depend on the magnetic order, as
specified by the subscript m. Accordingly, we can now
write the average total moment of alloy tetrahedron g
having orientation r as

D28 (q,r)=u®8q)f,,(q,r)=2u*%q), ()

where u**%(q) is defined by Eq. (1), and the bar over u in-
dicates that the phase factor is included in its definition.
Phase factors do not appear in expressions for rms mo-
ments since lf,,,(q,r)l =1 for all m, g, and r.

By introducing f,,(g,r), we will be able to describe an-
tiferromagnetic arrangements on fcc lattices that require
more than four sublattices.!""!> In Fig. 2 we display anti-
ferromagnetic arrangements of the first, second, and third
kind, which we will refer to as AFM1, AFM2, and
AFM3, respectively. Here the chemical identities of the
various sites are ignored, and only the spin directions are
indicated. Four sublattices are sufficient only for antifer-
romagnetic arrangements of the first kind shown in Fig.
2(a). Here sublattices (or sites) 5-8 are equivalent to sub-
lattices 1-4, respectively. Note that all atoms on a given
(001) sheet have the same spin, but alternate (001) sheets
have opposite spins. This would be a possible antiferro-
magnetic arrangement for fcc alloys composed predom-
inantly of Mn,, Mn,Fe,, and Fe,, which have exactly this
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spin pattern.! The same may be true for Mn,FeNi, and

possibly also for Mn,Ni, and MnFeNi,, where the two Ni
atoms have zero moments and the remaining two atoms
opposite moments. All of these compounds are identified
in Table I by the symbol AFM1.

In Fig. 2(b) we illustrate antiferromagnetic arrange-
ments of the second kind, which may be characterized by
(111) sheets, all atoms on each sheet having the same
spin, with alternating sheets having opposite spins. Such
arrangements require eight distinct sublattices, sublat-
tices 1-4 having spins opposite to those at sublattices
5-8, respectively. The atomic tetrahedra 1-2-3-4 and 5-
6-7-8 each have three spins of one sign and one spin of
the other sign. This would be a possible antiferromagnet-
ic spin arrangement for 8-atom compounds formed
predominantly from one or two 4-atom compounds hav-
ing such spin arrangements, for example, Mn;Fe,
MnFe;, Mn;Ni, and MnFe,Ni, although some orienta-
tions of their respective tetrahedra may be less favorable
than others. These compounds are identified in Table I

T
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FIG. 2. Antiferromagnetic arrangements of the first, second,
and third kind for fcc lattice regarded as eight interpenetrating
simple-cubic lattices.
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by the symbol AFM2.

In Fig. 2(c) we illustrate antiferromagnetic arrange-
ments of the third kind, which again require eight sublat-
tices. Here sublattices 1-4 have spins opposite to those
for sublattices 5-8, respectively, but now the atomic
tetrahedra 1-2-3-4 and 5-6-7-8 each have two spins up
and two spins down. This would be a possible antiferro-
magnetic arrangement for the compounds already men-
tioned in connection with antiferromagnetic arrange-
ments of the first kind, except that now we are in effect
dealing with 8-atom compounds composed of two 4-atom
compounds each of which has two spin-up and two spin-
down atoms per unit cell, but oppositely directed with
respect to one another.

Clearly, we can encompass all of these antiferromag-
netic arrangements by representing the fcc lattice by
eight simple-cubic sublattices.!!"!2 The first four of these
form a periodic array of tetrahedra lying in the red cubes
of a three-dimensional checkerboard; similarly, the
second four sublattices form a periodic array of tetrahe-
dra lying in the black cubes. It is convenient to describe
the geometry in these pictorial terms, and we will contin-
ue to do so.

In principle, we could evaluate the average moment
(per atom) of the alloy by summing over all pairs of red
and black tetrahedra, allowing for different permutations
of the atoms in each tetrahedron, and weighing each pair
of tetrahedra according to their likelihood of occurrence
for the specified alloy composition ¢. This would be a
very ambitious approach indeed, requiring a knowledge
of the magnetic structure of all possible 8-atom com-
pounds.! Instead, we will ignore environmental and
orientational effects, and assume—provisionally—that
the average total moment of a tetrahedron depends only
on its chemical composition. This moment is thus given
by Eq. (2), or Eq. (1), depending on whether or not we in-
clude magnetic correlations.

By neglecting environmental (chemical) and orienta-
tional (spatial) correlations between adjacent tetrahedra,
but allowing for magnetic correlations, we can greatly
simplify the expression for the average total moment per
atom. This becomes

ﬁ:rloym 2 2 P4
p=1gqg=1

X [u™8p)fm(p)+1u*¥q)f (@],

(3)

where the two types of tetrahedra (in the red and black
cubes) are identified by p and g, respectively, and where
the probability factors have the form

p)clP,in(q),cl

(nyg, T 1E. N ) g e g
e \Mng e (4)
1 Mn * Fe Ni

P4(n,C): 1 1
P Mn P Fe I Ni*

Here n=n(p) or n(q), and n =ny, +ng. +ny; =4. The
first factor on the right-hand side of Eq. (4) accounts for
the different spatial orientations of the atomic tetrahed-
ron. The number of such orientations depends on its
composition n, where n =(ny,,ng.,ny;). The remaining
factors account for the likelihood of occurrence of any
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tetrahedron (p or ¢g) consistent with the alloy composi-
tion ¢. Because of the assumption of orientation indepen-
dence, the index r does not appear in the phase factors in
Eq. (3).

The analogous expression for the rms alloy moment
does not depend on phase factors and is given by

15 15
Hioy(c)= % 3 Paln

p=1gqg=1

p)c}Psfn(q),c}

{ [‘urms _+_‘urm5(q)2]]1/2 . (5)

This provides a common measure of the magnetization
strength for ferromagnetic and ferrimagnetic as well as
antiferromagnetic arrangements.

MAGNETIC STRUCTURE OF 8-ATOM
EXTENDED MODEL COMPOUNDS

We will now proceed to estimate the magnetic struc-
ture of 8-atom compounds formed from all possible
three-dimensional checkerboard arrangements of red and
black 4-atom compounds. Since we already know the
magnetic structure of all the 4-atom compounds, we must
choose phase factors that will lead to the most plausible
long-range magnetic order for all pairs of 4-atom com-
pounds. For example, we would expect Feg=Fe,+Fe, to
have an antiferromagnetic arrangements of the first kind.
In the absence of any evidence to the contrary, we will as-
sume that Fe, remains antiferromagnetic even when it
combines with another 4-atom compound to form an 8-
atom compound.’® In order to obtain the most favorable
8-atom spin pattern, it might be necessary to change the
sign of one of the 4-atom phase factors. Since the aver-
age total moment of Fe, is zero, the sign of its phase fac-
tor is irrelevant so far as Eq. (3) is concerned. (In fact,
this is true for all antiferromagnetic compounds.)

Ignoring magnetic correlations between red and black
tetrahedra, and assuming that all 8-atom compounds
have positive average total moments, we can set all phase
factors equal to +1, thereby defining our provisional
model. According to this model, the magnetic properties
of the alloys are very similar to those of compounds hav-
ing the same compositions. This can be seen in Table II,
where the average total moments per atom for the com-
pounds and alloys are listed in the columns headed ug:,,
and p%,. The rms moments per atom for the com-
pounds and corresponding alloys are also listed here in
the columns headed pcom, and pyjioy. All of these mo-
ments were calculated at the interpolated Wigner-Seitz
radii appropriate to each composition, which are also
shown.

It is clear that the alloy moments differ from the corre-
sponding compound moments only to the extent that
compositional averaging is included in the definition of
the former [cf. Eq. (3)]. This averaging tends to smooth
out the composition dependence, lowering high moments
and raising low moments slightly. However, this smooth-
ing is a relatively minor effect which fails to account for
the large changes in average total moments that are
known to occur for Mn-Ni (but not Fe-Ni) order-disorder
transitions.’
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TABLE II. Average total and rms moments for Mn-Fe-Ni compounds and disordered alloys. The atomic compositions are denot-
ed by cmn, Cre, and cy;. All moments are listed at the interpolated Wigner-Seitz radii, R ws, which are given in bohr units. The aver-
age total and rms moments for the compounds and alloys appear in the remaining columns. The inclusion of short-range magnetic
order leads to the moments denoted by fi 318,. The bottom row refers to the permalloy-MnFe interface.

avg

rms

rms

q Compound CMn Cre (N Rws Meomp Mty gy Hecomp Halloy
1 Mn, 1 0 0 2.70 0.00 0.00 0.00 2.09 2.09
2 Mn,Fe, 3 1 0 2.69 0.32 0.16 0.02 1.68 1.69
3 Mn,Fe, 1 . 0 2.68 0.00 0.20 0.05 1.64 1.64
4 Mn,Fe;, 1 3 0 2.67 0.50 0.23 0.02 1.63 1.64
5 Fe, 0 1 0 2.66 0.00 0.00 0.00 1.35 1.35
6 Mn;Ni, 3 0 1 2.68 0.25 0.16 0.02 1.84 1.85
7 Mn,Fe;Ni, 1 1 1 2.67 0.40 0.33 0.20 1.76 1.77
8 Mn,Fe,Ni, 1 1 1 2.66 0.23 0.61 0.47 1.79 1.80
9 Fe,Ni, 0 3 1 2.65 1.83 1.16 0.79 1.72 1.74
10 Mn,Ni, 1 0 1 2.65 0.00 0.37 0.09 1.72 1.75
11 Mn,Fe,Ni, 1 1 1 2.64 0.27 0.65 0.52 1.69 1.71
12 Fe,Ni, 0 1 1 2.63 1.57 1.37 1.28 1.69 1.71
13 Mn,Ni, 1 0 3 2.63 1.06 0.65 0.32 1.37 1.42
14 Fe,Ni, 0 3 3 2.62 1.14 1.09 1.09 1.32 1.37
15 Ni, 0 0 1 2.60 0.62 0.62 0.62 0.62 0.62

Mn,Fe;Ni; 2/8 3/8 3/8 2.65 0.25 0.65 0.54 1.77 1.78

In order to develop a more realistic statistical theory of
Mn-Fe alloys, we must take short-range magnetic corre-
lations into account. The first of these is the tendency of
nearest-neighbor Mn atoms to have antiparallel spins.’
Antiferromagnetic coupling also occurs for nearest-
neighbor Mn-Fe pairs. To illustrate the experimental evi-
dence for antiferromagnetic coupling between nearest-
neighbor Mn-Mn pairs, consider Ni-rich—disordered
Mn-Ni alloys. Starting with pure Ni and adding Mn, we
find that the average total moment per atom first in-
creases and then decreases, falling to 0 at about 30 at. %
Mn. The standard interpretation of these results is as fol-
lows. For dilute concentrations, the Mn atoms are far
apart, so they will couple ferromagnetically to the host
Ni atoms. Since a Mn moment is larger than the Ni mo-
ment it replaces, the average total moment will increase
at first with increasing Mn content. However, as the Mn
content continues to increase, the Mn atoms get closer
together, and increasing numbers become nearest neigh-
bors. Since nearest-neighbor Mn atoms have antiparallel
spins, their net contribution to the average total moment
is zero. As more and more nearest-neighbor Mn pairs
form, the average total moment decreases. By the time
we reach disordered MnNi;, the average total moment is
zero. On the other hand, for ordered MnNij;, there are
no nearest-neighbor Mn pairs, and the average total mo-
ment is substantial. Similar arguments suggest antiferro-
magnetic coupling between Mn and Fe atoms.

The results of our earlier studies of 4-atom compounds
are consistent with this picture of antiparallel nearest-
neighbor Mn spins. In all 4-atom compounds containing

an even number of Mn atoms, all Mn atoms in the unit
cell are antiferromagnetically coupled to one another. In
Mn;Fe and Mn;Ni, the moment of one of the three Mn
atoms is larger than the moments of the other two.
These two Mn atoms have equal moments but signs op-
posite to that of the other one. This arrangement is the
best accommodation that the three frustrated Mn atoms
can make, since this arrangement tends to minimize the
average total Mn moment. Nevertheless, we see that two
of the three Mn atoms are antiferromagnetically coupled.
The spin patterns for compounds containing both Mn
and Fe also suggest that Mn and Fe atoms prefer antipar-
allel spin alignments (cf. Table I).

We can take these antiferromagnetic tendencies of Mn
and Fe into account by exploiting the phase factors that
we have already built into our formalism. We will con-
tinue to assume that the atomic moments of each
tetrahedron as given by Eq. (1) are fixed, but we will
change the signs of phase factors to satisfy the antiferro-
magnetic tendencies of Mn and Fe atoms in the red and
black tetrahedra, when they are brought together to form
8-atom compounds. In this way we can express magnetic
correlations between red and black atomic tetrahedra en-
tirely in terms of their phase factors.

As an example, consider red and black atomic tetrahe-
dra having only one Mn atom each, and consider all pos-
sible 8-atom compounds formed by bringing the red and
black tetrahedra together with all possible relative spatial
orientations. It is easily seen that there are 3 times as
many 8-atom compounds having red and black Mn atoms
as nearest neighbors as next-nearest neighbors. For some
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8-atom compounds, the red and black Mn atoms already
have opposite spin, so the red and black phase factors can
both be set equal to +1. However, for other 8-atom
compounds, where the red and black Mn atoms start out
with parallel spin, it would be necessary to flip one of the
Mn spins % of the time (nearest-neighbor situation), and
retain the original parallel spins } of the time (next-
nearest-neighbor situation). Flipping a Mn spin implies
flipping the spins of the remaining three atoms in its
tetrahedron as well.

If we proceed in this fashion, and treat tetrahedra con-
taining three Mn atoms similarly, thereby avoiding the
complexities of frustrated Mn spin arrangements, we find
that the average total moments of the alloys are reduced
only slightly in the Mn-rich regions, and remain the same
in the Fe- and Ni-rich regions. In the case of concentrat-
ed disordered Mn-Fe-Ni alloys (as opposed to ordered
compounds), it becomes difficult to estimate the relative
number of nearest- and next-nearest neighbor Mn atoms.
Accordingly, we will ignore this distinction and treat all
red and black Mn atoms as nearest neighbors, dropping
the 2:1 ratio mentioned earlier. This procedure reduces
the average total moments of many Mn-rich alloys by an
additional 25%, but does not, for example, suppress the
magnetism of disordered MnNi; as experiment dictates.
In order to reduce the average total moment of MnNi,
and other Mn-containing alloys still further, it is neces-
sary to investigate additional magnetic correlations.

Where are such correlations most likely to arise? If we
return to Eq. (3) and take into consideration the fact that
the magnetic properties of the atomic tetrahedra could be
influenced by their local environments, we can imagine
that some environments would favor positive and others
negative phase factors. Such effects would be least likely
for ferromagnetic tetrahedra embedded in ferromagnetic
environments, and most likely for weakly magnetic
tetrahedra embedded in weakly magnetic environments.
Clearly, environmental averaging can reduce or eliminate
certain terms in Eq. (3) because of partial or total cancel-
lation between positive and negative phase factors.

With these considerations in mind, we will refine our
previous model by adding the following feature. In all 8-
atom compounds containing a 4-atom antiferromagnetic
compound, this represents such a weak magnetic environ-
ment that its partner compound could have moments
that are just as likely to be positive or negative. By sum-
ming over all occurrences of such pairs, we obtain a
zero-net moment, since the first member has zero mo-
ment by virtue of being antiferromagnetic, and the
second has zero moment due to cancellation of positive
and negative phase factors.

Using this refined model, we have repeated the earlier
calculations obtaining average total moments for the al-
loys which are listed in Table II under the heading fi 3}§,.
In the Mn-rich region, these alloy moments are generally
smaller than the alloy moments u3if obtained by ignor-
ing magnetic correlations. Both sets of moments incorp-
orate compositional averaging, thus distinguishing them
from the moments for the ordered compounds, pi%,.
Similar comparisons of average alloy moments could be
made for arbitrary compositions, and in fact the last line
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of Table II shows such a comparison for the composition
corresponding to the permalloy-MnFe interface (see the
following).

Our statistical theory provides a simple framework for
investigating other plausible descriptions of magnetic
correlations. Clearly, it would be more satisfactory to
base the theory on the outcome of spin-polarized self-
consistent calculations for 8-atom compounds, but such
results are not available. It will be interesting to see
whether future 8-atom calculations will bear out the ap-
proximations we have made above.

Overall, our refined model provides a satisfactory pic-
ture of the magnetic phase diagram as shown in Fig. 1.
The Mn-rich region of the phase diagram is weakly ferri-
magnetic or antiferromagnetic, while the Fe- and Ni-rich
regions are ferromagnetic. The fact that the antiferro-
magnetic region extends closer to pure Fe than to pure
Ni reflects the greater weakening of the Fe moments (rel-
ative to Ni) as the Mn content is increased. The average
magnetic moment of disordered MnNi, has been reduced
by a factor of 3 relative to ordered MnNi;, and further
reduction is possible by the inclusion of additional mag-
netic correlations. The changeover from ferromagnetic
to antiferromagnetic behavior and the region of spin-
glass behavior'* occur in that range of the phase diagram
where there are roughly three Mn atoms per 8-atom unit
cell. This can be understood qualitatively by examining
the delicate spin balances and resultant frustrations that
describe this region.

MAGNETIC STRUCTURE OF
PERMALLOY-MnFe-ALLOY INTERFACES

In an earlier paper,’ we investigated the atomic spin ar-
rangements at (001) interfaces between ordered Ni;Fe
and Mn,Fe, compounds in a prototypic study of a
ferromagnetic-antiferromagnetic interface. In that paper,
we carried out spin-polarized self-consistent linearized-
muffin-tin-orbital band-structure calculations for super-
lattices consisting of two layers of Ni;Fe alternating with
two layers of Mn,Fe,. The repeat period consisted of
four successive layers with two atoms per layer. Hence
there are eight atoms per unit supercell. Consistent with
the specified atomic compositions of the alternating slabs,
we can construct three geometrically inequivalent super-
lattices:

(i) FeNi/NiNi//FeFe/MnMn or (e)/(f)//(b)/(a) ,
(i1) FeNi/NiNi//MnMn/FeFe or (e)/(f)//(a)/(b) ,
(iii) FeNi/NiNi//MnFe/MnFe or (e)/(f)//(c)/(c) ,

where symbols such as (a) refer to the various panels in
Fig. 3 and double strokes represent the interfaces. The
atomic moments obtained in Ref. 2 for these three struc-
tures are listed in Table III.

Since each atom lies at the interface, the net or average
moment at the interface is given by the average moment
for each case (0.70up,0.5515,0.55u5 ), the overall aver-
age being 0.60uz. Another way of looking at this prob-
lem is to regard the three cases above as members of an
8-atom per unit cell extended model having the chemical
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FIG. 3. Atomic layers in Ni;Fe/MnFe superlattices.

formula Mn,Fe;Ni;. In contrast to the 8-atom extended
model discussed in the preceding section, where the 8-
atom cell is divided into red and black 4-atom cells which
form a three-dimensional checkerboard, in the present in-
stance the red and black cells form alternating layers in
the [001] direction, each layer being all red or all black.
In the preceding section, each cell (or atomic tetrahed-
ron) has six nearest-neighbor cells of the opposite color
and none of the same color, while in the present instance
there are four nearest neighbors of the same color, and
two of the opposite color. The assumptions underlying
Egs. (3) and (5) are more fully justified in the present in-
stance because any given tetrahedron is identical in com-
position and orientation to four of its six nearest neigh-

bors. Because of the multilayer structure, there are fewer
geometrical possibilities for orientational fluctuations,
and so only three different cases arise.

For both the checkerboard and multilayer geometries,
the compound Mn,Fe;Ni,; lies midway between MnFe,Ni
and MnFeNi, in the phase diagram.! As can be seen
from Ref. 1, the Ni moment is nearly zero at composition
2:3:3, and the Mn and Fe moments are opposite in sign,
the Mn moment being slightly larger than the Fe mo-
ment. The average total moment given by Eq. (1) is
0.25up, while the more realistic value given by Eq. (3) is
0.63up or 0.54up, depending on the treatment of magnet-
ic correlation effects. Note that these values bracket the
overall average moment given by our earlier calculation,
0.60u5. On the other hand, there is a modest difference
in the rms moments per atom, these being 1.77up or
1.78up according to the statistical theory, and 1.36up
according to the earlier superlattice calculations. These
comparisons are sufficiently favorable, however, to sug-
gest that our statistical approach could be used more gen-
erally to predict the average magnetic structure of inter-
faces having different local stoichiometries or different
crystallographic orientations.

We can conclude from both sets of calculations that
the hybrid nature of the atomic environment at the inter-
face leads to a ferrimagnetic transition layer between the
ferromagnetic permalloy and antiferromagnetic MnFe re-
gions. This feature has been largely ignored in discus-
sions of this structure but should be taken into account in
treating the magnetic properties of this interface. It can
also be seen from the superlattice calculations that there
is a significant fluctuation in the interfacial magnetic
properties, since these depend on the precise local geome-
trical arrangement.

As indicated in our earlier paper,’ the number of
different crystal structures that must be considered goes
up rapidly as we consider ordered Ni;Fe/MnFe superlat-
tices containing larger numbers of atoms per layer
and/or larger numbers of layers. Studies of such extend-
ed superlattices could provide more detailed information
about fluctuations in the interfacial magnetic properties,

TABLE III. Individual atomic moments, average total moments, and rms moments (in up /atom) for ordered Ni;Fe /MnFe super-

lattices I, I, and III (adapted from Ref. 2).

Superlattice 1

Atom i Fe Ni Ni Ni Fe Fe Mn Mn Hiifer Hsuper

u(i) 2.34 0.34 0.63 0.57 2.09 1.83 —1.17 —1.03 0.70 1.43
Superlattice II

Atom i Fe Ni Ni Ni Mn Mn Fe Fe Hsuger Hsuper

uli) 2.41 0.46 0.28 0.24 —1.00 —1.16 1.54 1.63 0.55 1.30
Superlattice III

Atom i Fe Ni Ni Ni Mn Fe Mn Fe Hiiser Hsuper

(i) 2.36 0.30 0.53 0.42 1.26 1.92 —1.54 —0.84 0.55 1.34

Superlattice (average)
Hiuper Hsuper
0.60 1.36
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but these studies would be exceedingly tedious, consider-
ing the large number of distinct geometrical arrange-
ments that must be taken into account with 16-atom su-
percells, for example. It would be far better to carry out
coherent-potential-approximation (CPA) alloy calcula-
tions and avoid dealing with individual structures sepa-
rately. But until extended superlattice calculations or
self-consistent spin-polarized CPA calculations are per-
formed for ternary alloys, our simple statistical theory,
based on the results for 15 ordered 4-atom compounds,
provides a useful interim solution for average interfacial
magnetic properties.

DISCUSSION

The present theory is concerned primarily with average
magnetic properties and ignores various types of magnet-
ic fluctuation effects that may occur in principle but
would be very difficult if not impossible to estimate reli-
ably by present-day methods.

Firstly, it is assumed that all atoms in each ternary
Mn-Fe-Ni compound and alloy lie on a common fcc lat-
tice. Thus our models explicitly ignore local magneto-
volume fluctuations associated with the slightly different
sizes of the various chemical species, as well as the slight-
ly different sizes these species will have when magnetized
to different degrees. As can be seen from Table II, R yy is
2.60 and 2.70 bohrs for Ni in fcc Ni and for Mn in fcc
Mn, respectively. Since the average value of R g is 2.65
bohrs for the interface (Mn,Fe;Ni,), it is clear that local
atomic size fluctuations are of the order of +2%.

Secondly, in representing the interfacial region by a
ternary compound or alloy having a suitably averaged
lattice constant, we have also ignored the interfacial
strain arising from the fact that the bulk lattice constants
of Ni;Fe and MnFe differ by 2%. Thirdly, we have ig-
nored atomic diffusion across the interface, which could,
in principle, occur in real systems, and which could
change the stoichiometry and the geometrical width of
the interface. In spite of these simplifications, we believe
that our interface model provides a reasonable estimate
of the average magnetic properties of the interface,
though we would not be surprised to discover that mag-
netic fluctuations of the order of 5-10 % occur at the in-
terface due to the effects just mentioned.

Finally, there is the intriguing question of multiple
magnetic solutions. A number of authors!® have predict-
ed co-existing magnetic phases for various magnetic ele-
ments by using constrained-moment methods. If the
various Mn-Fe-Ni compounds and alloys that we have
studied could also support multiple-magnetic solutions, it
would be logical to average over these solutions in addi-
tion to all the other averaging that we have carried out,
thereby modifying our final estimates. In the absence of
compelling experimental or theoretical evidence indicat-
ing the existence of multiple magnetic solutions in the
majority of these materials, we decided to deal only with
the most stable magnetic solution for each material (see,
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for example, the discussion of Fe, above). A related ques-
tion that remains unresolved is whether multiple magnet-
ic solutions are favored or suppressed by structural disor-
der.

In short, the atomic arrangements and magnetic struc-
tures of bulk alloys and interfacial regions could be con-
siderably more complex than our model contemplates.
We have carried the analysis for average magnetic prop-
erties about as far as one can in practical terms using
current theoretical and computational methods. There is
clearly considerable room for further refinement of our
models, but this will require further advances in theoreti-
cal and computational techniques.

CONCLUDING REMARKS

In this paper we have demonstrated how disordered fcc
Mn-Fe-Ni alloys can be investigated rather simply, start-
ing with the results of magnetic calculations for ordered
fcc Mn-Fe-Ni compounds. Because the magnetic charac-
ter of Mn is considerably different from that of Fe and
Ni, the Mn-Fe-Ni system has a far richer magnetic be-
havior than simpler systems such as Fe-Ni. The two
essential ingredients of our model are compositional
averaging of the magnetic properties of atomic tetrahedra
and inclusion of plausible magnetic correlations between
adjacent atomic tetrahedra. To make substantial pro-
gress beyond our model would require extensive compu-
tational effort, orders of magnitude greater than we have
expended. It is gratifying that the present statistical
theory corroborates key features of the magnetic struc-
ture of permalloy-MnFe interfaces deduced earlier by su-
perlattice methods.

It would also be of considerable interest to study the
magnetic properties of the Mn-Fe-Ni system at finite
temperatures, as has already been done for
ferromagnetic-antiferromagnetic Co/Cr superlattices.'
Other key problems bearing on the Mn-Fe-Ni system in-
clude the Invar problem'” as well as the region of the
phase diagram where spin-glass behavior has been ob-
served." The present statistical theory could also be used
to deal with such problems.
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