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We formulate the quasielastic response of a nonrelativistic many-body system at zero temperature
in terms of ground-state density-matrix elements and real-time path integrals that embody the final-
state interactions. While the former provide the weight for a conventional Monte Carlo calculation,
the latter require a more sophisticated treatment. We argue that the stationary-phase Monte Carlo
technique recently developed by Doll et al. can be used to study the approach to “Y scaling.” We
perform calculations for a particle in a potential well in one and three dimensions and compare
them with the exact results available for these models.

I. INTRODUCTION

Inelastic scattering is a very useful experimental tool in
many-body physics. This is because, in Born approxima-
tion, the inelastic cross section is proportional to the dy-
namic structure factor (or dynamic response) of the
many-body system, S(q,w). Different probes (e.g., elec-
trons, neutrons, x rays) can be used to study a variety of
systems, from solids to liquids, from atoms to nucleons.
A suitable choice of energy and momentum transfers wq
allows the experimenter to focus on one of several
different aspects of the many-body system, such as collec-
tive modes or single-particle properties.

This paper deals with quasielastic (QE) scattering,
which involves energy and momentum transfers much
higher than the characteristic scale of the collective
modes. QE scattering can be viewed as a two-body col-
lision between the probe and one of the constituents of
the many-body system. Many-body effects come into
play because the initial momentum of the struck constitu-
ent is determined by a probability n (k) (the one-body
momentum distribution) and because the struck particle
can interact with the other particles during its recoil
(final-state interaction).

At high momentum transfers, if the recoil kinetic ener-
gy can be assumed to be much larger than the interparti-
cle potential, final-state interactions (FSI’s) are expected
to become negligible, thus making QE scattering an
effective means of probing the single-particle momentum
distribution of the many-body system. This assumption
is called the impulse approximation (IA) and leads to the
phenomenon of Y scaling;' i.e., the fact that ¢S(q,)
depends solely upon the  “scaling”  variable
Y=Mw/q —q /2, M being the mass of the struck parti-
cle, and not separately upon ¢ and » (we assume nonrela-
tivistic kinematics throughout). Remarkably, in the IA,
the momentum distribution n (k) can be extracted from
the QE cross section in a completely model-independent
fashion. This fact is of obvious interest to the theorist.
Fundamental ideas such as Bose condensation in liquid
*He can be tested,? and our ability to calculate equilibri-
um properties of many-body systems can be checked, to-
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gether with our knowledge of the interaction potential
between the constituents. For example, powerful compu-
tational techniques, such as Green’s function Monte Car-
lo® or path-integral Monte Carlo* (PIMC), have been
used to calculate the ground state of quantum liquids.
The situation in nuclear physics is less satisfactory, as the
short-range behavior of the internucleon force is still not
understood completely.

What do we learn from the abundant experimental
data available for both quantum liquids® and atomic nu-
clei?® Unfortunately, the connection between data and
theory is less straightforward than the naive IA suggests.
Indeed, interatomic forces (and nuclear forces to a lesser
extent) are characterized by a short-range, highly repul-
sive component—almost a hard core—which under-
mines the picture of free particle recoil.’” Consider a par-
ticle initially sitting in the long-range, weakly attractive
potential well because of its neighbors. After being
struck by the probe, it will recoil with high momentum
(i.e., essentially free) until it bounces from the ‘hard
wall” presented by one of its neighbors’ short-range
repulsive potential. This will happen even at high recoil
momenta. Furthermore, in real experiments, only a finite
range of momentum transfers is available, and it may well
be that even the long-range attractive part of the poten-
tial has to be taken into account in trying to unravel the
effects of the FSI’s.

This problem is particularly severe in nuclear physics.
Here QE scattering is limited to the region of negative Y,
where the energy transfer is low enough that inelastic
processes (such as A-resonance excitation) are unimpor-
tant. Therefore, the nuclear recoil energy is at best about
ten times its binding energy. For comparison, momen-
tum transfers as high as 24 A ! have been achieved in
QE scattering from liquid *He, yielding typical recoil en-
ergies about 100 times the binding energy. One can ob-
serve significant differences between the response at such
high momentum transfers and that at lower ones (e.g.,
q=17 A7Y, corresponding to those available in nuclear
physics experiments.

Several calculations of FSI’s have been performed for
both neutron scattering from quantum liquids and elec-
tron scattering from nuclei. The first appeared in the
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work of Hohenberg and Platzman? (HP) on QE neutron
scattering and the IA for liquid “He and was based on the
following simple considerations. The response at high g
is dominated by the pole at the single-particle recoil ener-
gy, E,=w+Y?/2M. The effect of collisions during the
recoil results in a mean free path, or lifetime, of the
recoiling particle, which gives the energy E, an imagi-
nary part. This shows up as a broadening of the QE
peak. In this ansatz, the effect of FSI's can be accounted
for by convolving the IA structure factor with a
Lorentzian broadening function. More relevant to the
present work is the calculation by Gersch et al.,’ who
were able to expand the structure factor as a sum of in-
tegrals of many-body correlation functions, the expansion
parameter being the inverse of the momentum transfer g.
At g — o, the response is given by the lowest-order term,
which they found to be exactly the IA. In this way they
could calculate not only the broadening of the QE peak,
but also its shift toward lower Y due to FSI’s at finite q.
However, their theory is not applicable to strong two-
body interactions. The reason can be understood qualita-
tively for hard-core (HC) interactions, where the scatter-
ing amplitude, which can be regarded as a renormalized
potential, grows linearly with ¢q. Therefore, O(V /q)
corrections to the IA cannot be expected to vanish at
high g. Indeed, as shown by Weinstein and Negele’ with
a perturbative calculation of the HC Bose gas, although
Y scaling is still observed asymptotically, the scaling
function is not related in an obvious way to the momen-
tum distribution. The persistence of correlation effects in
the infinite-g limit is also a feature of Silver’s theory of
FSI's.! Like HP, he predicts a convolution form for the
QE response, but the broadening function he derives,
largely from semiclassical arguments, is not a Lorentzian.
This theory is in excellent agreement with neutron-
scattering data from liquid *He; it is expected to be suc-
cessful at very high momentum transfers, which have
been attained in neutron scattering, but its relevance to
QE electron scattering is not clear.'!

This brief (and by no means exhaustive) review of
theories of FSI’s indicates that they generally suffer from
one or more of the following limitations: low-order trun-
cation of the perturbation expansion, inconsistent treat-
ment of the static (ground-state) and dynamic (final-state)
properties, and unrealistic (e.g., pure hard-core) poten-
tials. Therefore, it would be desirable to develop a first-
principles calculation of the dynamic response given a
realistic potential to provide a link between the observed
quasielastic cross sections and the inferred momentum
distributions.

In view of the success of stochastic methods'? in calcu-
lating many-body equilibrium properties, such as
ground-state wave functions and static correlation func-
tions, it is natural to ask whether analogous methods can
be applied to the calculation of a dynamic property such
as the QE response. An important ingredient in the suc-
cess of these static calculations is a well-chosen trial func-
tion embodying much of the physics. Fortunately, for
the QE response, the IA can provide an analogous
zeroth-order approximation to guide the calculation. Al-
though there are no conceptual obstacles toward this end,
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there is an as yet insurmounted practical difficulty when
one tries to develop a stochastic method to perform
quantum-dynamics calculations. The evaluation of a
static property can be reduced to averaging an observable
over a sampling weight function in a rather straightfor-
ward way, at least for Bose systems. For instance, matrix
elements of the imaginary time evolution operator pro-
vide such a weight in the PIMC method. Quantum dy-
namics, on the other hand, requires that the evolution
operator matrix elements be evaluated in real time. This
turns Boltzmann-like factors into oscillatory exponen-
tials, for which stochastic sampling methods have long
looked hopeless. Recently, however, Doll, Freeman, and
co-workers'*”!° have devised a new technique, the
stationary-phase Monte Carlo (SPMC) method, to evalu-
ate oscillatory integrals by sampling the integrand more
densely near the points of constructive interference.

Although SPMC is still far from being a general pur-
pose quantum-dynamics technique, it is a good candidate
for a first-principles nonrelativistic calculation of the QE
response, formulated in terms of path integrals. Our
reasoning is as follows: The problems introduced by the
evaluation of path integrals in real time become obviously
less and less severe the shorter the time scale involved, as
long as the potential remains finite. An estimate of the
important time scale in QE scattering is given by the ra-
tio of the characteristic length scale of the problem, set
by the equilibrium density matrix, to the velocity of the
recoiling particle, determined by the momentum transfer
q. Thus only short times are important at high-
momentum transfers and one legitimately expects the
SPMC method to give a satisfactory answer. This is the
same argument that led Gersch et al. to develop a 1/gq
expansion for the FSI.°

There are two goals for this paper. First, we develop a
formulation of the QE response in which the IA is multi-
plicatively corrected by a real-time path integral between
two ground-state configurations of the many-body sys-
tem. We propose to evaluate the path integral, which
embodies the FSI, by the SPMC method. Second, we test
the principle of this method by applying it to a one-body
system in an external potential well. This problem is ex-
actly soluble in one dimension and easily treated numeri-
cally in three dimensions. We limit our treatment here to
finite interactions; strong (e.g., hard-core) potentials re-
quire a further treatment, which will be given elsewhere.

Our paper is organized as follows: In Sec. II we set up
the QE response formalism and derive the path-integral
formulation, which allows us to establish Y scaling. In
Sec. IIT we review the SPMC technique and develop it in
a way that is best suited to our problem. In Sec. IV we
present our numerical methods and results, both for the
Monte Carlo (MC) and for the exact calculations, and we
also compare the SPMC method to the stationary-phase
method when possible. Finally, our conclusions are given
in Sec. V.

II. PATH-INTEGRAL REPRESENTATION
OF THE QE RESPONSE

Consider a system of N particles interacting via a finite
two-body potential V' (which we assume to be spin and



41 QUASIELASTIC RESPONSE WITH A REAL-TIME PATH- . ..

isospin independent for simplicity) and an external probe,
interacting with the constituents of the system through a
potential v that is weak compared to V. We are interest-
ed in the rate of the inclusive process in which the probe
scatters from the system transferring momentum q and
energy w:

U(q,w)=27rlv(q)|2NS(q,w) .

The dynamic response, or structure factor, S(q,w), is
given

by the Fourier transform of the time-dependent density-
density correlation function:

S(q0)=5—~ [dre™(p_y(Dpg(0)) , (1)
where ( ) indicates the average over a statistical density
matrix describing the state of the target and the Heisen-
berg operators p,(0) and p_(7), respectively, inject
momentum q into the system at time O and remove it at
time ¢,

N
po)=2Z €

i=1

iq-r, (1)

We set 7i=1 throughout this paper.

It is convenient to split the response into two parts, ac-
cording to whether the particle absorbing momentum q is
or is not the same one to give it up after time . We thus
define the incoherent response

Q0 fdt ezw1<

and the coherent response

C(q’w)______fdtelwt<

iq~r,(t)eiq~r‘(0)> (2a)
b

iq-rl(t)eiq-rj(0)> (2b)

i#j
In the IA, as we discussed in Sec. I, FSI's are neglect-

ed, and one can write
|
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lql’(l) zqr(O)!
- BN

—i(qk +q2/2)t

=e ' lky, ... ky)

whereupon the incoherent response scales to a function of
the single variable Y=w/q —q /2 (we set the mass of the
constituents equal to 1):

dpp (p),

Sih(q )=
1alq o) .

where n(p) is the one-body momentum distribution.
Therefore, in the IA, the QE cross section can be calcu-
lated from the static properties of the ground state or
thermal ensemble of the many-body system. A similar
treatment of S° leads to an expression that falls off very
rapidly with g compared to S*. This happens because the
coherent response probes the ground-state density matrix
at momenta of order ¢ (typically much larger than Y).
Experimentally, one defines the functions

Fi(c)(q, Y)EqSi(C)(q,a))

and looks for scaling by considering the behavior of ¢S at
fixed Y as g increases. In the IA, one expects F* to vanish
at high g, while F' approaches the g-independent function

L yy=—L [
W=7 fmdppn(m, (3)

from which the momentum distribution can be obtained
simply by differentiating with respect to Y. However, siz-
able deviations from the IA are observed in real experi-
ments; to account for them properly, one must carry out
a more complete calculation of the dynamic response.

We start by inserting complete sets of position eigen-
states into Eq. (1):

gS(q,0)= [ dx dx'p(x,x")Qx",x) . 4)

Here x denotes the ensemble of all the particle coordi-
nates; these are n =N Xd in number for N particles in d
dimensions. p(x,x’) is the density-matrix element, and

’ — iwt 1| iHt —iHi iq~(x’ —x9)

Qx',x)= vl izjfdxo(x le xy ) (xole " |x )e ] (5a)
is the “response operator.” We now introduce path-integral representations of the propagators forward and backward
in time:

—i o e 1 |dxy
(xole Ht[x>=fx D[x , (1)]exp llfodr 3 12, —Vix,) ],
J (5b)
i x' 1 |dx_
! =D — - —Vix_ .
(x'|le™|xq) fXO [x_ ]expl tf > |22 (x_) ]

Consider the incoherent response first. For a finite interaction potential ¥, we expect that the main contribution to S
comes from the IA, Eq. (3) (in fact, this is a rigorous result'®). As discussed in Sec. I, this corresponds to consider a
free-particle recoil. Therefore, a good starting point will be to shift to new path-integration variables z_ (7) centered

around the path of the freely recoiling particle

x+(r)=z+(r>+<xo—x)§+x :
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[so that z, (0)=2z(#)=0], and to substitute x,—x(x +x')/2, thus obtaining

(5! )= at i, dxg : =X)L (x—=x)
Vixs0=g [ e [ e | e tia T i
2 2
0 . t dZ+ . t dz _
Xf0$z+$z,exp {lfodT 1 e =V, | jexp —,deT 1 - —V_ .

The subscript || denotes the coordinate of the recoiling particle along the momentum transfer vector q; we will use the
subscript 1 to indicate all the remaining n —1 coordinates (the ‘“‘spectators”). ¥V is the potential evaluated along the
paths x . (7). The first line of the preceding formula depicts a particle receiving momentum q at time zero, propagating
in a straight line between x and x, forward in time ¢, and then backward to x' after giving up momentum q. The path
integrals in the second line describe the quantum fluctuations around this classical picture, as well as the interactions
within the many-body system. The IA and the approach to scaling, however, are not yet evident. A few more algebraic
steps are needed, which again are suggested by the physics.

As we argued at the end of Sec. I, we expect shorter and shorter time scales to be relevant to QE scattering as the
momentum transfer grows larger and larger. In such a short time, the struck particle will propagate a finite distance
along the direction of its high-speed recoil (i.e., parallel to q), while the motion in the other directions ( and that of the
particles in the system) will tend to be frozen. Incidentally, we note that this picture isn’t justified in the presence of
strong interactions, when “billiard ball” collisions can take place. As we are dealing here with finite interactions, we
choose new sets of coordinates in line with our reasoning. We introduce velocities by defining x,=vt and explicitly
scale time by the inverse of the momentum transfer, 1 =(§—1)(x —x"),/q. Notice that now particles moving at finite
velocity will travel only distances ~1/q. The recoil velocity v, has to be proportional to g, so we set v, =(k+1)w/q.
Upon introducing these changes of variables, we arrive at

n—1
it _ 1 —1Y(x—x') deé —ik d Ul wix —x") 0 s, —-5_)
Q' (x ,x)—;e ”f 2 e §f WQ lf()i)é}.@é‘_e’ » (6a)
2
_ 1 dgi (x —x’)“ ~ 1 =~ ,
si~gf0do o | T (§—1)f0do Voz ERx,x0), (6b)

r

The argument of the potential will be written down ex-
plicitly later.

Equation (6) reveals that we have succeeded in separat-
ing the IA contribution from terms that are of order 1/q
or higher. Indeed, since we are considering finite two-
and body interactions, if we let ¢ — o, we easily recover the

where o =7/t is the scaled time,
Ezg/[(wlx -xl{”)/q]l/z ,

k=k/[(o]|x '—X'|1,)/9]1/2 )

VT IA, Eq. (3), as all integrals in Eq. (6a) become trivial,
2, =0V el yielding

Notice that &, %, and z.. are all suppressed as 1/Vg at
high g; i.e., at high-momentum transfers, the argument of
the potential becomes independent of the fluctuations
around the free-particle recoil. We emphasize that Eq.
(6), although derived largely from intuitive arguments, is
formally exact.

Before we discuss the result we have just derived, we
rewrite Eq. (6) using a Fourier representation of the
path,!” which makes the kinetic energy diagonal (i.e., lo-
cal) in the path coordinates. This will prove convenient
in the next sections, as well as for computational pur-

poses. Because the end points of the paths are fixed
[§+(0=0)=¢.(0=1)=0], we can write
‘/_ o
é‘i(a)=—ﬂ—2 ,,,Ezl ;nmisin(mv'ra) ,

so that the action becomes

= (x —x"),
_ 2 _ oz 1
2= 3 My /2= (&= 1) [do V. .

m=1

; 1 —iv(x—x),
Ql " = il
1alx’,x) Py e
It has long been known that the O(1/g) correction to
the IA can be written down in a rather straightforward
fashion. This is also easily derived from Eq. (6). We sim-
ply expand

8" Nx —x"), .

(x —x"),

. = 1
exp | —i p (é'—l)fodth

(x —x'),
~1+i—— [ldo V.
q 0 :

and evaluate the potential at the zeroth-order path in
1/q (z, =0), to obtain
i —1Y(x —

Ql(x',x)=——e

3ra g h(x —x"),(x —x)

x [ldo[Vix —(x =x")o)=V(x)]. (D
0
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Upon substituting Eq. (7) into Eq. (4), we recover Eq. (31)
of Ref. 9.

We turn now to the coherent response. We rewrite the
matrix elements of the density operator in Eq. (5) as fol-

iq(x, —‘x?):eiq%x/—x?)eiq%x, —xj)

Therefore, grouping the identical contributions from all
pairs, we obtain

qS‘(q,w)=(N—-l)fdx dx’p(x,x')eiq‘(x‘—xz)ﬂ"(x’,x) s
(8)

i.e.,, our discussion of the matrix elements Q(x’,x)
remains unchanged, the only difference being a “coher-
ence” factor multiplying the density matrix. This factor
is responsible for the rapid decay of the coherent
response at high g, where it measures the probability of
finding two particles with very high momenta in the equi-
librium density matrix of the system.

Now that we have set up the path-integral formalism
in a way that makes the approach to scaling quite trans-
parent, we are left with the problem of carrying out the
integrations. These are of two different kinds: Equations
(4) and (8) are the average of the response operator
Q(x’,x) weighted by the density-matrix elements p(x,x");
we expect standard MC techniques to be suitable for this
calculation. However, Eq. (6) is a high-dimensional oscil-
latory integral, which we propose to evaluate by the
SPMC method.

III. THE STATIONARY-PHASE
MONTE CARLO METHOD

We now summarize the principles of the SPMC
method. Many of the results reported in this section
were originally derived by Doll, Freeman, and co-
workers (DF), who were motivated by the need of calcu-
lating dynamic correlations at finite temperature,'? i.e.,

functions of the type
C p(t)=tr[exp(—BH) A exp(iHt)B
Xexp(—iHt)]/tr{exp(—BH)] .

This bears a strong resemblance to our problem, which
nonetheless is complicated by the fact that we work in
frequency space and, above all, that we formulate the
correlation function in a way [see Eq. (4)] that forces us
to work with integrals of pure phase factors. Thus, while
DF have studied extensively the model problem

fdx p(x)exp[if(x)]/fdx p(x), (9a)

where p(x) is a smooth probability distribution stemming
from the Boltzmann factor, we have to face integrals of
the type [see Eq. (6)]

[ dx explif(x)] . (9b)

In any case, the strategy is to follow DF’s basic idea: to
generate a weight for a MC calculation that samples the
integrand more densely in the regions where the phase in-
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terference is constructive, i.e., near the stationary points.
Let us consider the following one-dimensional (1D) exam-
ple, for which generalization to arbitrary dimension is
straightforward.

Starting from the identity

I= [ax et
=fdx e‘f"‘)fdy P(y)el/x=»=fx] (10)

where P(y) is a normalized ‘‘probability” function,
peaked around this origin, we write

D(x)= [dy P(p)eil/x—n=f0]
= [dy P(yle ™' ®=D,(x), a1n

whereupon

D(x)—D,(x)

— if (x)
1= [dx D (x)e D)

1+ (12)

This is convenient if the right-hand side (rhs) integral in
(11) can be done easgly.Z This is the case if P(y) is a
Gaussian, P(y)=e ¥ /%€ /(2me*)!/?, as we will assume
hereafter. The function

Dl(x)Ze—[sf’(x)]z/Z

is called the SPMC filter. If € is small enough, D,(x) is a
good approximation for D (x), and one can hope to be
able to evaluate the difference 6D(x)=D(x)—D,(x)
<< D(x) with a few-point MC calculation.

The integral (12) has the pleasant feature that the func-
tion D,(x) now provides a good weight for a stochastic

evaluation of I:
>D](x) ’ (13)

I =./V<e if (x)
where /= [dx D,(x) denotes the normalization of D,
and we use the notation ( - - - ) p, to denote average with

8D(x)
I
D,(x)

the weight function D,. This weight samples preferen-
tially around the stationary points of the original integral
(10) (where f' is small), helping to filter the signal from
the noise. An obvious complication is that one has to
normalize the sampling weight (i.e., calculate N). This is
in general much harder at zero temperature [see Eq. (9b)]
than it is at finite temperature [Eq. (9a)], where one can
cautiously seek help in the identity

I=<eif(x) 8D (x)

D,(x)

Fortunately, in the application of (13) to our problem, we
need not worry about the normalization of the weight,
which turns out to be straightforward, as we will see.

Instead, a more serious problem is encountered in ap-
plying this method to evaluating a real-time path integral
such as that given in Eq. (6). Indeed, the main contribu-
tion to the phase (i.e., to the action) comes from the ki-
netic energy, which is a quadratic form in the integration
variables. Let us consider the trivial integral

1+

>D,(x)p(x)<D1(X)>p<x) .
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I=[dx ¢™”/2 (this integral has also been considered by
DF,"® though still in the context of “finite tempera-
tures”). The SPMC filter is a Gaussian, e ~€* /2, decay-
ing too slowly to filter the noise coming from the oscilla-
tions of the integral. However, quadratic phases offer the
advantage that the function D (x) can be evaluated exact-
ly:

2 2
D(x)=(1—ie) V2exp |- ——X
P 1+¢* 2
4 2
. € b
X exp —11+64—§— (14)

Now, since 8D(x)=0, € can be chosen arbitrarily, and
the integral becomes

1 1
I=——— [dxexp |im———
\/l—iezf P 0+ ey
2 2
€
XCX — .
P17 72 (+eh

The second exponential provides the weight for a MC
calculation of the oscillatory integral. Furthermore, a
good choice for € (€ > 1) will suppress the oscillations, as
the phase has acquired a factor 1/(1+¢€*.

If the phase in I is of the type f(x)=[x2/2—V(x)],
we simply replace x in Eq. (14) by x — V’(x), thus obtain-
ing an approximation for D (x),D,(x) that is correct up
to terms O (V"'):

e [x—V'(x)]
1+¢ 2

Dy(x)=(1—i€e*)"%exp

e [x—V'(x)]
1+¢€ 2

Xexp | —i (15)

In this case, however, the choice of € is less obvious than
for a quadratic phase. One has to compromise between
high values of €, which dramatically improve the signal-
to-noise ratio but make a MC calculation of 8D =D — D,
impractical, and low values of €, which yield the correct
result but with extremely large variance. We shall be
content with choosing e~ 1 and ignoring 8D.!° We ob-
serve that 6D ~O(V"') and thus expect it to be reason-
ably small because we are working with finite, smooth po-
tentials; this can be checked by estimating 8D with
Gaussian approximations.

In this way we can write

D,(x)

w(x)

I=I,= [dxw(x) exp[if(x)]/fdx wix),

(16)

and the only problem left is the choice of the normalized
weight w(x) to be used in the MC evaluation of I,. For
this, we propose to take the normalized probability distri-

bution

Once again, we expect this choice to be appropriate

12
€ x?

1+e47

4
277(1+26)
€

w(x)=exp (17)
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whenever the phase is largely a quadratic function of the
coordinates.

Finally, we would like to point out that the method we
have presented is similar to the stationary-phase approxi-
mation because it is not exact (if we ignore 8D), but it re-
lies on the “smoothness” of the potential. However, its
application is much more straightforward, since it re-
quires neither evaluation of determinants nor searches for
stationary points, which may become prohibitive for
high-dimensional integrals.

IV. NUMERICAL METHODS AND RESULTS

In the preceding sections we have derived an exact ex-
pression for the dynamic response of a nonrelativistic
many-body system. We have used a path-integral repre-
sentation of the time evolution operator and have chosen
a reference path as suggested by the physics of the prob-
lem we want to address, namely, the approach to scaling.
Indeed, we were able to derive, in a straightforward way,
the scaling form of the structure factor at high-
momentum transfers and the O(1/q) correction to scal-
ing; both expressions are well known and have been de-
rived by different means by other authors.

In view of the generality of the path-integral method,
one expects it to be of some help in those cases in which
the nature of the interactions or the experimental data
available requires more than simple perturbative expan-
sions. However, while there exist well-established tech-
niques for computing with path integrals in imaginary
time, only recently have people turned to dynamics prob-
lems requiring the evaluation of path integrals in real
time.”” We have seen that the SPMC method offers some
promise, especially when the relevant time scales in the
problem are small; however, more work is clearly needed
in that direction. In fact, not only do we lack a general
technique, but we are not even aware of any attempt
made at solving realistic problems.?!

Therefore, we set out to solve model problems, for
which an exact solution is available either analytically or
by numerical quadrature. We calculate the dynamic
response for a particle in a potential well in one and three
dimensions. As we simply want to test the principles of
our method, we choose a finite attractive well
V(r)=—V,cosh™%(r). Such a potential lacks an impor-
tant feature, displayed by atomic and nuclear potentials,
namely, a strong short-distance repulsive component.
We shall address this problem in the following. In the
meanwhile, we shall make contact with physical situa-
tions when appropriate.

We are now ready to look at the details of the compu-
tation. The eigenstates of the potential are known analyt-
ically in 1D,?? while they are easily calculable numerical-
ly in 3D.2 Thus, from the ground-state wave function
¥y, we obtain the density matrix p(x,x’)=¢y(x)dy(x").
Hence, using the Metropolis algorithm, we can generate
the ground-state configurations needed to do the integrals
in Eq. (4).

Next we consider Eq. (6). The path integrals are car-
ried out as usual, by keeping a finite number of modes in
the Fourier representation of the paths and discretizing
commensurately the time integrals of the potential:
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M M+1
exp |isgn(t) 3 (9,)2/2—it/M+1) 3 V;
m=1 j=1
M M+1
—isgn(t) 3 (9,,)2/2+it/M+1) 3 V_;
m=1 j=1

where =&, +;=0. M modes are needed for M +1 time slices; m numbers the modes, and j the time slices. Other-
wise, the notation is that used in Sec. II. We write down the argument of the potential explicitly, for the 3D case,

V= V{zfr({n+})+[(a)/q2)(x -x')“(R—H)(g—l)——(x =x"),/2]oq +x—(x—x"),0/2+v (x ——x’)"/q(§~l)o} ,
V_=Viz; ({n D+[0/¢))x —x)&+1E=D+(x —x')/2]0§ +x+(x—x) 0 /2+v,(x —x') /g(E—1)o] ,

with § =q/q, z=§\/’t|, and § and 7 are related by a sine
transform.

These expressions, together with the «,§ integrals, re-
sult in a (6M +2)-dimensional oscillatory integral, whose
phase reduces to a quadratic form as t —0. We treat it
by SPMC, as explained in Sec. III. To make the
correspondence with the formulas derived in that section
more straightforward, we chose to use a Fourier repre-
sentation of the path. As for the choice of the SPMC pa-
rameter €, we have used different values for the integrals
over the “light-cone” variables «,£ than for the path in-
tegral. We will denote these using €; and €,, respectively.

A different treatment is required by carrying out the
integral over the transverse velocities v,, which arises
whenever there is more than one particle in the system or
the spatial dimension is greater than 1. The t —0 limit of
the phase is linear in v: This indicates that the SPMC
method is not suitable for this case. However, in the
same limit, the integral yields a 6 function in the trans-
verse coordinates of the density matrix. This suggests
that a good way of proceeding is to expand the potential
through second order in v, and do the resulting Gaussian
integral analytically, thus obtaining a quadratic phase in
(x—x'),. Note that, in doing so, we are neglecting terms
of order 1/g* in the phase; therefore, we expect the re-
sulting approximation to be very accurate.

At this stage we have gained some insight in the calcu-
lation. Only very small values of (x —x'), contribute con-
structively to the integral, ie., [(x—x') | <<(x —x').
This means that it would be inefficient to generate x,x’
from the density matrix, which is isotropic. Instead, we
take advantage of the new quadratic phase in (x—x'),
and generate values of (x—x’); by SPMC, obtaining a
narrow Gaussian distribution around zero at high gq. The
density matrix is used to generate (x+x') as well as
(x —x'), via the metropolis algorithm. It is amusing to
note that the normalization of this weight is now
2mqSis (Y =0).

We have calculated the QE response for a particle in
the 1D well, ¥ (x)=0.8 cosh "%(x), and in the 3D spheri-
cal well, V(r)=21cosh %(r). The potential sets the
length scale, and hence the momentum scale. The
ground-state energies are, respectively, E,= —0.36 and
—12.5. For any given Y, the requirement that the struck
particle be excited to the continuum (i.e., that 0 > —E)
fixes a minimum value for the momentum transfer:

-
q>qy=—Y+(Y?—2E;)'"*.

The time scale of the problem is set by the ratio
(lx —x'|},/g. If the product of this number and the
average value of the potential is smaller than 1, one can
regard the time scale as “small,” and the intuitive argu-
ments at the end of Sec. I apply. However, as the product
approaches 1, we expect the SPMC method, as formulat-
ed in the present paper, to break down. This will clearly
happen for very strong potentials at any g and for weak
potentials near g ~g,. For our potentials, this happens
around ¢ <2 in 1D and ¢ <10 in 3D. For nuclear in-
teractions, considering the attractive part of the potential
only, one estimates that SPMC breaks down at momen-
tum transfers smaller than 1 GeV/c.

For the particle in one dimension, we have calculated
the QE response at fixed Y =—0.5 for all the allowed
values of g. In Fig. 1 we plot Fi(q,Y) versus g and com-
pare it to the exact result (solid line) as well as to the IA
[Eq. (3)], which is a constant. We have also performed
the real-time integrals (6) by the stationary-phase (SP)
method?* and plot the results for comparison. The time
integrals were carried out on a 16-point grid (i.e., we keep
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FIG. 1. F(q,Y) as a function of g at fixed Y =—0.5 for a
particle in the 1D potential well ¥(x)=—0.8cosh " 2x. In our
units, #i=m =1. The ground-state energy is E,= —0.37; the
minimum allowed momentum transfer is go=1.5. Here and in
the remaining figures we plot o error bars.
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FIG. 2. F(g—3,Y=—0.5) as a function of the SPMC pa-
rameter €2 (¢,=1). The potential is the same as in Fig. 1.

15 Fourier modes). The SPMC parameters were chosen
to be ;=1 and €, =2. We have checked the € depen-
dence of the results by calculating at different €, and €.
In Fig. 2 we plot the scaled response F(g =3, Y =—0.5)
with €, =1 for different values of €,. We can see how the
statistical errors decrease dramatically moving up from
€,=1. At higher values (i.e., €, =2.5), a systematic error
sets in that should be attributed to the fact that we are ig-
noring the correction 8D in our calculation.

Next we present results for the particle in the 3D po-
tential well. In Fig. 3 we plot F'(q,Y) at fixed ¢ =10 as a
function of Y. We kept 15 Fourier modes and checked
for convergence with 23 modes at Y =—0.5. The dimen-
sion of the oscillatory integral, in this case, was 140. The
SPMC parameters were chosen to be €,=1 and €, =2.2.
We notice that the peak of the curve is shifted towards
negative Y, with respect to the IA. It is known that this

0.25 @ ° q=10

020 —

F(q.Y)

0.10 P o —

0.05

000 —

FIG. 3. F(q,Y) as a function of Y at fixed ¢ =10 for a parti-
cle in the 3D spherical well ¥ (r)=—21cosh™?r. The ground-
state energy is Ey= —12.5. The scaling limit (which for our po-
tential coincides with the IA) is reached at about ¢ =40, within
our error bars (see also Fig. 5).
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FIG. 4. Contributions O(1/¢?% and higher to F(g,Y) as a
function of Y at fixed ¢ =10 (same potential as Fig. 3). The ¢
dependence was eliminated in lowest order by subtracting the
IA and the O(1/q) contribution [see Eq. (7)] and multiplying
through by ¢2=100.

is the case when we are dealing with smooth, attractive
interactions, because the deviations from the IA are best
described by the O(1/q) correction [Eq. (7)], which is
odd in Y. Exact calculations show that the coherent
response,”> F€(q,Y), is suppressed by about a factor
102~ 10° with respect to Fi(g, Y), which makes it impossi-
ble to carry out a meaningful SPMC calculation, given
our error bars.

In Fig. 4 we plot the difference between the scaled
response function F(q,Y) and its value through order
1/q, which can be calculated reliably (i.e., without the
complications introduced by the real-time dynamics) us-
ing Eq. (7). It is no surprise that this quantity is very
small. Indeed, as we pointed out before, Eq. (7) works re-
markably well for smooth interactions. The results are
multiplied by ¢?=100, since they are expected to be
o(1/¢%.

In Fig. 5 we plot F(q,Y) at fixed Y =—1.5. Again we

F(q.Y=-1.5)

FIG. 5. F(q,Y) as a function of g at fixed Y = —1.5. The po-
tential is the same as in Fig. 3. The minimum allowed momen-
tum transfer is g, =6.72.
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performed the calculation with 15 modes and checked
the result at ¢ =15 with 23 modes. The SPMC parame-
ters are the same as those we chose for Fig. 3. We can
see that the SPMC gives a satisfactory answer down to
g ~10. Below that, the errors become large. The reason
is that we are not including the derivatives of the poten-
tial in our sampling weight [i.e., our weight is given by
Eq. (7) instead of Eq. (15)]; this works satisfactorily at
high g, because the derivatives of the potential are all
suppressed by 1/V'q. The lowest g for which we calcu-
late, ¢ =7, is very close to the lowest allowed momentum
transfer g, =6.72. We also point out that, although the
strength of the potential ¥, is much smaller in the 1D
case than in three dimensions, the SPMC method in the
latter case breaks down at relatively much lower values of
g; we attribute this to the role played by the centrifugal
force in three dimensions.
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V. CONCLUSIONS

We have discussed the QE response of a nonrelativistic
many-body system in the high-momentum transfer limit.
We have formulated the response in a way that separates
the final-state (dynamic) properties from those of the ini-
tial state (static). This has allowed us to establish Y scal-
ing for finite many-body interactions, where the short-
time propagator tends to the free propagator as t —0.

We were able to recover the simple expression of the
0O(1/q) scaling violations first obtained by Gersch et al.
using a different approach. Although Gersch’s theory is
not suitable for calculations involving strong interactions,
the path-integral method clearly suggests how to proceed
in this case. Indeed, we recall that the potential was ex-
plicitly introduced in Eq. (5b), but one need not do so.
Instead, the propagators in Eq. (5a) can be rewritten ex-
actly as a convolution of short-time propagators:

(x’lef’H'|x>:fdx1 cdxy_ ((x'le THUN x ) oo (xyyle THIN )

If N is chosen large enough that in the time interval ¢t /N
only binary interactions are important, then the short-
time propagators can be written as products of two-body
terms, which are the Fourier transform of the two-body
Green’s function for the strong potential. These can be
renormalized in a number of ways (e.g., summing ladder
diagrams) to yield a well-behaved result, whence a
smooth time-dependent effective potential can be derived
in a straightforward way. We leave this subject to be tak-
en up in future work.

In this paper we have considered finite interactions.
We have argued that the SPMC technique can be used to
evaluate path integrals in real time, provided that the im-
portant time scale is not too large. This is the case when
one is interested in the QE response near the scaling lim-
it. We have shown that an appropriate choice of the
reference path allows us to extract the IA in a trivial way.
We emphasize that the O (1/q) corrections to the IA are
not built in our formulation explicitly, so that the agree-
ment between SPMC and exact result beyond the IA is to

[

be taken as a confirmation that the technique is suitable
for the real-time dynamics calculations we are interested
in. Of course, if we only needed to deal with weak poten-
tials, we would not regard the SPMC method as very
practical because in that case Eq. (7) would be an excel-
lent approximation to the exact result (as we showed in
Sec. IV). Our hope is that the path-integral method,
combined with SPMC, can be extended to treat strong in-
teractions in the way we have outlined. If this proves
possible, the results will be of great relevance to many
physical situations that are accessible to experiments.
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