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A real-space renormalization-group (RSRG) approach and numerical calculations are applied in

order to study the specific heat of (C6H&lNH3)CuBr3 and (C6H»NH3)CuC13, which are built up of
the ferromagnetic spin-

~
quantum chains and are described by anisotropic Heisenberg models. As

to the RSRG approach, our previous zero-field easy-plane calculations are extended to the XYZ
model in the presence of a magnetic field, and qualitative agreement with experiment is found, espe-

cially in the appearance of the soliton peaks in the in-plane excess specific heat. Imposing free

boundary conditions, the finite-size numerical results are applied to chains with length N 12 and

extrapolated for 1/N~O. Good convergence for most temperatures is found, and agreement with

experiment is concluded.

I. INTRODUCTION

H = —2g (J"s"sj"+) +J~sfs~+ ) +J's 's '+ ) )
—gp~ B.gs

J J

In this paper an external field wi11 be taken into account
only for CHAB (g =2.01).

As is well known, the low-temperature thermodynamic
properties of one-dimensional systems are strongly
affected by the presence of anisotropies. ' The absolute
values of the anisotropies have been found from fer-
romagnetic resonance experiments which, combined
with specific-heat measurements, give for CHAB a 5%
easy-plane anisotropy with

J"/k =55.92, J /k =55.91, J'/k =53.18, (2)

all in K, whereas for the CHAC an orthorhombic anisot-
ropy with

J /k~ =45.52, J~/k~ =44.99, J'/k~ =44.49, (3)

also in K. Some uncertainty, however, still remains
about the values of the exchange parameters. On one
hand, recent experiments by inelastic neutron scattering

Quasi-one-dimensional magnetic systems have been the
subject of great interest in recent years. ' The best reali-
zations of these systems, for spin- —,

' ferromagnetic chains,
are (C6H»NH3)CuC13, and its bromine isomorph, abbre-
viated as CHAC and CHAB, respectively. These corn-
pounds are made of weakly coupled chains, the inter-
chain coupling J' being of three orders of magnitude
lower than the intrachain coupling. The interaction J' is
responsible for three-dimensional antiferromagnetic or-
dering below the transition temperature, which is
T, =2.21 K for CHAC and T, =1.50 K for CHAB. If
we neglect the interchain interaction, both compounds
are well represented, in presence of an external field B, by
the Hamiltonian:

gave J"/k~ =67+1 K for CHAB; on the other hand, new
specific-heat measurements at higher fields for CHAS
yielded the values in K

J"/k =J~/k =63, J'/k =60.25 (4)

with small anisotropy inside the easy (X-Y) plane neglect-
ed. Because we are interested in the specific heat, we as-
sume in this paper the values (4) for CHAB and (3) for
CHAC.

In the presence of the magnetic field applied within the
easy (XY) plane, the Hamiltonian for the CHAB can be
mapped onto a sine-Gordon Hamiltonian ' if one consid-
ers the limit of classical spins and large anisotropy and
the continuum limit. As a consequence, the specific heat
of the system has been investigated in terms of solitonlike
excitations, and a large amount of work has been done in
this direction, ' taking into account quantum effects
and out-of-plane fluctuations. However, until now, the
effect of the various approximations involved in the map-
ping of the original Hamiltonian onto the sine-Gordon
one is not clear For thi.s reason it is interesting to calcu-
late the specific heat of CHAB following different ap-
proaches, including some numerical techniques. The
specific heat of the model (1) with the parameters (2) has
been evaluated' by extrapolation of numerical results for
finite chains up to X =10 sites. The partition function of
the one-dimensional quantum system (1) has been
mapped onto the partition function of a classical two-
dimensional model via the Trotter-Suziki transformation
and has been evaluated by means of Monte Carlo or
transfer-matrix techniques. '

In the previous paper' we have obtained the specific
heat in zero field for an XXZ chain that is appropriate for
CHAB, via a real-space renormalization-group approach.
In this paper we consider a renormalization-group ap-
proach to an XYZ chain in an external field, which can
describe CHAB and CHAC simultaneously. This is the
subject of Sec. II, which also includes some zero-field nu-
merical results for CHAC.
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In Sec. III we present the results for the excess specific
heat of CHAS at higher fields obtained via finite-size cal-
culations for chains up to X =12 sites. Linear and para-
bolic extrapolations are performed to infinite chain. In
Sec. IV the results are discussed and some conclusions
are presented.

II. RENORMALIZATION-GROUP SCHEME

In the presence of a magnetic field applied along the x
direction (which lies in the easy plane for CHAB) the
Hamiltonian for XYZ chain can be written Ao= N'E—

o
—~ h OQS;", N'=N/3, (10)

M(o; )=a, , +o,2+cr, i ——,'[g,. ,(o, z. o,. q)+, 3(,.~, 2)

+o;2(o;3.o, , )] .

We divide the Hamiltonian into an intracell term %0,
which includes also the external field, and an intercell
term V. Next, we expand Eq. (7) in terms of V using the
Feynman expansion' up to the first order. However,
proceeding in the standard way, we obtain a zero-order
renormalized Hamiltonian of the form

PH=&= ,'g—g—K o, o, +, ,'—hg—o," .
j a J

(5)

Here a=—(x,y, z), oj stands for Pauli spin- —,
' operators,

and

P=l/kqT, K =PJ, h =PgPsB . (6)

exp[ —&'(S)]=Tr exp[ —&(o )]P(s,o ),
where P(S,o) is an appropriate weight operator. As be-
fore' ' we choose it in the form

P(S,o )=g —,'[1+—,'S; M(o; )],

Our renormalization scheme is based on the division of
the chain into cells of three sites; we attribute a (Pauli)
cell spin S; to each cell; then the renormalization trans-
formation, which preserves the free energy, is defined by

which is not a multiple of the unit operator. This fact is
due to the presence, inside the free cell Hamiltonian, of
the symmetry-breaking term associated with the external
field. As a consequence, the expansion should be made
with great care in order to take into account the noncom-
mutativity of the operators and to avoid the appearance
of non-Hermitian terms. First, we write

exp[ —2&']=Tr[exp( &)P]T—r[P exp( —%)] .

For simplicity in (11) we have omitted the indication of
the site and cell spins. Next we consider the renormal-
ized Hamiltonian as a sum of a zero-order term &0 and a
first-order term &'„and we expand both sides of (11) via
the Feynman formula up to the first order. The left-hand
side expansion gives

I —h' I I I

0

where i is a cell index, m =1,2, 3 denotes one of the three
sites of a cell, and whereas the right-hand side gives

(12)

C I' C
C/

Tr[exp( %)P]Tr[P exp—( A)]=—(Tre 'P )(TrPe ') — (Tre 'P) f dp Tr(Pe 'Ve 'e ')+H. c.
0

Equating zero-order and first-order terms we recover Eq. (10) and

(13)

C C C

f dve 'gfIe +H. c. = f dp Tr(Pe 'Ve 'e ')(Tre P) '+H. c.
0 0

(14)

Following this procedure Hermiticity is automatically
satisfied. We look for a solution of (14) in the form

terms we obtain in the standard way the dimensionless
free energy per spin

jf)= N'EI ——'hIQS—,
"—'ggK S; S;—+, .

i a
(15) y g(n) /n3

m=1
(17)

After a straightforward calculation we obtain solutions
for the parameters EI, h '„and K' . Adding up (10) and
(15) we obtain a renormalized Hamiltonian %', which
preserves the original form (5), a part from a constant
factor

N'E'
—,'h'gS, "——

—,'ggK—' S, S, +, .

Explicit expressions for the recursion relations that link
old and new parameters are given in the Appendix.

The renormalization process can be iterated. Let E'"'
be the constant that appears at the nth step of the renor-
malization procedure. Summing up all the constant

in terms of which the specific heat per site in units of kz
can be expressed by

C =P d f/dP (18)

We have presented in a previous paper' the zero-field
specific-heat results for CHAB, which shows easy-plane
anisotropy. It is of interest to compare the experimental
zero-field specific-heat data for CHAC with the results
obtained here for the XYZ-type system. Our
renormalization-group (RG) predictions are reported in
Fig. 1. They show good agreement with experimental
data for T & 7 K. The experimental peak present at low
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FIG. 1. Specific heat of CHAC in molar units. The experimental and renormalization-group results are denoted using solid and

dashed lines, respectively. Numerical results by extrapolation of finite chains (Sec. III) are shown by solid circles or by intercepts
when linear and parabolic extrapolations do not coincide.

temperature is associated with the three-dimensional or-
dering so that the peak obtained here at the first-order ex-

pansion is spurious. In Fig. 1, we present also numerical
results for CHAC obtained by extrapolation of finite
chains, which will be discussed in Sec. III.

Now we turn our attention to the XXZ-type system,

which is appropriate for CHAS. We have calculated the
specific heat as a function of temperature for different
values of the applied field. The excess specific heat
b, C(T,B)=C(T,B) C(T,O) a—s a function of T displays
a rnaximurn for any value of the field. A comparison is
made with the recent high-field experiments. The result
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FIG. 2. Excess specific heat for CHAB in molar units for 8=2 T. The experimental data are shown using solid points, the
renormalization-group results using the solid line.
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CI ac'

TABLE I. Extrapolated values of C(T,B) and hC(T, B) vs

the number of points n at the peak position T,„(B)=7.5 K for
B=1 T. The superscripts l and p refer to the linear and para-
bolic extrapolations, respectively.

TABLE III. Extrapolated values of C(T,B) and AC(T, B) vs

the number of points n at a temperature greater than the peak
position (T=15 K, B=1 T). The superscripts l and p denote
the estimates from the linear and parabolic extrapolations, re-
spectively.

2
3
4
5

6
7
8

9
10
11

1.8499
1.8388
1.8259
1.8061
1.7738
1.7389
1.7363
1.7692
1.7217
1.5312

0.6130
0.6008
0.5864
0.5698
0.5512
0.5302
0.5048
0.4714
0.4300
0.3809

1.9546
1.9481
1.9669
1.9996
1.9708
1.8156
1.6812
1.8298
1.9694

0.7283
0.7222
0.7115
0.6938
0.6715
0.6497
0.6262
0.5856
0.5209

2

3
4
5

6
7
8

9
10
11

C'

1.2857
1.2826
1.2788
1.2744
1.2701
1.2655
1.2516
1.2346
1.2810
1.2855

ac'
0.1547
0.1516
0.1480
0.1438
0.1389
0.1331
0.1263
0.1185
0.1088
0.0961

1.3151
1.3140
1.3120
1.3045
1.2974
1.3172
1.3111
1.1728
1.2528

0.1843
0.1823
0.1796
0.1760
0.1714
0.1650
0.1561
0.1457
0.1315

our results, let us comment on our extrapolation pro-
cedure.

In Tables I and II we show the dependence of the ex-
trapolated data on the number of points n and on the
type of extrapolation at the peak position T,„(B).
Linear (denoted by 1) and parabolic (denoted by p) extra-
polations in 1/N are carried out. The meaning of n is the
following: n =2 shows the estimates extrapolated from
the last two points N = 11 and 12; n = 3 shows the esti-
mates when 10(N 12, etc. If n =11, all the points
with 2 N ~ 12 are taken into account. The peak posi-
tions T,„(B)appear at about 7.5 and 12.5 K for B = 1 T
and B =3 T, respectively, so that the extrapolations in
the latter case are more reliable. At T=7.5 K (Table I),
the linear and parabolic extrapolations yield different es-
timates of C(7.5, 1) and bC(7. 5, 1). The relative values
C'/Ci' and hC'/b, C~ amount to 0.95 and 0.84 for the
first rows (n =2 for 1 and n =3 for p). If we consider only
one type of extrapolation and assume n (5, we obtain
uncertainty for C(hC) only on the third (second)
significant digit; this fact suggests that in this case we
have a better accuracy. Clearly, the quantity C is found
with a better accuracy than the excess b C. If we propose
to Table II ( T,„=12.5 K, B=3 T), the corresponding

ratios are 0.987 and 0.971, i.e., they are considerably im-
proved with respect to those found from Table I.

Convergence of extrapolations is systematically im-
proved with increasing temperatures. If we fix B =1 T,
the corresponding results for T= 15 K and T=63 K are
reported in Tables III and IV, respectively. Clearly, the
convergence in Table III is comparable to that in Table
II. However, proceeding to Table IV, the convergence is

remarkably improved. Practically, the estimates depend
neither on the type of extrapolation nor on the number of
points n. For this reason we assume the difference be-
tween the predictions of the linear and parabolic extrapo-
lations as the estimates of the error bars.

In Fig. 5 we present our results for the excess specific
heat. The experimental data on CHAB (Ref. 6) are
denoted by open circles, solid circles, and crosses for
B=1,2,3 T, respectively. Our estimates are represented
by the intercepts that join the points we find from linear
and parabolic extrapolations in I /N. If these intercepts
cannot be visualized, we mark our predictions by trian-
gles. We see that if the linear and parabolic extrapola-
tions approximately coincide (the triangles), they are
close to the experimental results even at low tempera-
tures. We illustrate our results for B =2 T only at higher

TABLE II. Extrapolated values of C(T,B) and hC(T, B) vs

the number of points n at the peak position T,„(B)= 12 K for
B=3 T. The superscripts l and p refer to the linear and para-
bolic extrapolations, respectively.

TABLE IV. Extrapolated values C( T,B) and hC( T,B) vs the
number of points n at high temperatures (T=63.0 K, B=1 T).
The linear (l) and parabolic (p) extrapolations are considered.

2
3
4
5

6
7
8
9

10
11

c'
2.2377
2.2340
2.2286
2.2215
2.2120
2.1941
2.1598
2.1374
2.1576
2.0494

aC'

1.0947
1.0911
1.0861
1.0788
1.0678
1.0520
1.0315
1.0021
0.9508
0.8717

2.2726
2.2783
2.2805
2.2812
2.2999
2.3300
2.2627
2.1349
2.2804

1.1283
1.1328
1.1384
1.1457
1.1501
1.1439
1.1339
1.1279
1.0814

2
3
4
5
6
7
8
9

10
11

1.077 410
1.077 410
1.077 408
1.077 407
1.077 403
1.077 396
1.077 382
1.077 353
1.077 438
1.074 157

aC'

0.003 251
0.003 250
0.003 249
0.003 247
0.003 244
0.003 237
0.003 223
0.003 196
0.003 141
0.003 032

1.077 411
1.077 419
1.077 422
1.077 428
1.077 436
1.077 451
1.077 471
1.077 233
1.081 267

0.003 256
0.003 258
0.003 262
0.003 268
0.003 277
0.003 290
0.003 307
0.003 323
0.003 308
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FIG. 5. Molar excess specific heat for CHAB. Open circles,
solid circles, and crosses denote experimental data for B=1,2,3
T, respectively. The intercepts join the estimates obtained from
linear and parabolic extrapolations. When extrapolations ap-
proximately coincide, the intercepts are substituted using trian-
gles.

temperatures in order to avoid the overlap of the inter-
cepts.

The results reported in Fig. 5 show an overall quantita-
tive agreement with the measurements of hC. In the re-
gion of higher temperatures the theoretical results fit the
experimental data from below. It is shown in Table III
that in this region both linear and parabolic extrapola-
tions have an upward tendency, so that we can consider
our results as a lower bound. Because of that increasing
tendency, it is likely that the results represented by the
top of the intercepts are more reliable than those
represented by the bottom.

We have also carried out zero-field specific-heat calcu-
lations with the parameters (3) appropriate for CHAC.
The parameters (3) have been found in ferromagnetic res-
onance experiments, and it is interesting to see whether
they fit the previous specific-heat measurements. The re-
sults of our numerical analysis with chains up to N =12
are reported in Fig. 1 using solid circles. In the low-
temperature region, where some uncertainty is present,
we report intercepts that join the estimates for the linear
and parabolic extrapolations. The uncertainty is of the
order 1% at T= 8 K and rapidly decreases with increas-
ing temperatures. Our results are rather accurate and
reproduce fairly well the experimental data, apart from
the height of the peak, which is largely determined by
three-dimensional ordering. We conclude that the pa-
rameters (3) fit our theoretical predictions of the specific
heat to the corresponding measurements. The present
numerical results yield also the proper reference to our
renormalization-group calculations.

IV. CONCLUDING REMARKS

In this paper we have presented two methods for the
calculations of the specific heat of quantum spin chains:
a real-space renormalization-group approach and a nu-
merical approach via extrapolation of results for finite
chains.

As for the renormalization-group approach, our zero-
field specific-heat data for the XYZ model (Fig. 1) reveal
qualitatively the experimental behavior of CHAC apart
from the low-temperature region. Moreover, extending
the calculations towards higher temperatures ( T & 15 K),
we recover our accurate numerical estimates. Surprising-
ly, at higher temperatures the agreement with the numer-
ical data (Fig. 1) is better than that found before for the
XXZ model. '

If the in-plane field is applied, the excess specific heat
of the easy-plane model shows the peak behavior (Figs.
2 —4), which is observed experimentally for the soliton-
bearing systems. ' '- Our predictions are consistent
with the appropriate measurements for CHAB. The
peaks in question appear in most of the theories, al-
though there are some exceptions.

There is an inherent deficiency of our RSRG treatment
that should be pointed out. If the external field is applied
along the x direction, the x-y symmetry of the zero-order
Hamiltonian is broken and the XXZ model is mapped by
the RG transformation onto the XYZ model. In order to
avoid this shortcoming, the external field can be put in
the easy plane along the diagonal with respect to the x
and y axis. The symmetry x-y is then preserved but the
renormalization procedure generates a proliferation term
of the type S;"S,+, +S, S,'+, . Taking into account the
proliferation term, we do not find any substantial
modification of the specific heat with respect to the re-
sults presented here in Sec. II.

Because of the symmetry of the Hamiltonian with
respect to the inversion of the chain exploited here, we
have extended the previous finite-size numerical calcula-
tions ' up to N =12 as well as we have compared them
with the zero-field specific-heat measurements for CHAC
(Ref. 2) and the high-field measurements for CHAB.
The quantitative agreement with experiment has been
found for most temperatures. An ambiguity appears at
very low temperatures due to uncertainties in the extra-
polations.

For CHAC, it is the first attempt to obtain reliable
theoretical confirmation of the parameters (3). At first
the specific-heat measurements were interpreted within
the easy-axis Heisenberg model by having recourse to the
existing theoretical data. ' Then the anisotropies have
been obtained from resonance experiments, whereas the
value of the coupling constant remains controversial.

It is of interest, especially at low temperatures, to im-
prove the extrapolation procedures, implementing, possi-
bly, the series analysis ideas. Some provisional Pade ap-
proximant estimates seem to be consistent with those ob-
tained here for the linear extrapolations. However, we
find again a nonsystematic improvement of the Pade es-
timates with increasing temperature so that the problem
deserves special attention and, possibly, an appropriate
modification of the boundary conditions.
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APPENDIX

We denote using ek and
~ lk & the eigenvalues and eigen-

vectors of the free cell Hamiltonian &0;. Then we use
the notations

a =
—,'ge ", b =

—,'ge "&II,IM"Ilk &,
k k

c=2ye '"
&l„l~",3II„&,

k

a =a/(a b), —b =b/(a —b ), d = —
—,
' ln[(a +b)/(a —b)],

1 1 1 1
m =— 1+ sinh4d, n =——1+ sinh4d

2 4d
'

2 4d

m =0';, m~= —ivy~, m =0', ,

q(x)=(e"—I)/x, N'=N/3,

'g~(e„e. ) & I„~a—~i. & «. ~N"~i„&,
k rn

kl
'g&v(e —e +e —e. )&l I~ I~ &&I INI'Iik&&I, ~~&~I„&&l„~N'~I, & .

m n

We can now give the recursion relations:

E'=
—,
' In(a —b )+ [(ac) 2abcR —"+b Q„"„"],

h'=in +2K"[—a bc +(a +b )cR'"—a bQ„"„'],
a+5

K"=K"(b c —2a bcR""+a Q"")

K'~= [g~ (ma nb )+Q;(m—b na )]K + — [Q;;( mb +—ng )+Q; (
—ma +nb )]K',

1 -2 -2 2 -2 -2 1

K"= [Q~~~(na —mb )+Q;(nb —ma )]K + [Q;;(—nb +ma 2)+QP~( na +m—b )]K' .yy -2 2 2 2 —2 1
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