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Role of domain walls in the ground-state properties
of the spin- —' XXZ Hamiltonian in the linear chain

G. Gomez-Santos

(Received 10 August 1989)

The XXZ spin- —Hamiltonian in the linear chain is exactly transformed into a model where the

local degrees of freedom are domain walls between opposite antiferromagnetic domains. The
ground state of the new Hamiltonian is studied with the Hartree-Fock approximation. This approx-
imation is shown to become exact in the XY and extreme antiferromagnetic limits, with excellent re-
sults in between. Known results concerning the existence or nonexistence of long-range order and

gap in the excitation spectrum are reproduced by our solution. Good quantitative agreement with
representative properties of the exact solution is obtained. The domain-wall Hamiltonian is shown
to be the natural framework for the understanding of the ground state and low-lying excited states
of the XXZ system in the antiferromagnetic regime.

I. INTRODUCTION

In this paper we will be concerned with the zero-
temperature properties of the antiferromagnetic (AF)
spin- —,

' XXZ model in the linear chain:

Jt = y (s; s;+] +s; s;+ /
)+5y (s, s;+] ),

where 5«0, and s; represent the a component of the
spin- —,

' operator of site i. This model plays a central role
as one of the very few strongly interacting systems for
which an exact solution can be obtained. ' In spite of
its apparent simplicity, the ground state (g.s.) is able to
display ordered and disordered phases, with interesting
critical behavior. Besides their intrinsic theoretical im-
portance, quantum-spin Hamiltonians have been em-
ployed as starting models for realistic descriptions of
quasi-one-dimensional magnetic materials and, in recent
times, we have witnessed a renewed interest in these mod-
els as part of the effort devoted to the understanding of
high- T, superconductors.

The fact that the model described by & is amenable to
exact solution does not mean that the obtention of g.s.
properties is an easy or closed task. Since Bethe's origi-
nal work, ' the study of & (energy, ' correlations,
long-range properties, " low-lying excitations, ' "" etc. )

has been a slow process where the connection with two-
dimensional statistical models' has proved to be very
useful. Even if one is able to obtain exact results with
Bethe s ansatz, their interpretation is not always straight-
forward: The knowledge of the exact dispersion relation
for low-lying excited states does not help in getting a
physical picture of them, and controversies concerning
the nature of these excitations have existed. ' '

Though approximate treatments of & cannot substi-
tute the results obtained from the exact solution, they can
shed light over our understanding of Bethe's solution and
help gain a deeper insight into the problem. Many ap-

proximate schemes have been proposed (see Refs. 18—23,
though the list is by no means exhaustive), and most of
them have in common the reduction of the original & to
an effective noninteracting Hamiltonian with local de-
grees of freedom given by the spin orientation (up-down).
While the reduction to a noninteracting system is an al-
most unavoidable requisite for approximate theories, the
choice of the spin orientation as the local degree of free-
dom is not. At least in the AF regime, there are strong
indications' ' ' ' of domain walls (DW's) between op-
posite AF domains as the key elements in the properties
of the g.s. of A. This suggests the use of DW's rather
than the spin orientation as the natural degree of freedom
for the study of & in the specified regime.

In this paper we describe the form that % adopts when
written in DW language. While the mapping to be de-
scribed is exact and valid for the general XYZ Hamiltoni-
an, we restrict its use to the XXZ Hamiltonian in the in-
terval 0~ 5 ~ ~. We will show that, upon choosing the
proper DW version of the Hamiltonian, the simplest ap-
proximate variational treatment of it provides excellent
results in the specified interval, becoming exact for 6=0
and b, = ~. Exact results concerning the existence or
nonexistence of long-range order and of gap in the spec-
trum of excitations are reproduced by our treatment.
Good quantitative agreement is also found with the exact
results for the g.s. energy and gap (when it exists). Our
study allows us to support the interpretation' ' of low-
lying excitations in the region 6 «1 as the creation of a
pair offree DW's, each carrying a spin excess' ' of +—,',
being the destruction of long-range order at 6= 1 sig-
naled by the vanishing of the energy necessary for the
creation of a DW. With this information, we believe that
the present approach contributes to a deeper understand-
ing of the physics involved in the exact solution of %.

II. DOMAIN-WALL HAMILTONIAN

In this section we describe the transformation of the
original Hamiltonian into another completely equivalent
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one, but with local degrees of freedom given by the bond
status (ferro or antiferro) rather than the spin orientation
(up-down). To each bond we associate a spin- —,

' z-

component operator a', with eigenvalues +—,
' if the bond

is ferromagnetic (1T or 1 1 ) and —
—,
' if the bond is anti-

ferromagnetic ( 1 1 or 1 f ). In terins of the original spin
operators, the new bond operators have the expression
cr';=2s s +,. To avoid ambiguities, we take an open
linear chain and fix the orientation of the first spin to be
always up s

&

= +—,'. Thus, there is a one to one

correspondence between the original s' description and
the 0' description. For example, given a state with the
following s' form,

t'ai'll

t f

it would have the following representation in terms of the
new cr' variables:

CT
2—

04=+ —,',
0'p =Z—

0'5—2 — ]

0'3 =Z

~ ~ ~Z—06—

with

JVow JVi +JV2 (2)

&,=—g (n; —
—,')

I

+ —, g (c; ic;+i+c; ic;+ i +H. c.), (2a)

The state with perfect antiferromagnetic order in the
original s' representation corresponds to all bond opera-
tors cr' having the value cr'= —

—,'. Therefore, every bond
with value 0'= —,

' represents a domain wall between two

opposite antiferromagnetic domains.
Having described the new degrees of freedom, it is a

trivial exercise to write the Hamiltonian in the new repre-
sentation. After Wigner-Jordan fermionization of bond
operators, the domain-wall version of the Hamiltonian
(How) can be written as follows:

a given sublattice due to the presence of DW in the other
sublattice: The expression n, (c, ,c, +,+c, ,c, +, +H. c. )

allows creation (annihilation) and movement of DW's in
bonds i —1 and i +1 if bond i (belonging to the other
sublattice) is occupied (n; =1). The correspondence be-
tween terms in both & and How is as follows: The con-
tribution (b/2) g; (n, —

—,') in Mow comes from the Z
part of % while the remaining terms in How come from
the XI'terms of &.

It is important to stress the fact that no approxima-
tions are involved in obtaining the DW Hamiltonian
from the original one. Fixing the orientation of the first
spin and the need for an open chain can be thought of as
peculiar boundary conditions, irrelevant in the macro-
scopic limit. In fact, we will ignore these boundary con-
ditions and assume perfect translational invariance in our
treatment of %uw.

The XXZ Hamiltonian is invariant under rotations
around the z axis, and eigenstates can be classified ac-
cording to the value of the z component of the total spin
S'. It is illustrative to see the form that this conservation
law adopts in the DW representation. Assuming, for
simplicity, an even number of sites and DW's, then:

(i) States with S'=0 are those with DW configurations
that can be reduced to the vacuum upon application of
How. This implies that there is, at least, one way of pair-
ing DW's within each sublattice such that the number of
DW's per sublattice in the interval between any pair is
even.

(ii) States with S'=+ I are those with DW
configurations that, upon application of gf'z, w, can be re-
duced to a state with only two nearest-neighbor (in
different sublattices) DW's. The dynamics of DW's im-
posed by How is such that no further reduction is al-
lowed.

(iii) States with S'= k2 are those with DW's
configurations that, upon application of How, can be re-
duced to a state with four nearest-neighbor DW's.

The rule for an arbitrary value of S' is evident from the
above examples. If we rewrite How in the following
fashion,

2 X n~(ci — i ici++ciici+&+H c ) ~ (2b)

where c; (c; ) creates (annihilates) a domain wall at bond i

and n; =c; c;, being the vacuum the state with perfect an-
tiferromagnetic order in the s' representation.

The one-body term &i only couples second neighbor
bonds and, as a consequence, DW's in the sublattices
formed by even-numbered and odd-numbered bonds are
not mixed by %,. It is only through the many-body term
%z that interaction between DW's in both sublattices
takes place.

The action of How can be understood as follows. The
one-body term has a static contribution (g, n;) that
merely counts the number of DW's (ferromagnetic
bonds), and a dynamic part that creates (annihilates) and
moves these DW's [g; (c; ic,.+i+c; &c;+&+H.c. )]. As
mentioned, this one-body part separates even-numbered
from odd-numbered bonds. The many-body term can be
thought of as a modification of the dynamics of DW's in

+—,
' g (1 n; )(c; ic;—+i+c; ic;+i+H. c.),

we see that the above classification of eigenstates is a
direct consequence of the dynamics of DW's: Creation
(annihilation) and movement of DW's (c;,c;+,
+c;,c;+,+H. c) proceeds unperturbed within each sub-
lattice unless the bond i of the other sublattice is occu-
pied (1 n; ); in that ca—se, the action between bonds i —1

andi +1 does not take place.
As indicated in the Introduction, the mapping de-

scribed before can be applied to the general case of an
XYZ Hamiltonian, giving the same structure for the re-
sulting DW Hamiltonian. Even for a given XYZ Hamil-
tonian, different DW versions of it can be obtained
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changing the quantization axis. Though all possible DW
versions of the same Hamiltonian are equivalent, approx-
imate solutions of them may not be. Therefore, it is im-
portant to evaluate which version is best suited for an ap-
proximate treatment. With this in mind, we write a com-
plementary DW version of the XXZ Hamiltonian ob-
tained when the quantization axis is chosen to lie in the
XY plane (How):

Apw %/ +Jtp

with

(4)

&', =—,
' g ( n, —

—,
'

)

+ —,'(I+6, ) g (c;,c;+,+c;,c;+, +H. c. ), (4a)

%2= ——g n;(c;,c;+,+c;,c;+, +H. c. ) .I

l

(4b)

III. APPROXIMATE SOLUTION

In this section we solve the DW Hamiltonians (%nw
and Sow) by means of a Hartree-Fock (HF) approxima-
tion. This approximation is the simplest variational ap-
proach dictated by the structure of these Hamiltonians,
and reduces the many-body terms (&2 and %2) to
effective one-body Hamiltonians in which even and odd
sublattices are decoupled. Before describing our ap-
proach, we study certain limits to clarify ideas about the
region of validity of our treatment.

(i) When b,~ ~, the system shows perfect antiferro-
magnetic order. The natural DW Hamiltonian to de-
scribe this limit corresponds to quantization along the z
axis (How). Perfect antiferromagnetic order means the
vacuum state of our representation and, therefore, n, =0.
But if n, =0, the many-body contributions vanish and our
solution becomes exact. It is important to emphasize
here that the fact that our approximation becomes exact
in this limit applies not only to the g.s. (something trivial
in this case of perfect AF order), but also to the first ex-
cited states. We will see how excited state properties like
the gap approach the exact asymptotic limit rather quick-
ly with increasing h. Our approach will allow us to give
a clear physical picture of excited states in that limit.

(ii) When 5 ~ 1, one expects strong local antiferromag-
netic correlations in the XYplane. Thus, the natural DW
version of our Hamiltonian corresponds to quantization
in the XY plane (Mow). For the particular case of the
XY model ' (b, =O), no coupling between even and odd
sublattices takes place and, therefore, our treatment be-
comes exact. It is worth noticing that, in our DW repre-
sentation, the XY model consists of two interpenetrating
but noninteracting sublattices, the Hamiltonian for each
sublattice being the fermionic version on the Ising plus
transverse field (ITF) model at its critical point. This

new view of the XY model is at the basis of the charac-
teristic alternating behavior of correlations in that model
and, to our knowledge, has not been described previously.

We have shown two limits in which our HF approxi-
mation of the two DW Hamiltonians, How and How, be-
comes exact. We expect our HF treatment to be a good
description of the model in between both limits. As men-
tioned in the preceding section, our approximate treat-
ments of both How and How are not equivalent. The
HF approach being a variational approximation, the
question of preference of one description over the other is
decided on the basis of achieving the lowest value for the
g.s. energy. Generally speaking, if we have two variation-
al approaches for the same problem, the change from one
approach to the other can take place at an arbitrary
point, not necessarily related to the physics of the prob-
lem, but rather to the nature of the approximations. We
will see that, in our case, the minimum value for the g.s.
energy is obtained with the XY version (How) for b 1,
and with the Z version (&nw) for b, ~ 1. Therefore, the
change from one version to the other takes place at a
point with physical content: The Heisenberg point
(5=1). This physical location of the transition point be-
tween the preferred variational solution is an additional
indication of the validity of our treatment, and could
have been anticipated noticing that the choice of quanti-
zation axis is irrelevant for any approximate solution at
the isotropic point. Another way of looking at this is
provided by the fact that both DW versions (&nw and
How) are connected by a dual transformation. The HF
solutions of them are not linked by this duality relation
except at the Heisenberg point, where both the Hamil-
tonian and its HF solution are self-dual.

Summarizing our analysis of the range of validity, the
HF treatment of &nw becomes exact when b, = oo, while
that of Now is exact for b, =O. In between both limits,
the HF solution of the XY version (How) is preferred in
the range 0 b l, while the HF solution of the Z ver-
sion (%nw) has the lowest g.s. energy for b ~ l.

It is of interest to understand why our HF solutions are
bound to fail when the system becomes increasingly fer-
romagnetic (b (0). Let us consider, for example, the
Heisenberg ferromagnet (b, = —1): The g.s. consists of
all spins pointing along the same direction (Z axis, for in-
stance). Our scheme is able to describe this trivial g.s.: It
is simply the state in which all bonds have 0'=+ —,'. But
our interest is not only the g.s. but rather low-lying exci-
tations and the closely related long-range correlations. In
this case the first excitations are spin waves formed by
Bloch states with a single spin turned. In our bond
language, one spin turned amounts to a pair of nearest-
neighbor antiferrornagnetic bonds in a ferromagnetic
background. This state demands a high degree of corre-
lation between even and odd sublattices and, therefore,
cannot be described by an approximation based on the
decoupling between both sublattices.

Now we describe the technical details of the HF ap-
proach and present results for characteristic quantities.
The many-body term is the same in both versions (How
and Vf'ow), and the HF decoupling is given by
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n;(c, ,e, +&+c;,c;+&+H.c. )=(n, )(c;,c;+,+e;,c;+~+H.c. )

+n; ((c t,c,. +, +c, ,e, +, +H. c. })—(n; )((c,c;+,+c;,c;+, +H. c. ) ),

where ( ) means g.s. average. There are more terms in a
Wick factorization of the many-body contribution than
those implied by the previous decoupling, but the self-
consistent solution has always shown a null value for the
other contributions. This means that, in our case, no ad-
ditional restriction within the HF approximation is im-

plied by the previous decoupling.

The structure of the effective one-body HF Hamiltoni-
ans is the same for both versions (&Dw and &Dw), and
can be written in the following way:

~HF Eo g n, + V g (c' el+2+el c'+2+H. c. )+K, (6)

where the self-consistent parameters have the value

2 2
———(c; c, +2+c; c;+z+H. c. ), for &nw,

Eo= '

. 2 2
———(c, c, +2+c, c;+z+H. c. ), for &Dw,

V =
—,'(1 —( n, ) ), for &Dw,

V= —,'(1+5 ) —(n; ), f—or &Dw,

K = g ——+—( n; )(c;,c;+,+c;,c, +, +H. c. ), for &nw,
1

4 2

K = g ——+—(n; )(c; &c;+&+c;,c;+, +H. c. ), for &Dw .
4 2

As indicated above, the self-consistent Hamiltonian for
every sublattice is the fermionic version of the ITF (Ref.
26) model, whose well known properties will help us in
understanding the nature of our solution. The &HF can
be diagonalized by means of the usual Bogoliubov-
Fourier transformation to new fermions operators
dk(dk },with the following result:

%HF —g Ekdkdk + U ~

k

where U is the ground-state energy and Ek
=[[Eo+2Vcos(k)] +[2Vsin(k)] I'~ is the dispersion
relation for the excitations.

The self-consistent HF solution has the following prop-
erties.

(i) For 6 ~ 1, the lowest g.s. energy is obtained using
the Z-axis version (&Dw) as indicated previously. This
g.s. shows long-range antiferromagnetic order and a gap
in the excitation spectrum. Both gap and long-range or-
der diminish with decreasing 6, and vanish at the isotro-
pic point 6=1, in agreement with the exact results. "
For a quantitative evaluation of the approximation, in
Figs. 1 and 2, we compare results for the g.s. energy and
the gap in our approximation with those of the exact
solution. '" Concerning Fig. 2 we see that both the exact
and approximate solutions tend to the asymptotic line"
gap=4 —2. This limit is very revealing about the form of
the excited states, and has a straightforward interpreta-

~ -0.5-

(D
C
tD

-1.0
0.0 1.0 2.0 3.0

FIG. 1. Solid line: Hartree-Fock self-consistent results for
the ground-state energy of %D~ (6 ~ 1) and %D~ (5 ~ 1).
Dashed line: Exact result.

tion in our DW language: If we apply the operator
c, &c;+& to the state with perfect AF order, we create
two domain walls at bonds i —1 and i +1, with an in-
crease in energy over the g.s. given by h. But this static
configuration can reduce its energy by delocalizing DW's
thanks to terms of the form cj c~+2+H. c. According to
&Dw, the dispersion relation associated with the motion
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FIG. 2. Upper solid line: Hartree-Fock self-consistent re-
sults for the gap in the excitation spectrum of AD~. Lower
solid line: Exact result. Dashed line: Asymptotic limit
( 6~~ ) of both exact and approximate results.

of a single DW is given by cos(k), and the reduction in
energy due to this motion is cos(k =m. )= —1 per DW.
Therefore, the total increase in energy is given by 5—2,
in agreement with the exact result. The described excited
state has both DW's in the same sublattice and, therefore,
has S'=0, but the same energy would have the excited
state with the pair of DW's in different sublattices
(S*=+1). This degeneracy between excited states with
S'=0 and S'= +1 is also obtained from the exact Bethe
ansatz solution. ' At this point, it is important to no-
tice that the real single particle excitation is an isolated
free DW: the fact that we put two of them is merely to
comply with the customary boundary conditions. It is
easy to see that each isolated DW carries an excess spin
of +—,

' and, therefore, the claim of Faddeev and Takhta-
jan' ' considering elementary excitations as kinks with
spin —,

' is completely justified.
This pictorial image of excited states as the creation

and posterior delocalization of a pair of DW's in a perfect
AF background becomes quantitatively exact in the limit
5= ~, but continuity arguments indicate that it should
be qualitatively valid down to 6=1, where the gap van-
ishes. For 1&5(~, we can think of this pair of free
DW's as moving in a background formed by the state of
perfect AF order but with fluctuations due to virtual (not
free) pairs of other DW's. The destruction of long-range
order appears as a consequence of the fact that the gap
for the creation of free DW's vanishes.

(ii) For 6 1, the lowest g.s. energy is obtained with
the XY-axis version (&Dw), as indicated above. The HF
Hamiltonian corresponds to the ITF model at its critical
point. Consequently, there is no gap for the excitations,
the g.s. lacks long-range order, and correlations decay
algebraically, in agreement with the exact solution.
We can consider the behavior of DW's in the g.s. as that
of a system at the (critical) boundary between free and
virtual pairs of DW's. The comparison between exact'
and approximate g.s. energy is shown in Fig. 1. In this

IV. SUMMARY

We have presented a new version of the spin- —,
' XXZ

Hamiltonian in the linear chain with local degrees of free-

80- r
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r
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0.0
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wave vector

FIG. 3. Excitation spectrum at the Heisenberg point (6= 1)
vs wave vector in the first Brillouin zone. Solid line: Des
Cloizeaux —Pearson exact result. Shaded region: Continuum of
pair excitations from the Hartree-Fock solution of &D~.

interval of b, our approximation becomes quantitatively
equivalent to that of Refs. 21 and 22, but the interpreta-
tion in terms of DW's is, to our knowledge, new.

Summarizing our results, we see that our approach
reproduces exact results concerning the existence or
nonexistence of long-range order and gap in the excita-
tion spectrum. It gives a good quantitative approxima-
tion to the g.s. energy and the gap (when it exists), in ad-
dition to providing a physical description of the nature of
excited states.

From Fig. 1 it is evident that the difference between
the exact and approximate g.s. energy is largest at the
isotropic point 6=1. To demonstrate that, even at that
point, our approximation provides a fairly good descrip-
tion of the system, we show in Fig. 3 the des
Cloizeaux —Pearson' (exact) dispersion relation for excit-
ed states together with our results for the continuum of
pair excitations, whose lower edge corresponds to the des
Cloizeaux —Pearson line.

Though our treatment has proved to be successful in
describing long-range properties and the nature of low-
lying excitations, shortcomings related to the mean-field
nature of the HF approximation are bound to appear.
The main limitations of our results are the following.

(i) The solution for b, ~ 1 is basically that of an XY
model and, therefore, the power of the algebraically de-
caying correlations does not change with A.

(ii) Although the value 6=1 is a critical point for the
approximate solution of ADw (b, ~ 1), the universality
class is that of the ITF model and not that corresponding
to the exact solution. For example, the correlation length
in the vicinity of b = 1 diverges with a power law and not
with the correct exponential behavior of the exact ground
state. "
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dom characterized by the bond status (ferro or antiferro)
rather than the spin orientation (up-down), with (fer-
mionic) DW's between AF domains as the relevant
dynamical variables. The mapping presented is exact and
gives the same structure for the general XYZ Hamiltoni-
an, though we have made use of it only in its XXZ ver-
sion.

We have considered two equivalent versions of the DW
Hamiltonian, obtained by choosing the quantization axis
either along the Z (&Dw) direction or in the XY plane
(&Dw). The DW Hamiltonians have a one-body part
characterized by independence between the sublattices
formed by even-numbered and odd-numbered bonds, plus
a many-body contribution where interaction between
DW's in both sublattices takes place. This form of the
DW Hamiltonians suggests an HF approximation based
on a decoupling of the many-body term dictated by the
two-sublattice structure.

Choosing the appropriate DW version, we have shown
that our HF treatment provides very good results in the
AF interval 0 6 00, becoming exact in the limits
6= 00 and 6=0. In particular, we have shown that, for
5 ~ 1, our solution has long-range AF order and a gap in
the spectrum of excitations. Both gap and long-range or-

der vanish at 5=1, in agreement with the exact solution.
Our treatment has allowed us to interpret the nature of
the lowest excited states as the creation and delocaliza-
tion of a pair of domain walls, giving an explanation for
the exact asymptotic behavior of the gap in the limit
6—+ao. In the region 0 b ~1, our HF solution de-
scribes a critical system with no gap in the excitation
spectrum and algebraically decaying correlations, also in
agreement with exact results.

The diSculties associated with the mean-6eld nature of
our approach are rather mild, and show up as an in-
correct universality class for the critical behavior at
6 ~ 1, and an inability to change from its XY value the
power of algebraically decaying correlations in the inter-
val 0~6 ~1.

In conclusion, I have presented a mapping of the XXZ
Hamiltonian whose approximate solution provides a sim-
ple, useful, and physically sound description of the
ground state and low-lying excited states of that system
in the AF regime.

Note added in proof Apa. rtial account of this work
has been presented at the 34th Conference on Magnetism
and Magnetic Materials, Boston 1989 (Proceedings to ap-
pear in J. Appl. Phys. ).
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