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The ground state of a mobile vacancy in a square-lattice spin- I Heisenberg antiferromagnet de-

scribed by the t-J Hamiltonian is investigated numerically for an 18-site cluster. The ground state
has spin 1/2, and the bottom of the vacancy band is at momentum k ={+m/2, +m. /2}, for t/J &4,
which is consistent with the spin-wave perturbation theory. The structure of the spin configuration
in the vicinity of the vacancy is examined using a number of correlation functions. The latter reveal

the existence of a dipolar distortion of the staggered magnetization, as suggested by the semiclassi-

cal theory.

I. INTRODUCTION

This paper will discuss the properties of the ground
state of a single mobile vacancy (or "hole" ) in a quantum
antiferromagnet (AF) governed by the "t J"Hamilton-ian

(a)
12

H = t g (c„+„—c„+H. c. )+Jg s„+„s,, (1.1) 10
0
IS

where e, is the electron annihilation operator; s= —,'c ~c
is the spin; the sums are over all sites r on one sublattice
of the square lattice, all nearest-neighbor vectors IM, and
two spin states o.. All sites are either singly occupied or
empty, the latter representing the vacancies. To the ex-
tent that this model corresponds to the large on-site
repulsion limit of the Hubbard model, ' one expects the
hopping rate t to be large compared with the spin ex-
change J. It will however prove profitable to examine the
limit of small t/J as well.

The vacancy state has been investigated recently by a
number of authors ' both analytically and numerically.
Below, after reviewing brieAy the physics of the problem
in Sec. II we present the exact numerical analysis of the
ground state of a single vacancy in the 18-site [3X 3 on
each sublattice, see Fig. 1(a)] cluster with periodic bound-
ary conditions. An attempt is made to extract the depen-
dence of the lowest-lying state's energy on the wave vec-
tor and to understand the nature of the spin distortions
introduced by the mobile vacancy. In agreement with the
perturbation theory we find (Sec. III) that the bottom of
the vacancy band lies on the magnetic zone boundary and
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FIG. 1. {a) The 18-site cluster used here. The open circle
represents the vacancy. The periodic boundary conditions iden-

tify vectors (+3,+3) and zero. (b) Brillouin zone of the 18-site
cluster with six distinct wave numbers unrelated by symmetry.
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The nature of the coupling between the vacancy and
the spin degrees of freedom is most evident in the Ising
limit where only the diagonal part J,s,'+„s,' of the spin ex-
change term in Eq. (1.1) is kept. Consider the case of the
fully Neel-ordered spin background (which is clearly the
ground state in the absence of vacancies) compared with
saturated ferromagnetic order. It was observed by Brink-
man and Rice and Bulaevskii, Nagaev, and Khomskii
that while for the ferromagnet the vacancy behaves as a
free particle with the energy minimum Eo = —4t at k =0
and bandwidth AE=8t for the Neel antiferromagnet the
vacancy motion is hindered by the scrambling of the spin
order which is caused by hopping. This presents a non-
trivial many-body problem. It appears however that for
large (but not too large) t /J, the bulk of the vacancy ki-
netic energy is accounted for by the virtual excursions,
where the hole creates a "string" of overturned spins and
then retraces its path back. ' The length of the string
scales as (t/J, )' and the energy of the string state is ap-
proximately ' Eo = t2v'3+2 —7J, ~ t '~ . .This energy
has to be compared to the energy of a ferromagnetic po-
laron which is the state where the spin background is po-
larized ferromagnetically in a region with an area scaling
as (t/J, )' . While the latter is clearly favorable in the
Nagaoka' case J, /t =0, the crossover between these two
regimes appears to occur' only in the rather extreme'
limit J, /t (10 . Here we concentrate only on larger
values of J/t.

It is important to realize that the exact ground state of
Eq. (1.1) for one hole may be put into Bloch form because
the underlying Hamiltonian is translationally invariant.
Specifically, the state with total momentum k may be
written as

e'""P~(r, {o,} )lr, {o~})
r, Io I

where r is the hole location, which is summed over the
entire lattice and {o } denotes a complete set of spin
eigenstates at all sites pWr, which is also summed over.
The amplitudes P are, of course, translationally invariant:

(2.1a)

4k(r+I {~ + } ) 4k(r (2.1b)

Here we focus on the lowest-energy states at each

is located at the zone face' centers k =(+n /2, +m /2), at
least for t/J (4. As the main focus of the paper, in Sec.
IV we examine a number of spin correlation functions for
the ground state and conclude that the mobile vacancy
generates a transverse spin distortion with dipolar sym-

metry. This distortion can be interpreted semiclassically
as a "twist" in the direction of the staggered order pa-
rameter of the spin background leading to a dipolar
backflow of magnetization. Combined with the fact that'

the minimum energy state of the vacancy is at finite

momentum, this suggests an amusing analogy between
the AF vacancy state and the roton excitation of HeII.
The key results of this paper have been summarized in

Ref. 5 which also outlined the semiclassical analysis;
more detailed discussions of the latter can be found in

Ref. 16.

II. ASPECTS OF VACANCY DYNAMICS

momentum and refer to this set of ft, as the vacancy
band and their energies as E(k). In the presence of AF
order the Brillouin zone is reduced to the diamond
defined by its corners: (~,0), (O, m), ( rr—, O), (0, —m. ) as
shown on Fig. 1(b).

The string state where the vacancy always retraces its
path, as discussed above, is actually localized (the string
being associated with a particular site). Thus in the
string approximation the vacancy band E(k) is disper-
sionless. ' However, even in the Ising limit the vacancy
eigenstates have a finite bandwidth. ' This bandwidth
arises from the process where the hole hops around a pla-
quette 1 —,

' times, but it is always quite small (b,E « t ) and

the energy minimum remains at k =0.
Spin dynamics is the essential factor in determining the

effective mass (or bandwidth) of the vacancy, with the
dominant contribution arising from the spin-exchange
part of Eq. (1.1) —,

' J~(s„++„s„+s„+„s„+), left out in the Is-

ing limit. The limit t, J~ ((J, can be readily treated per-
turbatively. While this limit is not the regime we want,
the answer is illustrative of the band structure E(k) we
find in the limit J, =J,—O(t). This is, in fact, the first
instance where we see that the small-t limit of (1.1) is very
useful to examine even though Eq. (1.1) is then no longer
related to the Hubbard model.

Wave-vector dependence first enters the energy at or-
der t J~/J, The relevant process is the one where the
hole hops twice (t ), thereby remaining on the same sub-
lattice, and the two scrambled spins are returned to their
Neel state positions by the spin exchange (J~ ). There are
12 equivalent processes to consider and the energy to this
order is

8tE(k)=-
3J,

16t J~ 16t JJ+ (cosk„+cosk )
15 J2 15 J2

(2.2)
Hence the minimum energy moves from k =0 to the zone
boundary, which at this level of approximation is degen-
erate. The bandwidth is 0 (t J~ /J, ) which becomes t /J
in the isotropic limit J~ =J, .

Alternatively one can develop the t/J expansion for
the isotropic limit (J,=J~ =J) in the framework of the
Holstein-Primakoff spin-wave theory (see Appendix).
The results can be expressed approximately by a three-
parameter fit:

E(k) = — [0.54 —0. 10(cosk )
4t"
J V

+0.006(sin k +sin k )] . (2.3)

The degeneracy along the magnetic zone boundary is
now lifted and the bottom of the band occurs at [+~/2,
+vr/2]. The band is anisotropic near the minimum with
the "heavy" mass p{{=2. 1Jt along the magnetic zone
boundary [i.e., the (m, O), (O, vr) diagonal] and the "light"
mass p~ =0.8Jt in the direction perpendicular (toward
the zone center).

There have been a number of other analytic or nearly
analytic calculations that attempted to go beyond simple
perturbation theory to describe the t )&J regime. They
generally agree that the ground state is at the zone face
centers (+n/2, +~/2). The effective mass is anisotropic
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and for t /J » 1 it is argued to be 0 (J '
) rather than

0(t ') as it would be for a free particle. Specifically we
mention Trugrnan, who found an energy minimum on
the zone boundary (when the basis of states used in his
truncation was large enough) and Sachdev who calculat-
ed variationally and found a ground state at (m/2, n/2)
and bandwidth scaling with J. Self-consistent diagram-
matic spin-wave calculations have been done in one di-
mension by Schmitt-Rink, Varma, and Ruckenstein
showing that the energy minimum moved to the zone
boundary. Kane, Lee, and Read investigated the self-
consistent equation for the self-energy of the hole in 2D
in the t/J » 1 limit, observed that the band minimuin is
most likely to be at the zone face centers, and argued that
the quasiparticle pole is suppressed by a factor J/t and
that the effective mass scales as J

Another question of interest is the effect of the mobile
vacancy on the spin background. Above we have already
brought up the possibility of a local ferromagnetic polar-
ization appearing in the vicinity of the hole. On the oth-
er hand, in Ref. 5 on the basis of the semiclassical
analysis it was pointed out that in addition to coupling to
local net magnetization (which is responsible for Nagao-
ka ferroinagnetism' and ferropolarons ' ), the vacancy
kinetic energy term implicitly contains a coupling to the
"twist" of the local staggered magnetization Q. (The
staggered magnetization is defined by the difference of lo-
cal sublattice magnetizations, and the order parameter 0,
here is a unit vector. ) A twist, or transverse distortion of
Q, has the effect of making neighboring spins not strictly
antiparallel, which facilitates the hopping, just like the
canting of sublattices introduced by the ferromagnetic
polarization. However unlike a net magnetization, which
contributes predominantly to k =0 states, the effect of a
twist dominates near k =(+m/2, +n/2) and hence one
expects it to be important for the vacancy ground state.

The physically relevant quantity associated with the
twist of the staggered magnetization is the magnetization
current Q XB„Qwhich we expect in the vacancy ground
state with momentum k to have the form

III. NUMERICAL RESULTS

The lowest-energy state for the mobile vacancy with a
given momentum k on an 18-site cluster (3 X 3 per sublat-
tice) is readily obtained by simply iterating the action of
the Hamiltonian, Eq. (1.1), on a random initial state with
that momentum. Use of the translational invariance (i.e.,
Bloch states) reduces the Hilbert space of the 18-site clus-
ter with one vacancy to (II )=24310 states with S«, ———,'',

this (S'„,= —,') is the sector we primarily examine. The
Brillouin zone of this cluster contains 6 symmetry-
inequivalent points as shown on Fig. 1(b). Of these, 4
lie close to the magnetic zone boundary ~k„~+~k~~=~.
Over a large range of t/J (the present study covers
t/J ~ 10) the ground state was found to have spin —,

' and

k at one of these 4 magnetic zone boundary points. It is
important to note that the constraint on S,'„only im-

poses a lower bound on the total spin (i.e., the total spin
could be —,', —'„etc.), and level crossing transitions to
higher spin states occur with increasing t/J (the exact
t /J value for level crossing depends on the wave vector k
of the state and, for the small cluster, is likely to be size
dependent). For t /J larger than a size dependent critical
value the ground state of the vacancy shifts to a k =0
state with the maximum total spin. "' (This transition
to the Nagaoka' ferromagnetic state is clearly a finite-
size effect, which limits the range of t /J to be studied. )

The interpretation of the numerical results is, unfor-
tunately, far from straightforward because, on one hand,
of the finite-size effects and, on the other, the already
large number of Hilbert space states which necessitates
the use of correlation functions for studying the spin
configuration. Below we report in some detail what we
have found; the key results of this investigation have been
presented briefly in Ref. 5.

Let us start with the energy dispersion of the vacancy
band E(k). Because the Brillouin zone consists of six
inequivalent points, the vacancy band can be uniquely fit

by

2r„r„p„(k)
- (ox'„n)= t'„„— (2.4)

E(k) =c, + (cosk„+cosk ) + (sin k„+sink )
4 z g

C4+ (cos2k„cosk +cos2k cosk„)
2

for large r, where the distance r is with respect to the po-
sition of the vacancy. This pattern can be associated with
the AF dipole moment p„(k)which has the quantum
numbers of the spin current: it is a vector in both spin, o.,
and lattice, p, spaces. The long-range nature of the dis-
tortion follows from the semiclassical analysis, which is
justified far enough from the vacancy where the distur-
bance is sufficiently small; in fact this behavior arises
from the gaplessness of the transverse spin excitations
(spin waves) in the isotropic limit (Ji =J, ). On symmetry
grounds one expects p„(k)-sink so that it vanishes at
k =0, (~,0), etc. , as required by reflection symmetry.
Note that the magnitude of p„is thus likely to be rnaxi-
mal at the zone face centers and thus for the vacancy
ground state. A detailed discussion of the semiclassical
analysis can be found in Ref. 16. Let us now pass on to
the numerical results.

C5 c6+ (cos3k„+cos3k )+ (cosk„+cosk ) .
2 ' ~ 2

(3.1)

The coefficients e,. as a function of t/J are given in Table
I (where we have subtracted out the energy of the cluster
with a static, t =0, vacancy: Eo= —11.173J). We re-
mark that the E(k), given by Eq. (3.1) and the data in
Table I, corresponds to the lowest energy states with
fixed k and therefore must be a continuous function of
t/J. This function, however, need not be smooth because
of the possibility of level crossing. In particular the evo-
lution of the c45 terms suggests a possibility of level
crossing near t /J = 1 (perhaps between even and odd par-
ity states with k =0). Also, we found that the lowest en-
ergy state in the k =0 sector switches from S„,=—,

' for
t/J~2. 5 to S«, ~

—,
' for t/J~5. Needless to say, the
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TABLE I. Values of the vacancy band parameters as defined in Eq. (3.1) (in the units of t) as a func-

tion of t/J.

0.1

0.25
0.5
1.0
2.5
5.0

10.0

—0.260
—0.616
—1.077
—1.662
—2.342
—2.676
—2.897

Cq

0.237
0.557
0.947
0.991
0.635
0.214
0.050

—0.062
—0.145
—0.237
—0.161
—0.008

0.010
—0.007

C4

0.004
0.021
0.050

—0.063
—0.054
—0.018
—0.021

5.4X10-'
0.003
0.006

—0.027
—0.027
—0.037
—0.013

0.514
0.493
0.452
0.245
0.149
0.035
0.037

convergence rate of our numerical method slows down
near the level crossing.

The terms appearing in Eq. (3.1) are motivated by the k
dependence corresponding to different translations of the
plane wave state under 1, 2, and 3 hops: e.g. , in small-t
perturbation theory the c6 term would arise in first order,
c ] c2 c3 in second order, and c4, c, in third order.
Indeed, in Table I one observes that c6 quoted in units of
t approaches a constant as t/J~O, while c, , ci,ci scale
linearly and c4, cs quadratically, with t/J for t/J «1.

Note that the first and last three terms in Eq. (3.1)
differ by the parity of the number of hops: The first three
are invariant under k —+k + (m, n ); the last three change
sign and therefore contribute to the energy splitting be-
tween k =0 and (m, m ) states. In the infinite system, how-
ever, the latter two states must be degenerate: Clearly in
the broken symmetry state, i.e., in the presence of a
nonzero AF order parameter, the translational symmetry
is reduced to that of a single sublattice and the Brillouin
zone is reduced by identification of k and k +(m, m. ) . The
degeneracy of the k and k+(n, vr) vacanc. y states in the
infinite system is obvious intuitively, since the spin
ground state of the infinite system can be thought of, sim-

ply, as the average over the broken symmetry states with
different directions of the staggered magnetization order
parameter Q. The matrix element connecting the states
with opposite staggered magnetization goes to zero with
the size of the system. In the finite cluster, however, it is
finite and gives rise to the splitting of k and k +(m, m )

states by allowing transitions with odd number of hops
combined with the Aip of 0, which transfer the vacancy
from one sublattice to another, to contribute. In the
small t/J limit this effect dominates the energy disper-
sion, since the single hop contribution scales with t com-
pared to t /J scaling of the two hop, the same sublattice,
process. The advantage of the fit used in Eq. (3.1) is that
this finite-size effect can be accounted for simply by sub-
tracting out the odd terms, i.e., c4 ~ 6, which according to
the argument above vanish with the volume of the sys-
tem. Thus we define the estimated vacancy band energy
E(k) (over the magnetic Brillouin zone) by keeping only
the first three terms in Eq. (3.1). Of the terms kept, ci 2

determine the energies at k =0 and (m, O) while c3 deter-
mines the splitting between the points k =(m, O) and
(n/2, m /2).

Figure 2 shows the bandwidth b,E—= supk IE(k)I—infk I E(k) ), in units of t, as a function of t /(t +J) (the

I0
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/

/
/I0

/ O~

/
/

/

/ 0
/

0 / I i I i

0 1.0

0.5—

l I I

0.5

FIG. 2. Normalized bandwidth E(k)/t as a function of
t/(t +J).

argument here is chosen so as to emphasize the expected
linearity of b,E/t in both t/J «1 and J/T «1 limits).
For sinall t /J, b,E /t is linear in t /J as predicted by per-
turbation theory. For larger t/J, the bandwidth b,E/t
starts decreasing with J/t as anticipated. It appears that
the scaling hE-J expected on the basis of the self-
consistent perturbation theory and semiclassical' argu-
ments provides at least an upper bound on the bandwidth
for t/J »1. However, the uncertainty about the finite-
size effects for larger values of t/J makes it difficult to
make a conclusion about the exact scaling. In particular,
the fact that the k =0 state for t /J & 5 switches to
St t 2 may be responsible for the faster than expected
reduction of the bandwidth. Also, since the k =(n, m)
state remains spin —,', k~k+(m, n)is no.t e.ven an approx-
imate symmetry (for t/J&5) and the E(k) estimate of
energy dispersion in the reduced zone may be misleading.
The bottom of the energy band is at k =(+n/2, +n/2)
points until t/J =4 For t./J=5 the bottom of the ener-

gy band appears to switch to the zone corner points,
k =(n, O), etc; while for r/J =10 it returns to the zone
face centers. However the validity of our interpolation
E(k) in this range is in doubt for the reason we have just
described. The band is strongly anisotropic near the
minirnurn with the "heavy" mass p~~=

—c3 ' along the
magnetic zone boundary [i.e., (n., O), (O, m) diagonal] and
the "light" mass pi=(c2 —ci) in the direction perpen-
dicular. The anisotropy factor p~~/pi as a function of t/J
is given in Table II.
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TABLE II. Ratio of the masses parallel and perpendicular to
the magnetic zone boundary as a function of t!J. Note that this

quantity depends on the interpolation E(k) of the energy
dispersion and may be particularly sensitive to finite-size eft'ects

for large t/J.

-0.035 -0.079

0.025 -0.132 -0.057 -0.079

-0.035 -0.132 ~ ~-0.132 -0.035 -0.085
0.1

0.25
0.5
1.0
2.5
5.0

10.0

48
4.8
5.0
7.2

80.0
—20.0

8.1

-0.057 -0.132 0.025 -0.013

-0.035 -0.013

(b) 0.295 -0.359
While we have attempted to correct for the finite-size

effects on the energy dispersion for small t/J, the oppo-
site limit is more dilcult to control. The formation of a
ferromagnetic "polaron" structure in the states at and
near k =0 [and k =(2r, m. )] is likely to be sensitive to the
cluster size. Intuitively one expects finite-size effects for
any k state arising simply from the fact that for large t/J
the size of the disturbance introduced by the vacancy be-
comes comparable with the size of the cluster. Below
when we examine the spin configuration, we will see an
indication of such eFects becoming substantial for
t/J )2. Hence one must be cautious in interpreting the
numerical results in that range.

IV. SPIN CORRELATIONS

0.299 -0.395 0.299 -0.359

k

0.295 -0.395 -0.395 0.295 -0.358

0.299 -0.395 0.299 -0.358

0.295 -0.358

FIG. 3. Local spin expectation values —2(s,')
„

in the
k =(2m/3)(1, 1) state for (a) t/J=0. 05; (b) t/J=2. 5.

We have examined the spin structure of the ground-
state wave functions by evaluating a number of correla-
tion functions. One may start by looking at the spin-
expectation values in the comoving frame, that is as a
function of distance relative to the hole:

(s(r))„=(c(0)c(0)s(r)),

where N is the number of sites. Only the z component of
(s(r))s is nonvanishing and for t/J=0. 05 and 2.5 it is
shown in Figs. 3(a) and 3(b). The sum g, (s'(r) ) s equals
one-half as it must. For small t/J, there is a substantial
staggered component of the spin: (II')&NO. The latter
is due to the tendency of the hole to reside on the sublat-
tice with the spin opposite to the total spin, so that the

total spin s'=
—,
' constraint is satisfied. Constructing a to-

tal spin- —,
' state out of two fully polarized sublattices, one

of which is missing one spin, yields ( 0 ) =
—, which is

quite close to the numerical value for t/J «1. The t/J
dependence of this quantity is given in Table III. Note
that for large t/J, (IV)h decreases suggesting that the
vacancy resides equally on both sublattices, as might be
expected. The magnitude of the staggered order parame-
ter (0 )', as shown in Table III, decreases with in-
creasing t/J but the effect is not dramatic. It is curious
that the staggered magnetization is quite isotropic:
~(Q )' —( —'II )'

~

&10 . The effect of the hole on

AF correlations of neighboring spins can be seen by ex-

TABLE III. Dift'erent measures of the staggered magnetization in the k =(2m. /3)(1, 1) state as a
function of t/J.

0.05
0.1

0.25
0.5
1.0
2.5
5.0

10.0

( II2 ) I /2

1.03
1.03
1.03
1,0
0.98
0.91
0.83
0.77

0.34
0.33
0.29
0.22
0.12
0.035
0.0133
0.0075

( II2 ) I/2

0.597
0.596
0.592
0.583
0.57
0.525
0.483
0.444

( j II2)1/2
2

0.597
0.596
0.591
0.582
0.57
0.525
0.482
0.444
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amining (s s, +„)),on bonds (j,j+p) which are shown

for t/J=0. 05 in Fig. 4(a) and for t/J=2. 5 in Fig 4(b).
One may note that AF correlations on bonds close to the
vacancy are enhanced for t /J « 1, as occurs for a static
vacancy, ' but they decrease with increasing I/J. The lo-
cal suppression of (sj sj+„)I,for larger t/J can be un-

derstood in terms of a Brinkman-Rice string picture as a
consequence of the spin flips induced by the hopping
hole. On the basis of that analysis one expects the size of
the affected region to scale with (t/J)'; unfortunately it
is impossible to explore this "string" effect numerically
on this small cluster.

The semiclassical analysis however suggests that the
suppression of local ! (s~ s +„)h!magnitude is in part
due to the appearance of a twist of the staggered magneti-

zation. The distortion of the staggered magnetization
direction, 0 can be displayed by evaluating the expecta-
tion values of the bond spin currents ( s Xs.+„)I„the z
component of which is nonzero and is shown for t /J = 1

and k =(2'/3, 2m /3) in Fig. 5(a) and for k =(2n /3, 0) in

Fig. 5(b). Note that both configurations exhibit dipolar
spatial symmetry with it as a refiection axis. [The sym-
metry corresponds to the dipolar current, see Eq. (2.4):
i.e., component along k is even under r~ —r while the
component perpendicular is odd. ] The spin currents van-
ish in the k =0 and (n, m ) states as required by symmetry.
The same should be true of k =(n, 0), (0,m) points, which
unfortunately do not exist for our cluster. As a rather ar-
bitrary quantitative measure of the effect we display in
Table IV the spin current on one of the bonds near the

(a) -1.18

!

X- -1.18

-1.18

!
X- -1.18 -1.18

-1.18 -1.26 -1.18

-1.22-1.22

-1.22-1.22

-1.18

-1.18

0.60

X-0.03 1.47 1.48

t
X -0.33 0.57

0.03 2.02 0.91

0.91

X- -1.18 -1.26
k

/g'9 -1.26 -1.18+X 0.33 1.47
k

1.48 0.57

-1.18 -1.22

X- -1.18 -1.22 -1.22

-1.22

-1.18

-1.18 -1.26 -1.18

X- -1.18 -1.1 8

-1.18

-'l.18 X~0.60 2.02

o.57 1.48

X+.0.91 ).48 1.47

1.47

0.60

o.91 2.02 0.03

X 4-0.57 0.33

2.02

0.03

0.33

o.60~x

(b)

X- -1.04

-1.13 (b)
0.0

X- -1.13

-1.26

X- -1.26 -.836

-1.04 —.836

-1.23

-1.23 -1.18

-1.04

-1.04

-1.18

-1.23 -1.13~X

X~0.27

0.59

T

X —0.01 0.52

0.34 1.32

0.0

0.27

0.52

0.59

1.32

0.01

0.34

—.836

—.836
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FIG. 4. Antiferromagnetic spin correlations for nearest-
neighbor sites: 2(s, s ) ——' in the k =(27r/3)(1, 1) state for (a)

t/J =0.05; (b) t/J =2.5.
FIG. 5. The bond spin currents 40((S, XS, )'), for t/J=1

and (a) k =(2m/3)(1, 1); (b) k =(2m. /3)(1, 0).
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TABLE IV. The vacancy spin current and the bond spin

current (between sites 6 and 14, see Fig. 1) in the
k = (2m. /3)(1, 1) state as a function of t /J. 1.07

0.05
0.1

0.25
0.5
1.0
2.5
5.0

10.0

0.09
0.16
0.36
0.56
0.68
0.40

—0.29
—1.81

4( S6 X S,4),

+0.018
0.035
0.077
0.12
0.15
0.16
0.15
0.13

X~ 1.07

!
X4-O.77 0.41

0.35 0.41

1.45

1.45

o .99 1.45

X~1.28 1.45 0.41

0.41

!
X~0.35 0.99

0.77 1.57 1.28

1.28

1.57

0.77

0.99

0.35

vacancy [that between sites 6 and 14, see Fig. 1(a)] as a
function of t/J. It can be argued' that at least for small
t/J the twist of the staggered magnetization Q XB„Q,
which is directly related to the bond spin currents
( s X s +„)&, correlates with spin current carried by the
vacancy

j„=t(i(c„+„rc„c„„r—c„)) . (4.2)

The expectation value g„„k„(j„)is also displayed in
Table IV. Note that magnitude of the bond spin current
starts out linearly with t/J and then saturates. The pres-
ence of the spin twist with a dipolar symmetry near the
vacancy implies a dipolar distortion of the staggered
magnetization in the far field decaying as r ' (since in
the far field the distortion is small and the spin system is
in the semiclassical regime). While our small cluster is
nowhere near the far field it is not unreasonable to expect
the dipole moment that is associated with the distortion
to exhibit the same behavior as a function of t /J as the
bond spin current (s6Xs,4) displayed in Table IV. The
vacancy spin current j„follows the same behavior at
t/J & 1 but then deviates. This deviation at large t/J can
be attributed to the appearance of a "core" structure as-
sociated with the vacancy so that its spin is distributed
over a finite region. The appearance of such a core is ex-
pected for large t/J on the basis of the "string" picture
and is also indicated by the behavior of ( Q') „discussed
earlier. At larger values of t/J, as the size of the core in-
creases, one might expect that the bond currents near the
hole also become affected, making the inference of the di-
pole moment from the near-field distortion unreliable.

Close examination of the pattern of spin currents for
different values of t/J [see Figs. 6(a) and 6(b) as well as
Fig. 5(a)] reveals an amusing finite-size effect. While for
smaller t/J the currents have a roughly dipolar pattern
with the magnitude falling off away from the hole, for
t /J & 5 one finds the current aligned with the wave num-
ber and essentially uniform through the cluster. It ap-
pears that the system takes advantage of the periodic
boundary conditions and builds up a uniform twist.
While the appearance of nearly a uniform ( Q X r)„Q)
here is clearly a finite-size effect, which makes one con-
cerned about various results for larger values of t/J, it
also offers an insight into the physics of a finite density of
vacancies.

1.28 1.57 0.77

X~0.99 0.35

1.07

(b)
1.24
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FIG. 6. The bond spin currents, 40((S, X S ) ), for
k =(2m/3)(1, 1) and (a) t/J=5; (b) t/J=10.

V. CONCLUSIONS

We have presented results for the vacancy band struc-
ture and examined the spin correlations in vacancy

Finally, we have investigated a three-spin correlation
function (s;.(s~ Xsk )) defined on pairs of neighboring
bonds and corresponding to the topological charge densi-
ty. We found it to be nonvanishing locally, which indi-
cates the three-dimensional nature of the spin distortion.
The topological charge density however changes sign
when rejected about the direction of the k vector and
hence the total topological charge averages exactly to
zero.
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ground states. It is evident that above and beyond the lo-
cal supression of the root mean square staggered magne-
tization (for the range of t /J studied this suppression
remains less than 25%), the presence of the mobile hole
causes a transverse distortion of the spins. The latter
necessarily must be long ranged, because of the gapless-
ness of the spin-wave modes in the isotropic Heisenberg
AF. While in this small cluster study it is not possible to
directly see the far-field behavior, the dipolar symmetry
of the near-field distortion evident on the small cluster
dictates an r falloff of the magnetization current
0 XB„Q.Because the semiclassical expression Eq. (2.4) is

only valid in the far field, an attempt to determine the nu-
merical value of the "dipole moment" p„from the near-
field bond spin currents may be misleading, however, it
appears that this quantity increases linearly with t/J for
small t/J and may saturate for t/J) l. An interesting
related and quantum mechanically well-defined quantity
is the spin current of the vacancy, j„.Finally, the nature
of the spin distortion is different for states with different
wave vectors: The dipolar twist of the staggered magne-
tization is dominant near zone face centers (where the
ground state at least for t/J &4 is) while the "canting"
distortion and local ferromagnetic polarization appear in
the states with wave numbers near the zone center.

The antiferromagnetic dipole moment of the vacancy is
induced by the hopping and is associated with the finite
momentum of the ground state. One may expect howev-
er that the long-range distortion of the staggered magne-
tization will persist for a localized state of the vacancy,
provided that the latter is not localized on a single site.
It is natural to expect that in the absence of translational
invariance, instead of finite momentum the ground state
will have a finite angular momentum. The symmetry
however may depend on the localizing potential (i.e.,
whether it is site, bond, or plaquette centered~.

It is important to understand the meaning of the va-
cancy spin. To the extent that the ground state of an
even site lattice without a vacancy is a singlet, and with a
vacancy has total spin —,', there is no problem. However,
the thermodynamic limit, with a finite density of holes
and no total spin constraint is more difficult to interpret.
It is evident, though, that in the presence of local stag-
gered order the ground state of the vacancy is twofold de-
generate, the degeneracy arising from the symmetry un-
der time reversal and translation by one site. These states
correspond to a particular superposition of the vacancy
states with wave numbers k and k+(vr, vr) for the back-
ground with unbroken translational invariance. One nat-
urally considers the two eigenstates of S'„„the St
states having the vacancy more on one sublattice, while
the S'„,= —

—,
' states have it more on the other. One may

also take two orthogonal linear combinations of the S'„,
eigenstates, even and odd under sublattice interchange.
This would produce an expectation value of the spin in
the plane perpendicular to the direction of local 0 (as-
sumed to be along the z axis). It can be argued' that the
dipole direction and staggered magnetization together
define a SU(2) order parameter, and hence a triad of vec-
tors. In the quantum sense these are conjugate to the lo-
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APPENDIX

Here we will briefiy set up the t/J «1 perturbative
calculation of the vacancy band in the context of the
Holstein-Primakoff spin wave theory. To facilitate the
derivation let us formally separate the spin and charge
degrees of freedom by factorizing the electron operator
constrained to single occupancy:

c (r)=g (r)w (r), (A 1)

where g (r) creates a fermionic vacancy on site r and
w (r) annihilates a Schwinger spin boson (ww =1 for
spin —,'). In the spin-wave approximation the spins are
represented by

cal magnetization and hence the spin. Still, it would be
interesting to study in more detail the magnetization as-
sociated with the vacancy (i.e., the amount of net magne-
tization "bound" to the vacancy as opposed to excess
magnetization spread over the whole volume of the sys-
tem) as well as the vacancy g factor. One may expect
that the latter depends on k and may actually vanish on
the magnetic zone boundary and hence in the ground
state.

The difficulty with interpreting the finite cluster results
is due to the finite-size effects of which we can identify
two types: one associated with the finiteness of the spin-
—,
' —to —spin ——,'gap, another with the large spatial size of
the vacancy state for large t/J We. have attempted to
account for (and subtract out) some of the more obvious
manifestations of the effect of the first type. While in the
range of t /J studied the size of the Brinkman-Rice string
"core" of the vacancy state appears to be limited to only
few sites, ' we observed that the transverse "twist" dis-
tortion (associated with bond spin currents) for larger
values of t/J extends over the whole cluster, making any
interpretation of the t /J ~ 5 results questionable. A care-
ful comparison of the results for different size clusters is
needed to properly estimate the extent of the finite-size
effects.

Finally, we note that the qualitative features of the va-
cancy state in the "t-J" model reported here are shared
by the 0 hole state in the more realistic three-band model
of CuO layers. In the latter case the issue of locating
the band minimum using a 16-site cluster study is
resolved by the presence of the direct O-O hopping pro-
cess, which for realistic values of the parameters quite
unambiguously places the minimum at the zone face
centers. It is also worth noting that the current con-
sensus places the "reasonable" values of effective t/J to
be in the 2 —5 range.
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w'=
T' a„

a„
1 —

—,
' a„a„ (A2)

Hh=t g P„+P„tu„w„+„+H.c. ,
rE A, p,

(A3)

while the exchange part of the Hamiltonian Eq. (1.1)
determines the magnon dispersion &ok =4J(1—

y& )'

where yk ———,'(cosk„+cosk ). (The exchange term also

describes the interaction of spin waves with the static va-

cancy, ' induced by the absence of the spin at the vacancy
site. )

Clearly, the integration out of the spin fluctuations
generates a self-energy, ' X(co, k) term for the vacancy
fermions. Within t/J &&1 perturbation theory its co=0
part generates the vacancy energy band. The straightfor-
ward spin-wave calculation then yields

where the superscripts A and B denote the sublattice and

the spin-wave fluctuations away from the Neel state are

represented by Bose operators a„.
To the lowest order in spin-wave theory the hopping

part of the Hamiltonian has the form

E(k)=(4t) +co '(u yk
—u y„)

q

(A4)

with ui, —=
—,'[(1—y&)

' +1] and ut,
=

—,'[(1—
yt, )

—1], and the q summation runs over the Brillouin zone.
The three-parameter fit to this expression is given in Eq.
(2.3).

While this simple perturbative calculation gives the
correct order of magnitude for the energy dispersion
E(k) and appears to incorporate the correct physics, the
approximation is uncontrolled. Aside from the general
problem of applying the spin-wave approximation to the
spin- —,

' case, there are a number of other difficulties relat-

ed to inadequate description of the spins in the vicinity of
the hole. As a result, the Ising-anisotropic limit

(J~ &&J, ) of Eq. (A4) does not reduce to the appropriate
perturbative result given in Eq. (2.2). This can be over-
come by doing a variational calculation (t/J «1) using
the Brinkman-Rice string wave function ' for the vacan-
cy in the spin-wave ground state. However the approxi-
mation remains uncontrolled. (Note that the variational
nature of the wave function still does not allow to put any
firm bounds on the bandwidth AE since different k states
may not be approximated uniformly. )
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