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Magnetic properties of Heisenberg-type ferromagnetic films with a sandwich structure
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The Green's function method is developed for a sandwich structure in which a type-II ferromag-

net is sandwiched between two ferromagnets of type I. The interface interactions are assumed to be

ferromagnetic. Magnetization profiles and transition temperatures in such composite systems are

derived for several sets of material parameters. It is shown that, if the surface anisotropy is weak,

these thermodynamic quantities are affected definitely by the strong-exchange material, while if the

surface anisotropy is strong, they are dependent on a competition between the effect of surfaces and

the strong-exchange material. The relation to an infinite-multilayer system is also discussed.

I. INTRODUCTION

In recent years there has been considerable interest
both experimentally and theoretically in the properties of
magnetic superlattices formed from a superposition of
layers of two different magnetic materials. Theoretically,
within the Heisenberg model, most of the papers have
been devoted to the study of low-temperature properties
of such superlattices for a variety of artificial structures,
e.g. , a ferromagnet composed of two semi-infinite fer-
romagnets, ' and a multilayer formed from alternating
thin films of two ferromagnetic materials, ' or of fer-
romagnetic and antiferromagnetic ones. In ferromagnet-
ic superlattices at low temperatures, one of the charac-
teristic features is the existence of interface or surface
magnon states appearing outside the magnon bands or in
the gaps between many magnon bands of the bulk. In ad-
dition, a multilayer of alternating ferromagnetic and anti-
ferromagnetic thin films exhibits more rich behaviors,
reflecting several possible ground-state configurations un-
der an externally applied field.

Recently, Schwenk, Fishman, and Schwabl have
developed a phenomenological theory of ferromagnetic
multilayers at finite temperatures based on a continuum
model, and calculated the transition temperature and the
magnetization profile of the composite systems. The
more intriguing multilayer system where two different
ferromagnets couple antiferromagnetically at the inter-
faces has been studied by Camley and Tilley ' using both
a mean-field approximation as well as a continuum mod-
el.

In this paper we consider an alternative artificial struc-
ture, namely, a symmetrical sandwich configuration of
two different ferromagnetic thin films. The sandwich
structure itself is useful for making various magnetic de-
vices, and also the double-layered structure serves exper-
imentally as a model for investigating multilayer sys-
tems. ' From a theoretical point of view, as will be
shown in the present study, the simplicity of the structure
enables us to calculate all the layer magnetizations at any
temperature, and therefore, the transition temperature
from a microscopic theory. These thermodynamic quan-
tities are dependent on the strength of exchange cou-

plings of each material. , that of the interface interaction,
and the thickness of each film, and are also dependent on
the strength of the surface anisotropy at two surfaces.
We develop a theory based on the Green's-function for-
malism, which is an extension of that having been suc-
cessfully used to study thin films of one constituent. "
The model Hamiltonian and Green's-function formalism
are presented in Sec. II. The expressions for the layer
magnetization and the transition temperature are derived
in Sec. III. Their numerical results for some representa-
tive sets of the parameters described above are illustrated
in Sec. IV. The conclusions and discussions, including a
relation to a multilayer system, are also given in Sec. IV.

II. THE MODEL AND GREEN'S FUNCTION

We consider a simple cubic ferromagnet of spin- —, with

a sandwich structure in which a type-II ferromagnet with
an exchange constant Jz and thickness N2 is sandwiched
between the same two ferromagnets of type I, each of
which has an exchange constant J, and thickness N, .
These two constituents are coupled via a ferromagnetic
exchange interaction of magnitude J' at the interfaces. A
schematic view of this model is shown in Fig. 1.
Different from an infinite stack of alternating thin films, a
sandwich structure has two free surfaces, whose effect
can be accounted for by introducing the Ising-like surface
anisotropy. " We assume that the spins tend to be orient-
ed parallel to the surface, say the y-z plane, and define the
z and x axes as the easy and normal directions, respec-
tively. We also assume N2 to be even for the sake of con-
venience. Since all the interactions considered here are
ferromagnetic, no qualitative change may arise by this as-
sumption. This is not the case if antiferromagnetic in-
teractions are involved. ' '

The Hamiltonian of our model may be written as

H= — g J„,„.,'(S„S„,'+S~,S~~'+g„„S„;S„';),
( nj, n'g')

where J„„.' represents an exchange integral between
nearest neighbors, taking either J, , J2, or J' depending
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n =
on the location of the nearest-neighbor pairs, the index n

labels a layer as denoted in Fig. 1, and j the lattice point
in the y-z plane. The Ising-like anisotropy g„„. in Eq.
(2. 1) describes the surface anisotropy such that
q„„.=g ( ) 1) only if n and n' are on the same surface
layer, and g„„=1 otherwise.

We now employ the double-time temperature-
dependent Green's function'"

G„,„,(r —r ) = ((S„',(r );~„-., (r') ) ), (2.2)

1j

!i

~ n =Nt+ N~

~ n = Nt+ Np+)

then write the equations of motion within the random-
phase approximation, "'

((s„;s„+„,-;s„-, ) ) =q„((s„'„,„;s„-, ) ), (2.3)

where P„ is the layer magnetization of the nth layer
defined by

(2.4)
n= 2N&+ N,

FIG. 1. Schematic view of the sandwich structure studied in
this paper.

By taking the Fourier transform with respect to time,
then utilizing the translational invariance in the y-z plane,
we get the equations of motion for the Green's functions
G„„.(~,k), k=(k, k, ), in matrix form:

m —Wl

mp

ml

co —W2

m p„r

Gl„

G„„

P&&ln

P2&zn

Pv —&&v —l, n

P.v &en

(2.5)

where

zJ, )u, (q —y. )+J,p, n= 1

zJ, p„(1—yk)+J, (p,„,+p„+,), 2 n~~N, —1

W„= . zJ)IM~ (1 —
yl,. )+J)pq )+J'pq + ), n =N)

zJ~V~ +i(1 —y~)+J'V~, +J»~, +

zJ~p (1—
yk )+J~(p,„)+p„+)), N)+2 + n N/2

(2.6)

with z =4 and Jlp, n =2& ~ ~ e, N

y&
=

—,'(cask +cos, ) . (2.7)

Due to the symmetrical structure of the sandwich
configuration, the other half of the elements of W„are
given by

m„= J2P„, n =Nl+2, . . . , Nl+N,
J'p ~.- . ~ +, , n =N l +N q + 1

JlP„, n =lVl+X, +2, . . . , N

(2.9)

n =1,2, . . . ,X/2, (2 8) and

where N( =2N~+N2) is the total number of layers. The
same symmetrical relation as Eq. (2.8) holds for other
quantities, and hereafter, unless otherwise noted, we shall
not write such relations. The off-diagonal elements m„
and m, ', in Eq. (2.5}are given by

m, ', =m,~-+& „, n =,. . . , X—1 .=1 (2.10)

In solving Eq. (2.5) to obtain the Green's functions, it
is advantageous to use the tridiagonal form of the
coeScient matrix in Eq. (2.5). Following Seizer and
Majlis, ' we define a subdeterminant such that D~ (co)
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means the N —p-th order determinant, obtained by delet-
ing the first p rows and columns in the coefficient matrix
in Eq. (2.5). We then have the recurrence relation

DN (cu) =(co W—+, )DN, (co)

mp+2mp+)DN 2 p(ci)),

p =0, 1, . . . ,N —2 (2.11)

with

P„DN „(co)D„,(co)
G„„((d,k)=, n =1,. . .,N/2 .

1TDN Cd

(2.13)

This expression for the Green's functions, combined with
the recurrence relations (2.11) and (2.12), will be found to
be useful for calculating layer magnetizations in the fol-
lowing sections.

D, (co) =co W—N, Do(ru ) = 1 . (2.12)

Due to the symmetry, DN (rd) is equivalent to the sub-
determinant which is obtained by deleting the last p rows
and columns in the coefficient matrix in Eq. (2.5). Using
th expression DN (rd) thus defined, we get

III. LAYER MAGNETIZATION
AND TRANSITION TEMPERATURE

In this section, we derive the expressions for the layer
magnetization and the transition temperature. With the
aid of the spectral theorem for the Green's functions

(S„S„+) =lim f Idki 1 d(d[exp(pc@) —1] '[G„„((d+ie,k) G„—„(cu ie,—k)]
e~O ~ 0 00

(3.1)

and the relation

1 1 =2mi5((d ),.
CO lE N+lE

we have

(S„jS„+) =2)M„+„,

where

(3.2)

(3.3)

from below all the p„'s vanish. In a composite system,
however, it occurs that some p„'s become significantly
smail before reaching T„whereas others are still finite.
Similar situations may arise even in a single film of one
constituent, as was pointed out by Diep et al. ' There-
fore, it is convenient to scale a11 the quantities in terms of
pL, which does not vanish even in the immediate vicinity
of T, . In the present system it is appropriate to choose
L =1 when J, )J2 and L =N/2 when J, (J2. By using

1 ~ + Dg —ni Dn —)~Idkg
exp co, —1 D& co;

(3.4) exp(pcd; )
—1 =pL)I)l, (d; (3.9)

with p= I /kj2T, k2) the Boltzmann constant, T the abso-
lute temperature, and

d s/2
DN(rd)= DN(G7)=2 y DN „((d)D„)(M) .

dco n=1
(3.5)

In Eq. (3.4) rd; means the N solutions of DN(dj) =0, which
can be factorized into two polynomials of N/2 degree,

N/2((d )™(N/2)+) D(N/2) —) ((d) (3.6)

These equations can be solved by using the recurrence re-
lations (2.11) and (2.12) to calculate the coefficients of the
polynomials.

For the case S=
—,', assumed in the present study, it fol-

lows that

as T~T, (P~P, ), @„defined in Eq. (3.4) can be ap-
proximated as

1

PL, c
(3.10)

where the overtilde designates a scaled quantity in terms
of pL and

1 DN „(rd, )Dn &((d; )
dk g

('d; DN(Cd, )

(3.11)

Then, from Eq. (3.8) we get the expression to determine
T. :

)(3, =44&L
(3.12)

nj nj 2 I n

so that equating this with Eq. (3.3) we get

(3.7) p, =, n =1,. . . ,L —1,L+1,. . . ,N/2 .

1

2(1+24„)' n =1,2, . . . ,N/2, (3.8)

which forms a set of self-consistent equations for the lay-
er magnetization p„.

The transition temperature T, of the whole system is
determined from requiring that when approaching T,

IV. NUMERICAL RESUI.TS AND DISCUSSION

Solving the self-consistent equations (3.8) and (3.12) by
performing numerical integrations, we can estimate the
magnetization p„of each layer and the transition temper-
ature T, of the whole system. Of special interest is how
film 1 with exchange constant J, and film 2 with ex-
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FIG. 2. Magnetization profiles for various temperatures at-
tached to each curve. (a) The case with strong surface anisotro-

py g = 1.5, and (b) the case with weak surface anisotropy
g= 1.02. The exchange constants have the values Jl =2, Jz = 1,
and J' = 1.5.

change constant Jz interact through the interface interac-
tion of magnitude J'. In addition, two free surfaces,
whose effect is taken into account by the Ising-like anisot-
ropy g, would significantly influence the values of p„and
T, . A variety of combinations of these parameters, to-
gether with the thicknesses N& and N2, are possible. In
order to understand the basic features of the magnetiza-
tion profiles in sandwich structures, we select several
representative sets. In the following the number of layers
in each film is fixed such that N, =9 and Nz =6, for a to-
tal of N =24 layers. The layer indices from 1 to 9 denote
the layers in film 1, those from 10 to 12 denote the layers
in film 2, and those of more than 12 are symmetric about
the middle.

We first consider the case with J, )J2. The system
may exhibit the properties of magnetic double layers of
film 1 separated by a film 2 of weak exchange couplings.
Since film 2 contributes less, the properties of film 1 will
be reflected on the whole system. In Fig. 2 magnetization
profiles at various temperatures are shown for the case
with (a) strong surface anisotropy, g=1.5, and (b) weak
surface anisotropy, g = 1.02. The parameters have the
values J, =2, Jz = 1, and J' = l. 5 = (J, +Jz ) /2. We see
in Fig. 2(a) that larger magnetization appears on the sur-

face layers and a few inner layers subsequent to each sur-
face layer, which we call surface regions in the following.
As the temperature increases near T, only the surface re-
gions remain as having finite magnetization, whereas oth-
er inner layers become almost paramagnetic. Thus, T, in
the present case corresponds to the temperature at which
the magnetization of the surface regions vanish, and is es-
timated to be 2.723. This T, is much higher than the
bulk transition temperature T, &( ~ )=1.978 of film 1 due
to strong surface anisotropy, ' ' and remains constant
with a change in X~ because the surface region is local-
ized only less than a few layers from the surface.

When q is weak, as seen in Fig. 2(b), inner layers of
film 1 have larger magnetization than the surfaces, ' ' so
that surface effect is less important. T, is then deter-
mined mainly by the inner layers, and therefore, in con-
trast to the case with strong surface anisotropy, it is sen-
sitive to the number of layers. We have T, = 1.808 slight-

ly lower than T„(~ ). As will be shown in Fig. 4, T, in
the present case increases (decreases) as N, increases (de-
creases), approaching the bulk transition temperature
T, )( oo ).'~

Next, we consider the opposite case with J, (J2.
When g is weak, film 2 of strong exchange couplings
would largely contribute to the system. However, if g is
strong, the transition temperature and magnetization
profiles would depend on a competition between the sur-
face regions and film 2. In Fig. 3 an example is shown for
(a) the temperature dependence of the layer magnetiza-
tion and the average magnetization of all layers (dotted
line), and (b) the magnetization profiles at various
temperatures. The parameters have the values

J, =1, J2=3, J'=2=(J, +J2)/2, and rl=1. 5. To avoid
errors that will appear for this set of parameters due to
the numerical integrations in Eqs. (3.4) and (3.11), we
have assumed a weak in-plane Ising-like anisotropy
71„=1.005 in the inner layers. Then, 1 —y„ in Eq. (2.6) is
replaced by rlz

—yk. We observe in Fig. 3(b) that larger
magnetization appears in the surface regions of film 1 as
well as the layers in film 2. As seen from Fig. 3(a), curve
1 representing the surface layer drops rapidly toward
T„=1.363, which is the transition temperature of film 1

obtained by putting J' =0. At higher temperatures
curves 10, 11, and 12, representing the layers in film 2,
dominate and they drop rapidly to T, =2.731. There-
fore, in the present case there are two types of regions
which can undergo phase transitions, i.e., the surface re-
gions and film 2. The transition temperature of the whole
system is determined by which region has a higher transi-
tion temperature. As can be seen from Fig. 3(a), the layer
magnetizations p9, p8, and p7 of film 1 remain as having
finite values as T~ T„ indicating the strong correlation
between film 2 and the successive layers 9, 8, and 7 in film
1 via the interface interaction. Since a surface region is
also restricted to within about three layers, an interfer-
ence between the surface regions and film 2 would occur
only if film 1 is sufticiently thin.

Finally we want to relate our study to an infinite fer-
romagnetic multilayer system, which has been analyzed
by Schwenk et al. using a macroscopic Ginzburg-
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