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Integral expansion often reducing to the density-gradient expansion, extended
to non-Markov stochastic processes: Consequent non-Markovian stochastic equation
whose leading terms coincide with Schrodinger’s
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An integral expansion is obtained that reduces under explicitly given conditions to the density-
gradient expansion for the number density of stochastic particles. Explicit coefficients in terms of
moments are calculated up to and including the fourth order, corresponding to the super-Burnett
approximation. The expansion is proven to be valid for both Markov and non-Markov processes,
including those with infinite memory, typical of a stochastic motion with inertia. An application of
this expansion is the relation between local average velocities in Markovian stochastic processes and
the drift velocity of a probability cloud. As a further application we obtain a non-Markovian sto-
chastic equation whose leading terms coincide with the Schrédinger equation. The additional terms
could be interpreted as corrections that produce contributions to atomic spectra of the fine-
structure type. In the case of scattering, where the density gradients can be locally high, the correc-
tion terms become relevant and they could perhaps explain the differences between the calculated
and measured rotational and/or vibrational cross sections for hydrogen molecules.

I. INTRODUCTION

The density-gradient expansion is fundamental for drift
and diffusion of free electrons in slightly ionized gases,
and is extensively used in the treatises on this subject.’

Expansions in terms of density gradients were already
implicit in the works of Wannier? and Kihara.> The first
use of Fourier expansion in order to find density-gradient
expansions was by Parker and Lowke.* Both approaches
have been discussed by Kumar and Robson® and by Skul-
lerud® and extensive discussions and applications of the
continuity equation are contained in the book of Huxley
and Crompton.

An expansion in density gradients up to and including
the third order (Burnett approximation) has been given
by Tagashira et al.® in the case of Vp (where p is the nor-
malized number density) parallel to the acceleration
a=eE/m, where E is the external electric field, e the
charge, and m the mass. Because of this limitation (not
explicitly emphasized in their work) this paper has been
strongly criticized by Robson and Ness.” Moreover, no
use is made of the momenta M,, independent of the ve-
locity v [see Eq. (3) later] because f(k,?) [Eq. (5) later] is
not introduced and therefore the second expansion [Eq.
(6) later] not carried out.

The density-gradient expansion is assumed as a starting
point in the paper by Kumar, Skullerud, and Robson,?
which constitutes the most recent theoretical treatise on
the kinetic theory of charged particle swarms in neutral
gases. In a subsequent paper, Kumar® starts in Eq. (1)
with the postulated validity of the density-gradient ex-
pansion.

A slightly different procedure to obtain the first three
terms (i.e., up to and including VV) of the gradient densi-
ty expansion has been given by Penetrante and Bardsley.’
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However, all the aforementioned authors have given a
partial proof of the density-gradient expansion and have
not clarified its limitations that appear from our Egs. (5)
and (6) never used by them. They start from the Fourier
integral (which is a very general tool), expand the ex-
ponential as in our Eq. (4), and substitute the result in the
Boltzmann equation which, to be solved, implies the
knowledge of the distribution function F(r,Vt) of the
scattering centers, in particular of the reference system in
which F is isotropic. This limits the validity of the ex-
pansion to Markov processes, including the nonhydro-
dynamic regime. The memory implied in the latter, for
instance for electrons moving through gas molecules that
have not yet reached a thermalization, has nothing to do
with the memory implied in a non-Markov process. In
the latter, the stochastic environment that produces the
jiggling motion of the electrons changes with time. On
the contrary, in the Markovian nonhydrodynamic regime
the stochastic environment (for instance the molecules) is
stationary. Mathematically, the situation of electrons in
gases is well characterized by a time-dependent condi-
tional (or transition) probability density containing the
situation at only one preceding time. For a non-Markov
process two or more preceding situations are necessary.'®
For a stochastic motion with inertia, as that of a rocket
in vacuo emitting random bullets (or short period jets)
with an average isotropic distribution, infinite preceding
situations are necessary if external deterministic forces
(as gravity) act on the rocket. The infinite memory im-
pliéd in this process is completely different from the
memory in the Markovian hydrodynamic regime. Indeed
the gas molecules, in order to produce a stochastic
motion as that of the considered rocket, should accelerate
so as to have an isotropic distribution, with respect to the
instantaneous rest observer of the electron distribution.
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The differences between a non-Markov process and the
nonhydrodynamic Markov process are still more evident
if we consider the relevant power spectral densities (spec-
tra), which characterize a stochastic process if it is
Gaussian (as practically occurs for any physical system).
The spectrum of the nonhydrodynamic Markov process
is Lorentzian, i.e., “white” up to an upper cutoff frequen-
cy. For free electrons in neutral molecules (which consti-
tute an example of Brownian motion), the power spectral
density is frequency independent up to the average col-
lision frequency of electrons with molecules. On the con-
trary, the spectrum of a non-Markov process is
“colored”.

The most important non-Markov process is that of a
stochastic motion with inertia. It is infinitely non-
Markovian because all the preceding history of the exter-
nal forces must be known. It can have either an external
or an internal origin. The external origin is due to col-
lisions with other particles or interactions with fields,
typically the electromagnetic field. In this case there is
only one stochastic process allowing a motion with iner-
tia and it is characterized by a power spectral density
proportional to @’ (where o is the angular frequency).
This spectrum, which is at the basis of stochastic electro-
dynamics, is the only one to be Lorentz invariant, and
therefore to be the same for any inertial observer.!! The
internal origin of a stochastic motion with inertia is that
of the considered rocket in vacuo emitting random bul-
lets. In this case the spectrum of the emission is not im-
portant and the process can even be non-Gaussian and
therefore not completely characterized by its power spec-
trum. This stochastic motion is that of quantum mechan-
ics.!?

Recently, Nadim, Pagitsas, and Brenner have
developed a novel moment-gradient expansion for the
phase-space distribution function relevant to neutral par-
ticles undergoing a Brownian motion, for which the
effects due to external fields are irrelevant. They use our
Eqgs. (5) and (6) but do not discuss the limitations for the
expansions. Moreover, which is the fundamental point,
they do not even use the general Boltzmann equation but
only “constitutive equations” so that they restrict their
approach to Markov processes.

It seems therefore worthwhile to give clear and concise
proof of the density-gradient expansion, at the same time
showing what the maximum allowable gradients are and
extending the validity of the expansion to non-Markov
processes, for which there are no simulations as those
(mainly obtained by the Monte Carlo method) relevant to
Markov processes in either the hydrodynamical or
nonhydrodynamical regime. Still better, in Sec. II, we
give an expansion of integrals that is always valid (even
for discontinuous functions) and that reduces, under ex-
plicitly given conditions, to the density-gradient expan-
sion.

In Sec. III we give a novel application of the density-
gradient expansion by finding the difference between the
local average velocity and the drift velocity of a probabil-
ity cloud, always for a generic, in general non-Markovian
stochastic process.

In Sec. IV we apply the result of Sec. III to the sto-
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chastic motion with inertia that produces the quantum
effects. If we limit the density-gradient expansion to the
first three terms the usual Schrodinger equation is ob-
tained.'> This fundamental equation for nonrelativistic
quantum mechanics without spin is therefore no longer
seen as axiomatic and immutable but only as a first-order
approximation of a stochastic process. First order only
because the first term of the density-gradient expansion is
zero when there is particle number conservation as is the
case for Schrodinger equation. The first nonzero term
represents the zero-order approximation and gives the
classical results. The successive, first-order term gives
the quantum effects included in the Schrodinger equation.
The inclusion of a second-order term as done in Sec. IV,
leads to a generalized, or more refined, Schrodinger-like
equation that should give the same results obtainable by
the usual Schrodinger equation in the majority of the
cases. Only in some few cases, where there is disagree-
ment between experiments and theoretical results, obtain-
able by using the Schrodinger equation, it is hoped that
the new generalized equation can give predictions in
agreement with experiments.

II. DERIVATION OF THE INTEGRAL EXPANSION
FOR A GENERAL STOCHASTIC PROCESS.
ITS REDUCTION
UNDER EXPLICITLY GIVEN CONDITIONS
TO THE USUAL DENSITY-GRADIENT EXPANSION

Let us start, following Nadim et al.!* with the proba-
bility density f(r,v,?) in the phase space (r is the posi-
tion, v the velocity, and ¢ the time), whose marginal dis-
tribution, upon integration over v, is the probability den-
sity in the configuration space

pr,)= [dv f(r,v,1). (1
Define the moments

Pm(v,t)=fd3rr'"f(r,v,t) ()
and

M, ()= [d*VP,(v,1), (3)

expand the exponential in the Fourier transform of f and
use Eq. (2),

Fv,t)= [d’ f(r,v,t)explik 1)

- 1
"2;0 n!
where n denotes n scalar multiplications in the order
prescribed by the ‘“‘nesting convention” of Chapman and
Cowling.!*
Integrating Eq. (4) over v gives, with the use of Eq. (3)
and the normalization to unity of f and p,

(ik)"O"™P, (v,1) , (4)

Fk=[d*v fikv,n)=1+ 3 %(ik)ze‘“Mn(z).
n=1 :

(5)

Let us divide Eq. (4) by Eq. (5) and expand the second
side by the binomial series
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SEv,t) _ 5 L yamp, (v,e)

f(kvt) n=0n!

1+§,(—1)f[

j=1

where the tensors Q, are combinations of P, and M,,.
The expansion (6) is valid when the absolute value of the
series in Eq. (5) is less than 1 and this is always possible
provided the wave number k is less than a maximum
value k,, satisfying

(kp M)+ (1Kk3,0"M,) =1 . @)

Indeed the series in (5) can be divided into two series, one
real and the other imaginary, each of which with alter-
nating signs and terms with decreasing values if Eq. (7) is
satisfied. For instance, if f(r,v,t) is given by an either
bivariate or non-Gaussian distribution, centered in r,
with spread o, Eq. (7) implies ky;'=A/27~(r3+0%)"2
The two next terms of the expansion are of the kind
k4(r8+02)2<1 and so on. Consequently, the conver-
gence of the binomial expansion is better if we retain the
whole series in Eq. (5). The convergence is then valid
with any truncation provided k <k,, with k,, given by
(7).

Let us multiply Eq. (6) by f(k,?) and take a “limited”
Fourier antitransform (with k <k,,), also using Egs. (1),
(4), and (5), the identity

ik exp(ik-r)=Vexp(ik-r)

and integrating by parts over r with the condition p
(boundary)=0. We get

flov,= 3 Q0" [d*r(—V)p(r)(2m)
n=0

k
X f_[:Md3k exp[ik+(r'—r)] .

()

When k,, is sufficiently large the last integral in (8) is a
rapidly oscillating function of r’ with a narrow bell-
shaped envelope centered on r (where it acquires a very
high positive value) and tends to 8(r—r’) for ky — co.
Thus, if Vp(r’) is rather regular and not very high for
r'#r, Eq. (8) can be reduced with sufficient approxima-
tion to

flLv,0)~ S Q,(v,1)0"(—V)p(r,1) . 9)
n=0

When the aforementioned conditions are not satisfied one
has to use Eq. (8), as in the case of discontinuous func-
tions. For example, consider the following discontinuous
function, which may be an admissable initial condition

s=1
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—T(ik)S(D“’MS] ]= S (ik)"0"Q,(v,1), (6)
s n=0
-
372 2
—_|_m _my
Fe=1507 | | %7

3vw—ol .,

X :€g(r)
v2+c? g

1+

3
-R—S—H(R -r), (10

where T is a constant temperature, ¢ a constant speed, € a
small constant dimensionless dyadic, H(z) the step func-
tion (H=1 for z 20 and H =0 for z <0), R a constant ra-
dius, and g(r) a general bounded function of position. €
is chosen so small that f is non-negative. Clearly, when

r<R, p(r)=fd3vf(r,v)=3/R3

so that the right-hand side of Eq. (9) would be indepen-
dent of r, at variance with the r dependence of its left-
hand side. On the contrary, the integral expansion (8)
reproduces rather well the given f(r,v) similarly to the
Fourier transform of a discontinuous function.

The coefficients Q,, are the same in both (8) and (9) and
we give their explicit expressions up to n =4, correspond-
ing to the super-Burnett approximation

Qu=Py(v,?), (11)
Q1=P1(v,t)—P0(v,t)M1(t) ) (12)
Q,=1P,—PM,+P(M{—1iM,), (13)

Qs= 1P~ 1P;M, + P, (M3~ 1My)

2
—Py(M{—M M, +1M;), (14)
Q= 4P, —1P;M,+ 1P, (Mi—1M,)
—P,(M{—M M, +1M,)
+Py(M{—3MIM, +IMM;+iM3—LM,) . (15)

So far the procedure is valid for a generic function f
and for any stochastic process.

If at this point one uses the conservation equation and
the constitutive equations in the form used by Nadim
et al.”® [their Eqgs. (3.1) and (3.2)], which are nothing else
than the approximate solution (called the P, approxima-
tion) of the Boltzmann equation in which one expands
f(r,v,t) in Legendre polynomials and truncates the series
after two terms, the resulting expansion remains valid
only for Markov processes in which the scattering medi-
um has an isotropic velocity distribution in the laborato-
ry reference system.

On the contrary, let us consider the Boltzmann equa-
tion which is also valid for any stochastic process because
it is simply a detailed balance in the phase space. It
reads, in its maximum generality,'’
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@, +v-V+aV,)f(r,v,n= [d’V [d*V' [d*v{o(V v -V, v)IV =V F(5,V,t)f(r,v,1)
—o(V,v— V' V)IV=VI|F(r,V,0)f(r,v,1)} , (16)

where a is the acceleration due to external fields, v and v’
are the velocities before and after scattering, respectively,
of the considered particle, and V and V' are those related
to the scattering medium, the probability density of the
latter in the phase space being F(r,V’,t). Moreover
g(V',v'—V,v) is the scattering cross section for the
transition from the primed to the nonprimed velocities.
Usually the scattering medium is constituted by atoms or
molecules but it can also be due to a random electromag-
netic field, as that of stochastic electrodynamics or to the
random bullets emitted by the considered rocket. For the
molecules of a gas (or of a lattice of a solid) the probabili-
ty density F is isotropic in the laboratory reference sys-
tem. But for a non-Markov process F is generally noniso-
tropic and implies a memory. In the case of a stochastic
motion with inertia (rocket emitting random bullets) F is
isotropic with respect to the instantaneous velocity v of
the rocket. All this makes the solution of Eq. (16) ex-
tremely difficult for non-Markov processes. However, be-

|

f

cause of the reversibility of the microphysical elementary
processes,

oV vV, v)=a(V,v—V' V')
and the integration over v of the right-hand side of Eq.
(16) (i.e., of the Boltzmann equation collision integral)
vanishes if there is no variation of the total number of the
particles.

In the case of sources (for example ionization) or of
wells (for example electron attachment) the integration
over v gives simply ap(r,t) where a is generation (ioniza-
tion) or recombination (attachment) coefficient.

Let us therefore substitute the expansion (8) in Eq. (16)
and integrate both sides over v. The third term on the
left-hand side of Eq. (16) generates, because of the gra-
dient theorem, an integral over the boundary surface in
the velocity space on which f(r, «,#)=0. Consequently
we obtain, with the use of Eq. (1), and integrating over k,

x")] sin[ky, (y —p")] sin[ky,(z—2")]

sin[ &y, (x

(n)~(n) 3 X

d,p(r,)— 2 oo [dle——r" m(y—y")
where

"z V()= fd3van_1(v,t) and 0¥=—qa , (18)

a being the defined decreasing coefficient (due, for in-
stance, to recombination or electron attachment). When
ks is sufficiently large the first three factors inside the in-
tegral approximate the three-dimensional § function and
Eq. (17) becomes

2 w(n)

3,p(r,t) )0'"(—V)"p(r,1)=0 . (19)

We have thus obtained the desired density-gradient ex-
pansion (19), that is so proved in general for any stochas-
tic process, although under limiting conditions. These
are (i) The function p(r,t) must be continuous [while the
more general expansion (17) is also valid for discontinu-
ous functions]. (ii) If Vp(r,?) is large around a given r’,
the expansion (19) is valid only for r~r’. When it is valid
with only n =1, the inclusion of the successive terms al-
ways improves the approximation because the two real
series included in the complex series (6) have decreasing
terms with alternating signs. This has been proved by
simulation with a Monte Carlo Method for Markov pro-
cesses, where the agreement appreciably improves'® up to
n~5 (then the results with n =7 are not appreciably
different from those with n =35).

Our proof extend the validity of Eq. (19) to non-
Markov processes (where there are no derivations and
simulations), always under the above limitations (i) and
(i1).

(T =0, 17

III. A GENERAL APPLICATION
OF THE GRADIENT EXPANSION

Let us compare Eq. (19) with the continuity equation
with source [which can be obtained by integrating Eq.
(16) over v without using the expansion (8)]

9,p+V-[p{v)(r,t)]=—ap, (20)
where
p(r,t)(v)(r,t)=fd3vf(r,v,t)v (21)

defines the local average (v) of the particle velocity v.
We get, since the o'’ do not depend on r,

Vp{v) —pa'')=V- T oMo D(—=v)" " Vp(r,t)
n=2
(22)
whence
p[<v>_w(ll]: 2 w(n‘J@(nvll(_V)(n*l)p%_Vx A(r,t) ,

(23)

where A(r,?) is an arbitrary vector and inside the square
bracket there is the difference (which is a function of r
and 1) between {v) and the drift velocity »'' which, by
Egs. (2) and (18), is given by

0 ()= [dv flv,t)v (24)

and is independent of r. In some particular cases it is
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VX A=0 so that Eq. (23) becomes, by explicitly writing
the first three terms,

pl{v)—0'V]= 0 Vp+0':VVp—0':VVVp .

(25)
This is valid, for instance, in a Markovian process with
an external uniform field in which the right-hand side
represents the spreading due to diffusion. Indeed, in this
case, Eq. (25) can be obtained by solving Boltzmann’s
relevant equation.

In a stationary process with a central force (for exam-
ple because of a nucleus) it is {v)=0'"=0, and VX A
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balances the whole series of V in Eq. (23).
In an isotropic stochastic process it is
©?=D,n and 0¥V=0""= "= - =0, (26)

where D, is a constant scalar and 7 the fundamental ten-
sor of the metric.

The most general expression for @'
ponents, is

4 using its com-

Wik rs =Dr§4)nik s +D[§4)( NirMks + NisMkr )
so that

@ ViVVVp=[D n;n, +Dy¥(,my +1,m,)18,9,8,p=[D;*+2D,* IVV?p=D,VV? . 27

Consequently, Eq. (25) becomes
pl{v)—w'V]=-D,Vp—D,VV?% . (28)

The two coefficients D, and D, can be obtained by solv-
ing the Boltzmann equation. Another equivalent way is
the following. We take a sphere of radius A, where A is
the mean free path, and then we calculate the net contri-
bution of the number current density pv in the center of
the sphere, due to the free flights, each coming from a
point of the spherical surface where the number concen-
tration (or probability density) is p(r—A), where A is
parallel to the particle velocity and directly toward the
center of the considered sphere. Using spherical coordi-
nates the net contribution due to diffusion is

— vl ngi _
Ip(v) fo 2arefo Sovp(r=2), (29)
where
v=|v|(isin6 cosy+] sin@ siny+k cosh) , (30)

and, by expanding p in a Taylor series
pr—A)=p(r)—A-Vp+IAA:VVp—LAAAIVVVp , (31)
with

A=A9=A(isind cosy+ ] sin@sing+kcosd) .  (32)

Substituting Eqgs. (30), (31), and (32) in Eq. (29) gives,
after easy but long calculations,

Ip(r,t)=—1AVp—LAwVVh . (33)

Averaging Eq. (30) over the normalized distribution func-
tion f(v) of the velocity magnitudes gives the secdhd side
of Eq. (28) with

D2=f0wdv 4vif(v)ir (34)
Dy= [ “dvam’fw)fa . (35)

IV. ANON-MARKOVIAN STOCHASTIC EQUATION
WHOSE LEADING TERMS COINCIDE
WITH THE SCHRODINGER EQUATION

The diffusion current J,(v) given by Eq. (33) is also
valid for a non-Markovian process because it is simply
the result of a net balance of flow inside a mean free path.

Locally, we can write

p{v;)=J, =D,Vp—D,VV’ , (36)

where Jo, depends on the force fields and, in a process

with inertia, on the preceding history, as well. The sub-
script 1 denotes the first considered volume element, for
instance the little sphere of radius A.

Let us now consider an adjacent small sphere (with
subscript 2) having a radius A. In a Markovian process
we still have Eq. (36) with a very tiny variation due to
the small displacement. In a motion with inertia the 102

is equal to p(v,) because the average effect due to the
diffusion is remembered in the adjacent cell. If we now
consider the almost local system constituted by the two
adjacent cells, we have that the average velocity is

p{vi2) =Ty —1.5(D,Vp+D,VVp) , 37)

so that the ensemble average velocity with respect to this
local center of mass is

p{ V) =10.5(D,Vp+D,VV?p) . (38)

It would seem that Eqgs. (37) and (38) would depend on
the number of adjacent cells but if we only consider
another, third cell, the coefficients D, and D,, which are
calculated across a A distance, would decrease. A
mathematical proof of this intuitive assertion could be
obtained from the Boltzmann equation considering the
scattering centers as having an average local velocity
equal to that of the considered particle.

Because of Konig’s theorem, the local kinetic energy
density U, of the two adjacent cells is equal to that con-
centrated in the center of mass plus that relative to the
center of mass
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Uk=§((v)2+(vrel)2) . (39)

In a motion with inertia we can write {(v) =V¢ (where
@ is the velocity potential) and the equation of motion
can be obtained by the stationarity of the action

A= [did’rL, (40)
where the Lagrangian density L is given by

L=p[8,p+V+HVpP+1(v,)?], @1)
in which V is the potential energy per unit mass and
(v, is given by Eq. (38).

Let us set the functional derivative of A with respect
to @ equal to zero

L
3(dp)

oL _
d¢

=0, (42)

a

where 9,=03/9, with a=0,1,2,3. In our case Eq. (42)
reduces to

1

92 | \(Ve)+V+1D3 ~%

1
ot 2

vl _ v
P P

12
+V

If we neglect the terms inside the curly brackets of Eq.
(46), then the leading terms of Eq. (46) together with Eq.
(44) coincide with Schrodinger’s hydrodynamic equa-
tions. The terms inside the curly brackets of Eq. (46) can
therefore be interpreted as correction terms to the
Schrodinger equation.

In the new stochastic interpretation, quantum mechan-
ics (QM) is nothing else than a classical motion with a su-
perimposed stochastic jiggling motion with no friction
and with a speed distribution function f(v) independent
of external forces, hence of time (Zitterbewegung assump-
tion'?). It follows that the two coefficients D, and D,
given by Eqgs. (34) and (35) are constant and such have
been considered in deriving Eqgs. (44) and (46). The sim-
plest way to satisfy the Zitterbewegung assumption is to
take it as given by the Schrodinger solution of the Dirac
equation, which implies v =c¢ (where ¢ is the speed of
light), as particularly advocated by Barut.'® In this case,
Eq. (34) gives

D,=1lic . (47)

If we drop the terms contained in the large parentheses in
Eq. (46) we just get Schrodinger’s second hydrodynamic
equation if D,=#/m. By this value and Eq. (47), the
mean free path A turns out to be
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oL
a(9,p)

oL

% 3(9,¢)

+9, =0, (43)

with s =1,2,3. We obtain by Egs. (41) and (43)
9,p+V-(pVp)=0, (44)

which is the continuity equation expressing the conserva-
tion of the particles number. Setting the functional
derivative of A with respect to p equal to zero gives'’

L L ) oL
p  *|ddp) B\ 3(Bggp)
3 oL _
- ——— |=0, 45
Fay 3(Dyp,p) “3)

with «a,B,y=0,1,2,3 although [dL /3(34p)]=0 because
dgp=09,p does not appear in L given by Eq. (41). Notice
that second- and third-order derivatives are here included
because they appear in Eq. (38), which has to be inserted
in Eq. (41). This is the improvement with respect to Ref.
12, where only D, Vp is kept.

We obtain by Egs. (41) and (45)

§;[D4V(v2p>12+DZD4v2v2p

L10,0,v%0— 10,0, (Vo +D2vvp— L D2vp-wvi] |=0. w46
P 24 VP p 24 VP P p

I
k:i:
mc

6R, , (48)
where R, is the Compton radius.'” By this value we get
for D, as given by Eq. (35)

9 #
— 3, —
D4—%kc——lo eI

(49)

If we substitute Eqgs. (47), (48), and (49) in Eq. (46) and
apply Egs. (44) and (46) to the fundamental state of a hy-
drogen atom, we find that the corrective terms in D,D,
give contributions of the order a’=(e?/#c)? with
respect to those obtainable by the fundamental terms
[outside the large parentheses of Eq. (46)]. The terms in
Dj give relative corrections of order a*=(e?/%c)* and we
can therefore drop them out of Eq. (46).

As is well known, it is more convenient, from the
mathematical point of view, to solve a single complex
equation instead of the system of two coupled equations.
We have succeeded only in a partial way to obtain this
goal. Indeed by the position

Y=p'expligp/2D,) (50)

the following complex equation (where the D3 terms have
been dropped)
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y—o o

20
m4c2

#W” o,
] =—— +
i#0,¢ 2mV Y+my

%VW%+V2

has the imaginary coefficient equal to Eq. (44) and the
real part equal to Eq. (46).

Fortunately, the contribution coming from the terms
in p in Eq. 51 is usually small with respect to that com-
ing from the remanent part that is Schrodinger’s stan-
dard equation. The latter can therefore be solved in the
usual way for ¢, then p=1v/¢* is substituted in the
corrective terms (classical perturbation method) that act
as a small modification of the potential energy V per unit
mass. Then Eq. (51) is solved again. The procedure can
be repeated in an iterative way although, in usual cases,
the additional terms in p give contributions of the order
of the radiative corrections of quantum electrodynamics.
It is to be inquired whether the differences of the correc-
tions between the different modified atomic levels are
detectable.

Certainly, the differences between the results obtain-
able from Eq. (51) and from the Schrédinger equation
are very small in the case of stable states. The differences
can be much higher in the case of scattering, where the
corrective terms in V2V%p of Eq. (51) are strongly
enhanced when an electron passes very near either the
nucleus or another electron of the atom. The problem
could be similar to that of the flicker noise (or 1/w noise
because its power spectral density is inversely proportion-
al to the angular frequency ). Indeed the “convective
term,” which is usually of the order of 10™* compared to
the Johnson-Nyquist leading term, can in a particular
case become of the same order as the main term.?’ There
is therefore the hope that the application of Eq. (51) can
eliminate the 7% discrepancies between the experimental
and theoretical values of the rotational cross sections be-
tween free electrons and hydrogen molecules.?! The ro-
vibrational cross sections have a much higher threshold,
implying higher energies for the impinging electrons and
therefore closer approaches with consequent higher
V2V?p values. The corrective terms of Eq. (51) are there-
fore larger and, indeed, the discrepancies between the ex-
perimental values and those calculated by Schrodinger’s
usual equation are 50%. This standing problem has been
discussed in a joint paper?! of Crompton (an experimen-
talist in this field) and Morrison (a theorist). We leave the
formidable task of calculating the new values of the ro-
vibrational cross sections between free electrons and hy-
drogen molecules obtainable from Eq. (51), to future
work.

V. CONCLUSIONS

This paper has three achievements. (1) An integral ex-
pansion is obtained for the probability density p(r,¢) in
the ordinary space. The expansion is valid for a very
wide class of p functions even noncontinuous and with
large gradients, provided they are Fourier transformable.

1o
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p
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Under the conditions (i) continuous p functions and (ii)
Vp small or, if large, only around the considered point r,
the integral expansion reduces to the usual density-
gradient expansion whose field of validity is therefore
well clarified.

(2) The extension of both expansions (integral and
differential) to non-Markovian stochastic processes, i.e.,
to the processes whose stochastic environment has a
memory. These are different from the Markovian nonhy-
drodynamic regime in which the electrons have a
memory (for instance before reaching equilibrium with
the external field) but the stochastic environment (mole-
cules of the gas) is rigorously steady state and without
any memory. This is reflected in the power spectral den-
sities which are “colored” in non-Markovian processes
and “white” (i.e., frequency independent below an upper
cutoff) in the Markovian process.

(3) The application of the gradient expansion to the
stochastic process with inertia, that is substantially
equivalent to quantum electrodynamics (QED) and even
forsees new phenomena, as the origin of the high-energy
tail of the cosmic rays?? and the appearance of a friction
in vacuo starting®® from a high-energy threshold which,
for a hydrogen atom, is 10'* V.

The gradient expansion can also be found by a Taylor
expansion of the probability density p(r,#) when one cal-
culates the net diffusion flow in a spherical cell having a
radius equal to the mean free path A of the equivalent
random walk. In a process with inertia, the net diffusion
flow is remembered in the nearest-neighbor cell, where it
is added to the average velocity of the preceding cell (be-
cause of all its preceding history). There is therefore an
ensemble averaged-dispersion velocity with respect to the
center of mass of the two adjacent cells. The correspond-
ing kinetic energy U, is remembered in a process with in-
ertia (whereas it decays very quickly in a Markovian pro-
cess) and is to be added to the kinetic energy of the center
of mass (with the whole mass). The corresponding hydro-
dynamic equations derivable by a standard variational
principle are those of Schrodinger if only two terms of
the Taylor expansion are kept. Four terms are kept in
this paper so that Eq. (51) is obtained, which is equivalent
to the two hydrodynamic equations (44) and (46) and is
more refined than Schréodinger equation.

The correction terms (with respect to the values ob-
tainable from the Schrodinger equation) are of order a?
(where a is the fine structure constant) for stable states.
The correction terms should be greater for scattering
problems and in particular when inelastic ro-vibrational
cross sections are calculated. It is known?! that there are
unexplainable differences for these cross sections between
the experimental and theoretical values. There is there-
fore the hope that our correction terms may explain the
differences and we leave the difficult task of calculating
them by our Eq. (51) to future workers.
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