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As first predicted by Haldane, and later observed in neutron-scattering experiments, one-
dimensional Heisenberg antiferromagnets of integer spin have an excitation gap. Recently, the

highly one-dimensional antiferromagnet Ni(C2H8N2)2NO2(C104) has been studied in an applied
magnetic field. We discuss the susceptibility, high-field magnetization, and field-dependent neutron

scattering using general arguments and field-theory methods.

I. INTRODUCTION

Haldane first argued' that spin-s one-dimensional
Heisenberg antiferromagnets have an excitation gap and
a finite correlation length for an integer (but not a half-
integer) s. This is by now quite well established theoreti-
cally based on finite-size calculations, field-theory argu-
ments, and an exactly solvable model. The first experi-
mental evidence for the Haldane gap came from
neutron-scattering experiments on the s = 1 system
CsNiC13. %'hile this material is highly isotropic in its
spin couplings, it is only moderately one dimensional.
(The ratio of interchain to intrachain couplings is es-
timated to be 0.017.) Consequently, there is Neel order at
low temperatures and significant planar dispersion in the
excitation spectrum. Ni(C2HsNz}zNO2(C104) (NENP)
(also of spin 1) is much more one dimensional (the ratio
of couplings is estimated to be 0.0006), and it appears to
be disordered even at T=O. However, it has quite
significant planar anisotropy. The lowest excited state,
predicted by Haldane to be a triplet of total spin 1 (above
a spin-zero ground state) is split into a doublet and a sing-
let with the ratio of excitation energies observed in
neutron-scattering experiments to be about 1:2. Apart
from zero-field neutron-scattering, a number of other
measurements have recently been made in nonzero ap-
plied magnetic fields. These include susceptibility,
high-field magnetization, and neutron scattering in a
finite field. ' In all these measurements the anisotropy is
quite evident, as is the Haldane gap.

The field-theory treatmenj: of the system is based on
the Lorenz invariant O(3) nonlinear o' model, which is
equivalent to the low-energy limit of the Heisenberg mod-
el at large s. This is a highly nontrivial field theory whose
spectrum consists of a triplet of bosons with nonzero
scattering but no bound states. Although the exact S ma-
trix is known for this model, nothing directly amenable to
experiment is exactly calculable. The O(n ) model is easi-
ly solvable in the large-n approximation, which seems to
be at least qualitatively reliable for n =3. In this approxi-
mation, the model essentially reduces to a triplet of free
massive boson fields, y. This provides a type of exactly
solvable mean-field theory for Haldane gap antiferromag-

nets, which seems to contain most of the essential phys-
ics. The mean-field theory was applied recently to
studying the effects of interchain couplings. A (p cou-
pling was added for stability, in the spirit of a Landau-
Ginsburg model. Since the o model is only exact for
large s, it is not clear which model is better for s = 1.

In this paper we wish to develop a theoretical picture
of Haldane gap antiferromagnets in an applied magnetic
field. The results are divided into two sections. Those in
Sec. II follow from general principles, well-controlled nu-
merical calculations, or order of magnitude estimates.
The results in Sec. III depend on the mean-field theory.
Section IV contains conclusions and suggestions for more
work, both experimental and calculational.

II. GENERAL RESULTS

(2.1)

Numerical simulations for D=O indicate a correlation
length of about five lattice spacings, a gap of about
6=0.4J, and a spin-wave velocity of about U=2. 56J
(28% higher than the lowest-order spin-wave theory re-
sult) (Refs. 2 and 9). The ground state has a total spin
S=O, and the lowest excitation is a triplet (s= 1) with
dispersion relation near wave vector m of

E [v2(k sr)2+g2]1/2 (2.2}

Near k =0 the gap is observed to be about 26. For finite
positive D the triplet splits into a higher-energy singlet
and a lower-energy doublet with the quantum numbers of

~a ) = g se'~0), (2.3)

where a =z for the singlet, z =x or y for the doublet, and
~0) is the singlet ground state. Note that ~z ) has total z
component of spin, S'=0, whereas the states,

NENP is believed to be well represented by the spin-1
Heisenberg model with easy-plane crystal-field anisotro-
py:

I=Jg S'S;+)+D g (S ), J=48K.,D =12 K .
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)+&:—()x &+i)y &)/&2, (2.4)

have S'=+1, respectively. The gaps observed in neutron
scattering are approximately hz =30 K and 5+=14 K.
(In NENP the z axis is the b axis in crystalographic nota-
tion. ) An applied magnetic field, h, in the i direction
leads to the additional term in the Hamiltonian:

0 H g;pzhS' . (2.5)

Here the g factors are believed to be g, =2. 15 and
g„=2.22. The efFect of a field in the z direction can be
completely understood by symmetry arguments alone,
since S' is a conserved operator. A field in the x direc-
tion has effects that are more model dependent, since S"
is not conserved when the D term is present.

I.et us begin with a field in the z direction. All states
can be classified by their S' quantum number, and their
energies are shifted by

tion near k =0; the gap there is simply 2(h+ —g,psh ).
Also note that it is b + that determines h„not h„a point
that may be slightly confusing, since the field is applied in
the z direction.

The free boson model becomes clearly inadequate for
h & h„since then the density of bosons in the ground
state would be infinite. However, the repulsion between
the bosons in the interacting theory leads to a finite densi-

ty. We may express the energy of the ground state with a
density, n, of + magnons as some function E(n). It
should have a Taylor expansion of the form

E(n )/L =(b z g,pz—h )n+an +Pn (2.8)

where a is a positive constant and J is the number of
spins on the chain. The magnetization per spin,
M =g,pa n, is determined by minimizing E(n ). Thus this
is strictly zero (at T=O) for h &h, and has a slope deter-
mined by a for h slightly bigger than h, :

E~E gzpghS (2.6) M =g,pq(g, pqh —b+)/2a . (2.9)

"c=~+~g Pa (2.7)

)+ & excitations bose condense in the ground state. The
gap, 6+ obtained by this formula from the experimentally
observed h, of 9.8 T is 14.2 K, in excellent agreement
with the value of 14 K obtained directly from zero-field
neutron scattering. [A smaller h, of about 8 T was re-
ported in Ref. 6.] This provides strong support for the
preceding description of the spectrum. Note that it is not
necessary to postulate some independent dispersion rela-

(We emphasize again, this is an exact result. } Thus the
higher )z & state is unaffected, whereas the doublet )k&
splits by kg, pa h. For large enough h, one or more of the
excited states will cross the ground state. In principle,
the state that first crosses need not be the state )

+ &; a
higher-energy state of greater S' might cross first. How-
ever, the field-theory treatment (using either the linear or
nonlinear model) predicts that the complete spectrum
consists only of multiparticle scattering states of the trip-
let. This implies that the lowest-energy state of given
S'=n, is simply a state of n well separated )+ & excita-
tions. It seems very likely that the lowest-energy states of
given S' in the spin chain are of this type. This is sup-
ported by the fact that the gap at k =0 is measured to be
2h, corresponding to a two-particle state, both particles
carrying k =m. Thus when h is increased beyond a criti-
cal field of

where

(2.11)

the sum is over all (multiparticle) states, and Z is the par-
tition function. (We set Boltzmann's constant to one. )

The lowest states of nonzero S' are the single-particle
states )+ &, so at T~0,

—b, +/TX'~e (2.12)

In fact we can make a more precise asymptotic prediction
using the asymptotic form for the dispersion relation for
the doublet:

E=b,++u (k —n. ) /2b, ++O((k —n. ) ) . (2.13)

[This formula should be exact, whereas the Lorentz in-
variant form of Eq. (2.2) for larger (k n)is only—ap.prox-
imate. Equation (2.13) is essentially just a definition of v.

U can be expected to depend somewhat on anisotropy and
to be different for + and z modes. ] We thus predict

Note that this Bose condensation transition will get
smoothed out at any finite T by standard thermodynamic
arguments for one-dimensional systems.

The zero-field susceptibility per spin is given by

(2.10)

y'~(g, p~) e 2J —(dk/2m)exp( uk /2h+T)=—(g,p )es—2(A+/v)&2mT[1+O(T/6+)] . (2.14)

Note, in particular, that g' goes to zero at T~O. A
nonzero y'(0) in a Haldane gap system indicates a break-
ing of the symmetry of rotation about the z axis, i.e., a
splitting of the doublet )+ &. Indeed, there seems to be
some contradiction between the absence of any observed
splitting of the doublet in the neutron-scattering experi-
ment and the nonzero measured value of y'. This prob-

y'(0) ~ (&+ —& )' . (2.15)

When this rotational symmetry is broken, the exact for-
mula for y'(0) becomes

I

lem is especially severe because it follows on very general
grounds that
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X'(0)=(g, j &
)' & I &OIS'll ) I'/(E; —Eo), (2.16) y'(0)/y"(0}=(b,„—b, ) /(5, —b, +) (2.19)

&i ~H'~i )wo, (2.17)

for ~i ),
~j ) elements of the doublet. It also produces a

second-order effect in y'(0):

y'(0)=(g, ptt) g ((O~H'~i )) (S,') l(E, Eo)— (2.18)

The sum gets contributions from the single-particle states
~+ ) as well as multi-particle states. Thus we could esti-
mate the ratio of T=O susceptibilities:

where the sum is over all states other than the ground
state, ~0). In the symmetric case S'~0) =0, so y'(0) =0.
Consider some perturbation, H', which breaks the rota-
tion symmetry [perhaps some crystal-field term like
D„g;(S;"}]. In general, such a perturbation will produce
a first-order splitting of the doublet,

The splitting of b and 5 based on the width of the
lower neutron scattering peak, ~b,„—b» ~

(b,+/10, would
imply g'(0)/y'(0)(0. 01, whereas the measurements in
Ref. 4 give a ratio of about 1/3. One possible explanation
of this is that there is a third peak that has not, so far,
been observed in the neutron-scattering cross section, and
the breaking of the planar symmetry is substantial. Al-
ternatively, perhaps the reported value of g'(0) is caused
by extraneous effects. Indeed a second measurement of
y'(0), in Ref. 7 seems to give a much smaller value. The
discrepancy could be caused by difficulties in subtracting
off the diamagnetic contribution or by impurities.

We now consider the effect of a field in the x direction
(assuming again symmetry of rotation about the z axis
only). The T=0 susceptibility is now nonzero and given
by Eq. (2.16) with z ~x. The exact finite-T formula is

y"(T)=(I/Z)(g„Ps) g ((i~ S"~j)~ (e ' —e ' )/(E, —E, ) . (2.20)

At low temperatures this has the form

y"( T )=const+ 0(E —
) .

g=2/s, v=2Js .

(2.21) The corresponding Lagrangian density is simply

(3.3)

Note that it is the lowest gap b+, not 6„ that appears
here, since S"has nonzero matrix elements involving the
states ~+), e.g. , (O~S'~+). We know of essentially no
exact results concerning finite fields in the x direction.
Again the doublet should split, and the energy of the
singlet, 5, should also change; none of these energies is

expected to depend linearly on h. It seems unlikely that
there will be a real phase transition even at T=O in this
case. In the free boson model we find that the energy of
~x ) remains fixed, whereas the energy of ~y ) decreases
and b, increases. Furthermore, a phase transition does
occur at a critical h when the energy of ~y ) reaches 0.
However, we suspect that the effects of interactions
would lead to some shift of h„and smooth out the phase
transition. The observed field dependence of the neutron
scattering and the sharp increase in dM/dh at some
apparent h, suggests that the free boson model is fairly
good (i.e., the interaction effects are quite small).

(3.4)

S= Jdxi . (3.5)

Thus l is the density of the conserved spin in the field
theory. The original spin operators are expressed in
terms of the field y and the spin density, 1 as

S;=( —I )'sqr+ I . (3.6)

i.e., y is the sublattice magnetization density (the local
Neel order parameter) and l is the uniform magnetization
density (whose integral is conserved). The leading effect
of the anisotropic term on the Hamiltonian density, H is

Due to the constraint, y =1, this is a highly nonlinear
theory. There is a conserved rotation symmetry in the
field theory; the associated conserved spin operators,
obeying the SU(2) algebra are

III. MEAN-FIELD RESULTS
5H=Ds (y')

A magnetic field adds the term

(3.7)

H=(u/2) f dx[gl +(v/g)(Bqr/Bx) ] . (3.1)

Here the field y is constrained to have unit magnitude,
qr2=1 and

In the large-s approximation, the spin chain is
equivalent to a quantum field theory, the 0 (3) nonlinear
o. model with Hamiltonian:

5H = —gp~, hl', (3.8)

i.e., the field couples to the conserved spin operators, S.
This theory is difficult to work with but a few results are
known reliably. The unique ground state, ~0), is a state
of total spin zero; the excitation spectrum consists of a
massive triplet, with the quantum numbers of

l=(1/ug)q)X(Bq)/Bt) . (3.2) ~i) ~q'~0); (3.9)

The coupling constant, g, and spin-wave velocity takes
the value

there are no bound states but repulsive interactions be-
tween the particles.
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A much simpler theory that has all these features and
arises in some circumstances from a renormalization
group transformation is the linear version of the model
where the constraint is relaxed and a repulsive y interac-
tion is added,

H=( ,'u)(—By/Bt) +(v/2)(By/Bx)

H= gcok, (ak;ak, +—,') .
ki

The conserved total spin operator become:

(3.17}

H.c. denotes Hermitian conjugate and L is the number of
spins. For zero external field the Hamiltonian becomes

+(b, /2u)qP+Ay (3.10)
S =i g (ak„aky aky—ak„)= g (ak+ak+ —ak ak ),z=.

6 is the Haldane gap, which is inserted here as a phe-
nomenological parameter and the A, term gives a repul-
sive interaction between the particles. A simple mean-
field theory is then obtained by assuming A, is small and
using the noninteracting theory (or low-order perturba-
tion theory in A, if necessary). The free theory contains a
triplet of bosons with a Lorentz invariant spectrum and
rest energy h. The linear model also has a conserved spin
operator with density:

l={1/u)yX(By/Bt) . (3.11)

The lattice spin operators are represented essentially the
same way (up to a rescaling of the field):

S; =&s ( —1 )'y+ l .

Note that because of the factor of ( —1)', the actual
momentum of the y quanta is shifted by m. The spin
structure function at k near m is given by the y structure
function, while the spin structure function near k =0 is
given by the I structure function, which is a two-magnon
operator. We phenomenologically model the anisotropy
term by adjusting the gaps for the three modes to 6, and
bg..

H =(—,'u )(By/Bt ) +(v /2)(Bp/Bx ) +(6,/2v)(y')2

+(hg/2v )[(q") +(qP)2]+Any~ . (3.13)

(The dependence of the gaps on D can be calculated in
the large-n approximation. This will be reported else-
where. ) As before, the magnetic field adds the term:

5H= —g, jMshl' . (3.14)

All the desired properties of the spin chain can now be
readily calculated using the free Seld approximation
(A, =O). We use the standard mode expansion of p' in an-
nihilation and creation operators:

(3.18)

where we have used the linear combinations:

a+ =(a„+iay )l&2 .

Thus the energies of the planar modes get shifted to:

(u'k'+ a')'"+g, p,,h,

(3.19)

(3.20)

where n(k ) is the boson occupation number:

n (k ) =—1/[exp(cok+/T) 1] . — (3.22)

This has the expected (exponential) form of Eq. (2.14) at
small T. At T large compared to 5 but small compared
to the bandwidth, J, it becomes linear:

y'(T)~T/&+ . (3.23)

The magnetization has the general behavior discussed in
Sec. II. It is zero at T=O for h (5+/g, ps. In the free
boson model it becomes infinite at h, since an infinite
number of bosons condense into the k=0 state. The
effect of the repulsive interactions is to keep M (i.e., the
boson number) finite.

As anticipated, the effect of a field in the x direction is
considerably more complicated. The total spin operator
(which is now not conserved because of the anisotropy
term) is:

S"=(i/2) g [(+coy/co, ++co, /coy)(akyak, —ak, aky )

+ ( +coy /co,

while the z mode is unaffected as expected from general
principles. The susceptibility per spin is

y'(T)=(1/T)(g, pz) 2 J(dk/2n)n(k)[1+n(k)],

(3.21)

qr'(x, t)= Q Q(u/4nLco )
k

X [exp[ i(co t —kx }]a„—+H. c.], (3.15}
V ~ /~y }{ayka,—k ayka, —k )]

(3.24}

co (k) =v k +b,J (3.16)

where a k is an annihilation operator for wave vector k
and spin direction j, Note that the second term (only present for unequal gaps)

can excite a pair of bosons from the vacuum and so it is
active even at T=O. The susceptibility now becomes:

g"(T)=g+pz) ( ,' ) J(dk/2—n )[(I+ny+n, )(co —co, ) i{co +co, )+(ny —n, )(co +co, ) l(co, —co )]/coyco, .

There is now a nonzero susceptibility at T=0, proportional to the square of the difference of gaps:

y"(0)=(g„}M~) ( —,') J(dk/2n)(co —co, )z/[(co +co, )co co, ] .

(3.25)

(3.26)
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y"(T)~(g,pii)'T(1/&++1/&, )I2 . (3.27)

The leading T dependence at low T comes from the fac-—h~/T
tor n and is hence O(e —

) as expected. At
6 « T « J, y is again linear in T: 3

s Qz

O Dx
Note that although y'(0) &y"(0), y'(T) has a larger
slope in the intermediate temperature range; thus we
might expect the two susceptibilities to cross at some T of
order h.

A graph of the theoretical susceptibilities versus the
experimental data from Ref. 4 is shown in Fig. 1. Note
that once we have extracted the gaps and the velocity
from the neutron-scattering data there are no free param-
eters in the susceptibility formulas; even the overall scale
is completely determined. The theoretical curves seem to
capture many of the features of the experimental data.
The crossing of the two curves occurs at exactly the right
place, for example. The main deficiency is that the exper-
imental values of g' at low T are too high to fit the
theory. This may be because of anisotropy terms in H,
not included in this theory, which break the symmetry of
rotation about the z axis. Indeed, the splitting of the
measured values of y' and y' in Fig. 2 suggests the pres-
ence of some anisotropy. Alternatively, as discussed in
Sec. II, the nonzero y (0) may be due to extraneous
effects. In any event there is no reason to expect better
than qualitative agreement given the crude nature of the
free boson approximation.

We may also calculate the effect of a finite field h„on
the dispersion relations. Note that in the free boson ap-
proximation the field in the x direction only mixes the y
and z modes. Thus there is no change in the energy of
the x mode. Again, this situation should change when
the interaction effects are included. (There are Feynman
diagrams for the x-self energy involving virtual loops of y
and z particles. ) To obtain the dispersion relation in the
noninteracting approximation, we may express the com-
plete Hamiltonian in terms of creation operators using
(3.14), (3.17), and (3.24) and then diagonalize by a gen-
eralized Bogliubov transformation. A simpler procedure
is to solve for the frequencies of the equivalent classical

C
UJ

s
'~

20 I 0 60 80 100

Magnetic Field ( kG)

FIG. 2. Field-dependent gaps as determined by neutron
scattering (Ref. 5) compared with predictions of the free boson
model, Eq. (3.28).

problem. For a given value of wave vector, the corre-
sponding harmonic oscillator Hamiltonian is

(3.28)

Here 1 and 2 refer to y and z modes. From the classical
equations of motion:

d y; Idr = dH IM, , d 8; /dr = dH Idy, —,
we obtain the frequencies:

(3.29)

where on the right-hand side the energies are evaluated at
h =0. In the free boson model co goes to zero at a criti-
cal field which has the same value as for a field in the z
direction (up to the slight difference in g factors),

(3.31)

co, (h) =(co, +co )/2+(g„yah) +[2(g„)tciih) (co, +co„)

+ (
2 2 )2/4]1/2

(3.30)

4t

E

m
I

C)

3

2-

0
0

Temperature ( K )

FIG. 1. Measured susceptibilities (Ref. 4) vs the predictions
of the free boson model, Eqs. (3.21) and (3.25).

However, unlike the case of a field in the z direction
where the existence of the phase transition follows from
symmetry arguments and general principles, it seems un-
likely that the phase transition survives the effect of the
interactions for a field in the x direction. However, if the
boson repulsion is relatively weak [the effective coupling
constant, A. in Eq. (3.10) is small] there may be a rather
steep rise in dM" /dh at approximately this value of h,
i.e., an "effective h,„." The combination of the nonzero
interaction and the fact that 5, )5 should tend to push
the effective h,„somewhat higher than h„. The observed
h,„ in Ref. 7 was about 33%%uo higher.

The field-dependent gaps of Eq. (3.30) are compared
with those obtained from neutron scattering in Fig. 2.
Note that only two branches were observed in neutron
scattering, whereas there should be three on general
theoretical grounds. We suggest that the lower branch
seen was actually the x branch [i.e., involving fiuctuation
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of the spins in the direction of the applied field which was
the c direction in the notation of Ref. 5]. The lowest y
branch was not reported in Ref. 5. However, it was
found that the intensity of the observed lower branch
dropped by a factor of 2 as the field was increased to h, .
This could be explained if half the intensity split off into a
lowest branch.

IV. CONCLUSIONS AND DIRECTIONS
FOR FUTURE STUDY

All of the experimental measurements seem to be at
least qualitatively consistent with the theory discussed
here. Two apparent discrepancies that might be cleared

u~ by further experimental work are the nonzero value of
at low temperatures and the nonobservation of the

splitting of x andy modes due to a field in the x direction,
or due to anistropy even at zero field, if it exists.

More finite chain numerical work would also clearly be
desirable. Calculations of the gaps 6, and 6+ with the
isotropy breaking D term of Eq. (2.1) could be used to es-
timate the value of D. Some work of this type has al-
ready been published' but the chains used were very
short (mainly ten sites) and the gap estimated for D =0 of
0.25J is far off the present best estimates of about 0.4J.
It would also be useful to study the splitting of h„and b

modes with the addition of further anistropy such as a
term:

5H=D„Q (S;") (4.1)

ACKNOWLEDGMENTS

Research was supported in part by the Natural Sci-
ences and Engineering Research Council of Canada
(NSERC), the United States Department of Energy (US-
DOE), and the National Science Foundation (NSF).

T=O susceptibilities as a function of D and D„would
also be very useful and could help to clear up the ques-
tion of the breaking of symmetry of rotation about the z
axis in NENP. The T=O magnetization has been studies
numerically for the isotropic model in Ref. 11 and agrees
well with the experimental results. It would be in-
teresting to extend these studies to lower fields and also
to include anisotropy, the D term of Eq. (2.1). In particu-
lar the conjecture made here that there is no discontinui-
ty in dM„/dh„ for finite anisotropy could be checked.
The free boson model did not agree very well with experi-
ments on the apparent h,„or the field-dependent gaps of
Fig. 2. Numerical studies of these quantities at non-zero
anisotropy parameter, D, would also be useful.
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