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Large-scale Sow in competing-interaction systems
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We study the dynamics of large-scale Sow in a system with several competing length scales. This.
system, when driven, is characterized by critically metastable states. When the driving force is
lowered, these states "melt" via nucleation of a low density of slowly moving defects, which control
and relate the long-time, long-distance behaviors. We demonstrate these properties with a one-

dimensional lattice-dynamics model for t~inning in elastic materials, including (a) a periodic sub-

strate potential, (b) a nonconvex nearest-neighbor spring potential, and (c) a harmonic next-nearest-

neighbor spring potential. This system exhibits a rich spectrum of superlattice ground states.
Large-scale driving, obtained by adding a constant force and damping to the equations of motion,
shows four distinct regimes: (i) At high forces a metastable inhomogeneously modulated
configuration moves rigidly with a velocity given by the ratio of force to damping; (ii) as the force
decreases the rigidity is lost via local nucleation of soliton defects (in the double well) and Auctua-

tions of the velocities increase; (iii) for even lower forces the configuration ceases to translate, and

the dynamics is controlled by nucleation of (sine-Gordon-like) kink-antikink pairs in the substrate;
and finally (iv) at a suf6ciently low force a metastable configuration, consisting of a random array of
solitons (in the double-well potential), is pinned. %'e also observe strong hysteretic behavior at the
transitions.

Physical systems with competing interactions that have
incommensurate length scales have become a subject of
considerable interest because they can lead both to modu-
lated ground states and to unusual excitations and dy-
namics. Examples of such systems are: random field
magnets, pinned charge-density waves and spin glasses.
While most of the theoretical studies have been limited to
cases where the interparticle interactions are convex,
there have been recent studies of the influence of noncon-
vexity on the ground states and on the order of the phase
transitions between them. ' The phase diagram ob-
tained in these studies consists of various modulated
phases with combinations of first- and second-order tran-
sitions. In previous studies we considered a specific

0.2

model in this nonconvexity class [Eq. (1)],and studied the
influence of the nonconvexity on its ground states and ex-
citations. In particular, we obtained the phase diagram
and the order of the phase transitions between various su-
perlattice ground states as the parameters are varied. We
were also able to show that the nature of excitations
defined with respect to these modulated ground states is
changed from extended kinks to narrow, pinned ones as
the interparticle interactions change from convex to con-
cave character, respectively.

In what follows we report transport results that we
have obtained in the presence of dc driving. We show
that this driving results in critically metastable states
which melt via nucleation of a low density of slowly mov-
ing defects that control and relate the long-time, long-
distance behaviors. We believe this is typical of the dy-
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FIG. 1. Typical configurations obtained in the high-force re-
gime. The exact shapes of the configurations are determined by
initial conditions and the values of the parameters are given in
the text.
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FIG. 2. The same as Fig. 1 but for driving without a sub-
strate.
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namics of complex patterns (resulting from competing in-
teractions); namely transport is controlled by defects gen-
erated with respect to those patterns: similar concepts
have also been discussed in recent literature on 1/f noise
and in turbulent flows.

We use here an extension of the familiar Frenkel-
Kontorova model in which we introduce double-mell in-
terparticle springs, and where we model the strain gra-
dients by next-nearest-neighbor interactions. The Hamil-
tonian for the system is given by

H = g u „/2+ a(u„+, —u„) —P(u„+, —u„)

+ (y/2)(u„+, —2u„+u„ i ) —cosu„.

This model may be useful in the description of twinning
in martensitic materials, as was pointed out by Barsch,
Horovitz, and Krumhansl. ' In this case the substrate
potential (cosu„) models the parent phase and the other
terms are the expansion of the elastic free energy as a
function of the discretized strain and strain gradients.
Note that the second-neighbor springs are important for
the superlattice ground states to appear-with y=O only
dimerized and uniform ground states occur. Similarly,
the appearance of critically metastable states in our one-
dimensional driven system (in the following) requires the
additional complexity allowed by this expansion of phase
space (i.e., yAO). Throughout this work we fix the value

0.4

0—

—2P( u„+,—2u„+u„, )

V(un+2 un+I+6 n un —I+un —2)

—sinu„+ I' —eu„. (2)

Our numerical simulations were made with the follow-
ing additional parameter values: P=1.5, y=0. 1, and
a=0.01, (i.e., the motion of the particles is under-
damped). This point in the parameter space belongs to
the dimerized phase in the ground-state phase diagram '

but it is relatively close to the first-order transition line
between the dimerized and quadromerized ground states.
As the force is varied we observe four distinct regimes.

(i) A high-force regime in which an inhomogeneously
modulated configuration moves rigidly with a veloc-
ity given by: U =I' /e. Typical examples of such
configurations are shown in Fig. 1, and we observe that
these consist of long segments where the interparticle
distances are determined by the minima of the double

of a to be a=20. This choice is made in order to restrict
the positions of the minima of the double well,
+la =&P/2a, to be small relative to the parent phase lat-
tice constant (2n in the umts we use here). Indeed typical
values of the change in the lattice constant in tetragonal
to orthorhombic transitions is usually found to be of the
order of 1 —3 %.

To study the dynamics of large-scale driving we add a
constant force I' as well as damping eu to the equations
of motion obtained from the Hamiltonian (1). The
modified equations are then given by:

ii„= 4a[(u„+,—u„) —(u„—u„,)']
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FIG. 3. (a) The rigid inhomogeneously modulated
configuration obtained in the high-force regime. (b) Lowering
the force, localized phonons are excited and the rigidity is lost.
(c) For even lower force the configuration evolves by forming
sine-Gordon-like kink-antikink pairs in the substrate potential.
(d) The final metastable configuration into which the system re-
laxes. The relative displacements on the vertical axes are in
units of 2m (the period of the substrate). Note the different
scales in the figures.
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FIG. 4. The same configurations obtained in Fig. 3 but for
the case of increasing the force (and thus in reversed order).
The relative displacements on the vertical axes are in units of 2~
(the period of the substrate). Note the different scales in the
figures.
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well with kinks in the double-well potential marking
the change from short (u„+,—u„= —lo) to long

(u„+,—u„= +lo) interparticle springs. The distribution
of the distances between such kinks is determined by the
value of y, whereas their exact locations depend on the
initial conditions. The rigid motion of the chain in this
regime suggests (as for the strongly driven sine-Gordon
chain" ) that the influence of the substrate on the parti-
cles is negligible and the details of the configuration are
determined by the interparticle coupling constants (i.e.,
a, P, and y ). To demonstrate that this is indeed the case
we repeated our numerical simulation with the substrate
potential set to zero. The results of this simulation are
shown in Fig. 2 and we indeed observe rigid motion of
configurations similar to those obtained in Fig. 1. There
is, however, an important distinction between these two
cases (i.e., with and without a substrate), namely the
value of the force needed to obtain them. While there is a
lower bound on the force (depending on whether we are
increasing or decreasing the force because of a hysteretic
effect that we discuss in the following) when the substrate
is present, the lower bound is zero for driving the free
chain.

(ii) As the force decreases (and thus also the velocity
F/E) a value is reached beyond which the rigidity is lost
and "localized phonons" are excited on the moving chain
which saturate (in the nonlinearity) into kink defects in
the double-well springs. This happens at a velocity given

by v=5 and thus a force F=ve=0.05, for the values of
the parameters that we have used. An example is shown
in Fig. 3(b).

(iii) For an even lower force, the structure ceases to
translate and evolves alternatively by forming kink-
antikink pairs in the substrate [see Fig. 3(c)].

(iv) Finally a metastable configuration forms which
consists of a random array of solitons in the double well

[e.g., a mixture of dimers and quadromers as shown in

Fig. 3(d)].
This process can be reversed starting from a metastable

configuration obtained for the case F =0 and increasing
the force. The results are shown in Fig. 4 and we see that
the system evolves in reverse order through the same
states that were obtained when the force was decreased,
viz. , the metastable dimer-quadromer mixture melts by
forming kink-antikink pairs in the substrate [Fig. 4(b)]
and these evolve, by creation of high-frequency localized
phonons, into the inhomogeneously modulated rigid
structure [Figs. 4(c) and 4(d)]. A striking result of these
simulations is the observation of a strong hysteresis as the
force is varied. While the threshold for formation of the
modulated rigid structure when the force is increased is
F=1, the condition for losing rigidity when the force is
lowered is much smaller (F=0.05.)

This hysteretic behavior can be understood as follows.
Coming from the low-force region (Fig. 4) we need a de-

pinning force F= 1, where 1 is the strength of the sub-
strate, in order to overcome the barrier for creating the
sine-Gordon kink-antikink pairs shown in Fig. 4(b) and
to melt the initial metastable structure ef solitons jg the
double well [Fig. 4(a)]. On the other hand, coming from
the high-force regime where the configuration moves rig-
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FIG. 5. (a) The inhomogeneously modulated configuration
whose linear stability is analyzed. (b) The spectrum of co . (c)
The lowest-frequency modes (the numbers denote the corre-
sponding values of co ). (d) The highest-frequency modes.
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idly with a velocity u =F/e this configuration will be
stable until the substrate can excite localized phonons
which will destroy the rigidity and eventually melt it.
The condition for this to happen is that the velocity
should be low enough as we now explain.

When the chain is moving rigidly in the substrate
the latter exerts a force on it given by
F,„i,„„„=—sinu = —sin(ut) where u is the velocity of the
chain. This acts like a periodic driving with periodicity
~= v and can thus excite phonons with frequency ~~I,

=v.

We have performed a linear stability analysis on the
configurations (without the substrate) and obtained the
following results (see Fig. 5): The low-frequency phonons
are extended (almost harmonic ones) with the lowest fre-
quency being ~=0 for a rigid translation, while the
highest-frequency ones are those localized on the longest
segments of the chain and the highest frequency is thus
given by
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co,„=&16(p+y ) . (3)
0—

This result is exact for an infinite chain and substituting
the values for p and y we indeed obtain u =co,„=5 and
thus a force F=0.05. For finite lengths we obtain (to
lowest order in 1/L):

co,„=16(p+y)—(n./L) (Sy+4p) . (4)

This last result is obtained as follows. The deviations v„
about the static solution u„=nlo of Eq. (2) (with the sub-

strate, damping and driving forces turned ofl) obey the
following equations (to linear order):

U„=—4P(u„+, —2u„+ u„ 1)

( vq +2 4v~ + 1+6U~ 4un —1+Uq —2)

Substituting a solution v„= V sinkn sincot, we get:

co =16(P+y)sin (k/2) —4ysin k .

Substituting in this equation the value k =m m. /L which-
is the largest wave vector for a chain of length L we ob-
tain Eq. (4). Thus we see here how the spatial
configuration can influence the temporal behavior via the
phonon spectrum. Specifically, the distribution of kinks
excited (in the double wells) is determined by the distribu-
tion of length scales in the rigidly rotating configuration.
This behavior should be contrasted with the driven sine-
Gordon chain" (i.e., harmonic springs). There the rotat-
ing state is spatially homogeneous and thus linearly un-
stable modes are extended phonons that saturate into a
periodic wavetrain of "breather" modes uniformly distri-
buted along the whole chain.

Finally it is worth mentioning that the behavior of the
system and in particular the final configuration into
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FIG. 6. The same as Fig. 4 but starting from an exact (i.e.,
dimerized) ground state. Here the final state is a sine-Gordon-
like soliton-antisoliton pair.

which it evolves are not unique. In Fig. 6 we show a
simulation in which we decreased the force in the same
way as in the simulation described in Fig. 3, the only
difference being that here we start with a running, purely
dimerized state (the exact ground state of the system for
the values of the parameters used). We see [Fig. 6(d)]
that in .this case the sine-Gordon soliton-antisoliton pair
is stabilized by dimers and quadromers that decorate it
(i.e., there is an effective repulsive interaction), and does
not evolve into the random array of dimers and quadro-
mers that is found for "arbitrary" initial conditions.

To summarize we have presented here a study of large
scale dynamics in a system with competing interactions.
We have shown two main mechanisms for transition
from low-energy metastable states to high energy running
inhomogeneously modulated configurations. Namely, a
soliton-driven transition accompanied by a localized pho-
non driven one. We also found that these transitions are
characterized by strongly hysteretic behavior. We found
in the low-force regime that sine-Gordon-like soliton
configurations can be stabilized by dimerized patterns.

An intriguing result of our study is that critically meta-
stable states "melt" via nucleation of a low density of
slowly moving defects which control and relate the long-
time, long-distance behaviors. It will be extremely in-
teresting to test for the absence or presence of 1/f noise
in both time and space.
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