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The Ginzburg-Landau functional for a superconductor is extended to include a quantum-
fluctuation term arising from imperfect screening of the long-range Coulomb interaction. At low
temperatures the resulting quantum x-y model shows a second-order phase transition between a su-
perconducting state and an insulating state as a function of the ratio of the phase stiffness to the
Coulomb energy measured on the scale of the mean pair spacing. By relating the functional formu-
lation to a BCS-type model of high-temperature superconductivity in the strongly correlated re-
gime, we show that the phase stiffness is proportional to doping away from the %-full Mott insulat-
ing state. We discuss application of the model as a mechanism for the onset of superconductivity of
the CuO,-based high-T, materials above a critical doping level. Transport and optical properties of
materials with reduced transition temperature are calculated.

I. INTRODUCTION

In this paper we address the physics of the insulator-
superconductor transition observed in a variety of ma-
terials of the La, ,Sr,CuO, (2:1:4) and YBa,Cu;0,_,
(1:2:3) classes. The phase diagram obtained from mea-
surements in both of thesé classes of superconductors
shows that they are well-defined Mott insulators at a
composition corresponding to a nominal one hole per
copper in the CuO, planes (x =0 for 2:1:4, y =1 for
1:2:3) and remain insulating up to a critical hole-doping
concentration of about x =5% for 2:1:4 (Ref. 1) and
y =0.5 for 1:2:3.2 A similar phenomenon seems to occur
for the recently discovered T’ class Nd,_,Ce, CuO,,
which may be interpreted as an electron-doped Mott in-
sulator.?

Our purpose in this paper is to explore the conse-
quences of the hypothesis that Cooper pairing between
the charge carriers is the dominant energy in the prob-
lem, and furthermore that it persists even in the insulat-
ing regime below the critical doping threshold for super-
conductivity (which we note by §,.).

In this limit, localization (i.e., the fact that the system
develops a gap for charge fluctuations) is then a conse-
quence of competition between the suppression of pair
density fluctuations due to the long-range Coulomb
repulsion on a length scale longer than an effective
Cooper-pair radius, and the tendency for long-range
phase coherence between pairs that we express in terms
of a Ginzburg-Landau phase stiffness parameter. Our ap-
proach is based on a phenomenological description in
which we assume the existence of an underlying periodi-
city with length scale a, for the idealized homogeneous
system.

In Wigner’s original argument for electron localiza-
tion, the length scale for localization is basically the car-

41

rier spacing. This can be traced back to the fact that
electron-electron repulsion is minimized with only one
electron per unit cell, in contrast to charge-density-wave
formation in more complex materials where Fermi-
surface nesting sets the localization length scale. For our
case we make the assumption that carrier repulsion on
the scale of a lattice spacing has been converted to a pair-
ing attraction by strong correlation effects, but that the
Coulomb energy on the scale of the spacing between pairs
remains repulsive. Thus we take a, to represent the
mean pair spacing, hence to vary as 8 /2. In practice, a
nonuniform potential associated with the dopants (Sr**
in the case of 2:1:4 or chain oxygens for the 1:2:3) will
tend to lead to random pinning of the pair localized state,
which may be sufficient to obscure the breaking of
translational symmetry. Nevertheless, our basic hy-
pothesis is that the pairing energy is stronger than the en-
ergy to localize a single carrier, so that it is energetically
more favorable to localize one pair at a doping defect
than to localize two individual carriers at two separate
defects.

Our hypothesis is to be contrasted with alternative
scenarios for the insulator-superconductor transition that
have been proposed such as conventional single-particle
localization,® the idea that magnetic-mediated pairing
only switches on when Néel order disappears,’ or the idea
that some kind of exciton-mediated pairing requires a
finite hole concentration to become attractive.® We do
not attempt a microscopic justification of our approach,
although we show that the underlying physics is similar
to that derived on the basis of the negative-U Hubbard
model by Robaszkiewicz et al.”

In our picture, the disappearance of superconductivity
below the critical doping concentration, ., does not in-
volve pair breaking as it would in phonon-mediated su-
perconductors where the Bardeen-Cooper-Schrieffer
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Schrieffer (BCS) coherence length &ycg is in general
longer than the mean free path for the carriers, but rather
that it is associated with the loss of long-range supercon-
ducting phase coherence as the Coulomb energy to
suppress charge fluctuations overcomes the tendency to
long-range superconducting order maintained by the
Ginzburg-Landau phase stiffness parameter. Thus the
transition temperature for onset of superconducting
phase coherence, T, will not, in general, coincide with
the temperature below which Cooper pairing occurs,
which we denote by Tgcs.

One of our principal results is to show that the phase
stiffness parameter is roughly proportional to doping con-
centration, 8, within a mean-field BCS theory for super-
conductivity. Consequently, the tendency to charge lo-
calization takes place progressively as & is reduced, with
corresponding reduction of the superconducting transi-
tion temperature T, till, for § <8, the system enters an
insulating phase with an energy gap for charge excita-
tions.

Our model is formulated in terms of a path integral
with a generalized Ginzburg-Landau (GL) action in
which the effect of long-range Coulomb interactions is
represented by a time-dependent term. This leads to
quantum fluctuations of the GL order parameter, and the
insulator-superconductor transition becomes a second-
order phase transition at zero temperature. Consequent-
ly, we expect to see critical fluctuation effects close to §,
in which the fluctuations (on the superconducting side)
correspond to islands of pair-localized state on a length
scale £, that diverges at §.. The existence of this length
scale may help explain the sensitivity of CuO,-based su-
perconductors to neutral blockers of superconducting
coherence such as Zn.} At finite temperatures, with &
close to 8, the carriers remain paired below the pairing
temperature, Tpcs, but above the insulator-
superconductor phase transition temperature, T, so that
in an intermediate temperature range, both excited pairs
and ionized single carriers will be present in a kind of hot
plasma.

A further consequence of the existence of this mixed
state will be the appearance of an optical absorption edge
below the BCS pairing gap, 2Agcs, corresponding to exci-
tation of charge fluctuations in the superconducting state.
Because of imperfect screening due to the pairing, the
usual Josephson plasma frequency will be reduced and, in
fact, go to zero at the insulator-superconductor phase
boundary. This in turn leads to the optical absorption
threshold going to zero as 6—§,, and to disappearance of
the zero-frequency London term in the optical conduc-
tivity for § <6, when the system enters the insulating
state.

II. APHENOMENOLOGICAL GINZBURG-LANDAU
ACTION WITH LONG-RANGE
COULOMB INTERACTIONS

The derivation of a GL action from a microscopic
model for fermion pairing involves integrating out the
fermion degrees of freedom for fixed values of the local
order parameter variables ¥;(7) inserted in the micro-
scopic theory via a Hubbard-Stratanovich transforma-
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tion. This procedure has been discussed in general terms
by Efetov.’

The resulting functional includes time-dependent (i.e.,
quantum) fluctuations of the order parameter, and hence
describes the response of the system in terms of collective
bosonic degrees of freedom. This response is character-
ized in terms of the ¢ and w dependence of the kernel for
the quadratic term in ¢ in the resulting functional. For
disturbances on a length scale shorter than the
Ginzburg-Landau zero-temperature coherence length
and time scale shorter than #/2Agcg (Agcg the BCS gap),
one expects efficient screening due to ordinary single-
particle excitations. However, at long wavelengths and
low frequencies, screening will be taken over by the col-
lective degrees of freedom and the usual single-particle
screening will be less effective owing to the pairing gap in
the underlying fermion system. Thus the usual Lindhard
function entering into the calculation of the ¢- and w-
dependent dielectric function will be strongly modified in
this region of ¢ and w. To simplify the resulting analysis,
we make a basic assumption that a single effective high-
frequency dielectric constant €, may be defined to de-
scribe screening at short length and time scales. We then
start from a phenomenological Ginzburg-Landau action
of the form

B
Fa= [, d7 [ dx} |CoglVapV bl +alvl+b]yl"

2

€0

4e?

+ A4 ﬁéﬂ , (1)
ar

where ¥=|1|e’® and the last term takes account of the
Coulomb energy resulting from quantum fluctuations of
the phase of the order parameter. In this description of
the superconductor, screening effects at small g and o are
now included through the dynamics of the ¢ field. As we
will show in the following, this may respond either as a
superconductor (with metallic screening) or as an insula-
tor (with dielectric screening), depending on where one is
in the phase diagram.

Our second basic assumption, discussed in the intro-
duction is that there is a fundamental unit cell, length a,
defined by the mean pair spacing, which exists in bott. the
insulating and superconducting phases. We discuss this
assumption further in relation to the negative-U Hubbard
model in Sec. V.

We now put our model (1) onto a lattice of spacing a,.
Note that the Coulomb term is three-dimensional, while
the Josephson coupling is of two-dimensional character
(or highly anisotropic) due to weak tunneling between
CuO, planes. The lattice version of (1) then naturally
leads at T =0 to a Hamiltonian for the quantum GL or-
der parameter of the form of a quantum xy model:

Hg =—J 3 cos(¢;—¢;)
ij)
ieil c!

ij
€-d 2 4i;

+ (2)

where the inverse capacitance matrix C,-j_1 is the lattice

version of ao/|R;| given by
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eiq‘RU
c;'=3 3)

~ 2(3— cosq,a,—cosq,ap—cosq,d,) ’

where the sum is restricted to the first Brillouin zone and
d, is the lattice spacing normal to the CuO, planes.

In (2) the amplitude fluctuations of the order parame-
ter inherent in the original functional (1) are suppressed
and all the dynamics is in the phase fluctuations. The
model is thus reduced to that of a granular superconduc-
tor,'® although here it is to be understood that the
‘““grains” are purely intrinsic and define degrees of free-
dom of the postulated Cooper-pair-localized state. The
appropriate Josephson coupling parameter is given by

J =Cd,y |y (4)

where C is the Ginzburg-Landau ‘“‘phase stiffness” pa-
rameter, and we have replaced the gradient by a finite
difference V;/a, and introduced a volume element add,
for the unit cell.
Coupling to an electrostatic field ®(x) may be intro-
duced by recognizing that
2e . d
plx)= ZSx x)ewla¢i (5)

represents the charge fluctuation-density operator for the
pair-localized state so that the coupling term becomes

Hy = [d @(x)p(x) . (6)

By imposing Poisson’s equation on the internal part, ®,
of the electrostatic potential

- V2(I:‘int =

int?

2ep(x)

we can take care of the long-range part C,-j_'z 1/R;; of
the Coulomb interaction, and rewrite the model in terms
of a separation of the total Coulomb energy into an intra-
cell term, or short-range part and a long-range part. This
leads to a quantum xy model with on-site and nearest-
neighbor terms only

3 2

=—J 3 cos(¢;—¢; .8¢

(ij) i

7

together with a long-range Coulomb interaction included
via (6).

The physics of the quantum xy model has been ex-
plored extensively, although mostly on the context of a
short -ranged (i.e., screened) mverse capacitance matrix
C,J (see, however, work of Fisher!! and Fisher and Grin-
stein'?). The long-range nature of C;; ' will have impor-
tant consequences for the predlcted optical properties
(see Sec. IV). We show in Sec. III, however, that it will
not alter the qualitative physics of the insulator-
superconductor transition at 7 =0, or of the general na-
ture of the phase diagram.

The effect of the short-range part of the Coulomb term
is to lead to quantum fluctuations in the long-range phase
coherence of the superconducting order, which are
sufficient to disrupt long-range order above a critical
value. For the model of Eq. (7), the superconductor-
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insulator instability occurs at the mean-field value J,
defined by!’

_de’
€,,0,

2
r= L_Z
J.€,aq

=0 (8)

given in terms of the diagonal part C;; ! of the Coulomb
interaction. Above the critical value (4e2/€ayJ.)=2 of
the ratio of the Coulomb energy to Josephson coupling,
the long-range phase order parameter { exp(i¢)) goes to
zero and the weight of the London superfluid term in the
electromagnetic response o(w) < 8(w) also goes to zero,
so that the response becomes that of an insulator. (As al-
ready mentioned, we assume that the pair-localized state
is pinned so that collective charge-density-wave conduc-
tion of Frohlich type is suppressed.)

For J>J, the system remains a superconductor
where, for J close to J., the weight of the § function in
the electromagnetic response is reduced and goes to zero
at J =J,. In this regime the system behaves as a metal
and screens out an applied static electric field on the
length scale of the lattice spacing a,. At finite frequen-
cies a longitudinal electric field can in principle penetrate
the superconductor in the limit of zero interplane tunnel-
ing. (See the discussion in Sec. IV.)

In order to relate this instability to an underlying mi-
croscopic model for the CuO,-based superconductors, we
use the mean-field approach based on a superexchange
type of electron-electron interaction. Strong on-site
Coulomb correlations are taken care of via a slave-boson
representation treated in a mean-field limit. The phase-
stiffness parameter may then be computed from an ex-
pansion of the appropriate Cooper-pair correlation func-
tions in powers of g. For a superconductor at 7' =0 this
involves calculating the effect of a distortion 8¢(x) from
the ground-state broken symmetry order parameter .
This has been conveniently summarized by Kleinert.'"> A
detailed calculation is discussed in Appendix A. To get a
feeling for the doping dependence of the phase stiffness at
this stage, we consider the diagonal contribution'

J= lim azL“(q), 9)
9—0 dq

where

EvEy o e 4y

~ E(E +(E +E; )

L= (10
and E; are the quasiparticle energies in the BCS theory.

We first consider the simplest mean-field approxima-
tion of Basaran et al.'* and Ruckenstein et al."> In this
approximation the E; have the form

E,=[el +IT, 0%, (1

where €, =({b2)e} —u), (b?) is the slave-boson mean-
field expectation value, {b2) =§ (hole concentration),

m(k)=2[cos(k,a)+cos(k,a)],

A is the BCS gap parameter, and [ is the pairing interac-
tion. For small 8, this form of the strongly correlated
electron model has the property that the mean-field gap,
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A, is independent of 8. This is because at very small car-
rier concentration, the kinetic energy term in the BCS
equation —O0 and all the pairing comes from the poten-
tial term. It then turns out that the phase-stiffness
response (10) becomes singular in the §—0 limit for this
model. This may readily be seen from (11) since
E, = —1IA|r]| for occupied states in this limit. Then

1 1

1 1
Lilsco=— S ————=—In|—
118=0" 1A % AR R TN

qaop

(12)

In order to achieve a physically sensible result for small
8, it is necessary to take account of the fact that the
strongly correlated Hubbard model has long-range anti-
ferromagnetic order at low doping, at least in a mean-
field limit.'® In this case the kinetic energy part of E, is
split by a k-independent antiferromagnetic gap (see Ap-
pendix A). This removes the divergence in Eq. (12). Us-
ing

9 2er (b2t +7,(TA)] 374,

—FE
aq2 k+gq =0 Ek an

q=0
(13)

and the fact that A «<V'§ for small § in the presence of
antiferromagnetic order, we see that the phase-stiffness
parameter J [Eq. (9)] is proportional to 6 for small §. An
equivalent way of saying this is to remark that the
Ginzburg-Landau coherence length in BCS theory varies
as gL ~Vp/A, with A, the BCS gap."® In this case this
becomes modified by replacing A, with the magnetic gap
and adding an additional contribution from the k depen-
dence of the gap A(k)=A7, in Eq. (13). Since both vy
and A vary as V'8, this leads to £%; « 8.

As a function of hole concentration the stability cri-
terion (8) then shows that the system will remain local-
ized at small doping up to a critical value 8, depending
on the strength of the effective high-frequency dielectric
constant €. To make contact with experiment we fit €,
by assuming that the experimental critical doping ( = 5%)
is given from (8). J(8) is calculated numerically using the
extended mean-field theory of Inui et al.'® At finite tem-
perature, we use the relation J < |¢|?, where |¢| is the
Ginzburg-Landau order parameter and assume a linear
relation ||~ (1—T/Tycs) to derive

e2

JC(T)-_—JO(S)(I—T/TB(;S):Zz—a—O— , (14)

which defines the insulator-superconductor phase bound-
ary T,(8). The results are shown in Fig. 1. As & in-
creases, the relation between J, and § rapidly becomes
nonlinear and T,(8) approaches Tgg for § 0. 15.

III. EFFECTIVE-FIELD THEORY IN THE REGION
OF THE INSULATOR-SUPERCONDUCTOR
TRANSITION

In this section we discuss the effects of the long-range
part of the Coulomb interaction on the insulator-
superconductor phase transition already formulated in
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FIG. 1. Phase diagram [from Eq. (12)].

terms of the nearest-neighbor quantum x-y model. To do
this we make a further coarse graining following earlier
work!” by introducing a coarse grained complex order
parameter x(r,7) that measures a local average of
(exp(i¢)). We then perform an expansion about a
mean-field saddle point based on the dominant, diagonal
short-ranged part of the Coulomb interaction, C;;!. In
the presence of an electrostatic potential @ the resulting
free-energy functional may be written in gauge-invariant
form as

F= [Par [ & |rixP+ulxl*+ClV X

+d| o, — 2o

o

X , (15)

where r =ec(ec/ZJ —2), C=(ecad/3ZJ), u=(ZJ)?/
6ec,d =2/g¢, and Z is the number of nearest neighbors,
and e.=4e%/€_a,. By including the internal electrostat-
ic potential in @,

d(x, )=, +O, (16)
where
=V, =4mpiy (17)
and
*
P, 7)= | 2e X*%—%XTX +2edy*y (18)

is the appropriate gauge-invariant charge (fourth com-
ponent of the current operator), we have included the
effects of long-range Coulomb interactions as already dis-
cussed.

The effects of these long-range interactions on the
physical properties in the localized regime, J <J,, where
J. is a renormalized critical phase stiffness parameter,
may be understood by calculating the bare dielectric po-
larizability response function in the Gaussian approxima-
tion:
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ROg(x, ) =AT{V (X, 1)} o{ V 'pin(0,0)}5} ) ,  (19)

where a and [ are cartesian suffixes. For r >0, the
Gaussian boson modes are massive with energy
172

2
Ckitr 20)

ka d

and the resulting response function may be written in
terms of the boson propagator

g%x,7)=(T{x(x,7),x*(0,0)} ), @21

from which g%k,e,)=1/(e2 + Q% ), where ¢, is a Matsu-
bara frequency €, =27nT.
In terms of g, the response function is given by

R%g0,)=—= S g%k +q,0, +¢,)8%k,e,)
q2 k
€ ,

X(g, tw,)o, . (22)

At T =0, the appropriate analytic continuation gives for
the retarded propagator

1 o(Q
g* % 49 o

——‘Qk +gq )
(Q+Q,, +ie?]
(23)

R%q,0)=

As g —0, the numerator may be expanded in g to give

RY%0,0)=

c )
d % 40} [0?*—(2Q, +i€)] 2y

For Qy=V'r/d >0, the dielectric response therefore
has a gap of 2}, corresponding to excitation of a pair of
Bose fluctuations, so that the system is an insulator. The
effect of the long-range part of the Coulomb interaction
may now be understood qualitatively by thinking of the
system as a medium of polarizable oscillators. Neglecting
local-field effects, the long-wave dielectric constant may
then be written

4e

€0,0)=1—4r R%0,0) ,

©

which, in the limit of large r, we can expand in Ck2/r to
give
1

(4 2 /¢ W) TS (25)

€(0, a))~1+ 5
(290)_0)

where n, is the density of oscillators, ny=(1/¥)
XZk<k,, 1, where V is the volume. As J—J., r—0
and the dielectric response will diverge. In terms of dia-
grams, the preceding approximation is equivalent to an
RPA summation of polarization bubbles for the dielectric
response function

4m(4e’ /e, )R%q,0)

1—4m(4e? /€ )R%q,0)

e Ngo)=1+ (26)

Calculation of leading (one-loop) corrections to the bo-
son mass term will now involve polarization diagrams in
addition to the short-range part coming from the uy*
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FIG. 2. Leading contributions to boson self-energy.

term (Fig. 2).

Thus we do not expect a basic change in the physics as
a result of the long-range part of the interaction, al-
though the scaling character of critical fluctuations close
to J. may well alter as in classical critical systems with
long-range interactions.

VI. DIELECTRIC RESPONSE AND OPTICAL
ABSORPTION IN THE SUPERCONDUCTING STATE

For J > J_, on the other hand, r <0, and the system de-
velops long-range superconducting phase order with
mean-field order parameter

=V|r|/2u . (27)

In order to calculate the electromagnetic response of
the system it is now important to distinguish between
longitudinal and transverse excitations. It then turns out
that the model field theory introduced in (7) is not ade-
quate to deal with the long-range Coulomb effects in the
superconducting phase. To understand this, it is neces-
sary to go back to the quantum x-y model of Eq. (2). Let
us consider the system far into the superconducting re-
gime. Then the long-range phase coherence is well estab-
lished and one can expand the cosine to give a harmonic
“phason” model

_; 4®> 3 3
H ason Ci‘ ! + ( i )2
ph a]lzij / ap€, a¢l a¢j (% ¢ ¢j

(28)

It is important to remember that the first term is three-

dimensional, while the second is essentially two-
dimensional.
Expanding in phason modes
1 1q ‘R —iqR; a
=— ‘b =— 29
% VN b 7o zq: 9¢; 2

we see that the long-range form of C, ‘ leads to a set of

phason modes where

=v/(172a,)(b,+b_,) (30)
with a} =(J€ a,/4me?)g3q” and
Hpason = Eﬂl(q)(b*b +1), 31
where
R 5 172
QJ(q)= 47e J - q1 - (32)
aoem ql+(qzdo/ao)
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are a set of Josephson plasma frequencies appropriate to
layered materials (i.e., the long-wavelength regime for the
plasmon modes derived by Fetter!®).

These modes couple [via ®,,, in (6)] to the longitudinal
part of the electromagnetic field. For g,=0 the Gold-
stone modes are pushed up to finite frequency as pointed
out many years ago by Anderson.!° However, the plasma
branch for finite g, has {}; < g, in the limit of zero inter-
plane tunneling, so it stretches all the way down to zero
frequency. For real layered superconductors, however,
there would be a threshold plasma frequency

Q|mm §GL/§GL)QJ(‘1 =0)

that may be considerably reduced from the bulk value.
To deal with the effects of Coulomb-induced fluctua-

tions on the superconducting phase order, which one may

think of as spontaneous creation and annihilation of vor-

|

2
2lrixgmn*+C

F= foﬁdrfd3x

Vl"sA X
¢

where we have introduced an external electromagnetic
field A in transverse gauge V- A=0.

In effect, the model of (34) supposes that the time
dependence of the amplitude part of the order parameter
x is given in terms of the short-range part of the
Coulomb interaction, while the time dependence of the
phase of the order parameter is dominated by the long-
range part. We give a further discussion of this postulat-
ed form, based on perturbation theory, in Appendix B.

Given this model form, it is straightforward to calcu-
late the optical response function for the system in the
superfluid state. Writing the conductivity in terms of a
diamagnetic and paramagnetic part [cf. Schrieffer (Ref.
20, Chap. 8)] we have

K;(g0=R g+ |C 24’"” 818, , (35)
where
and
= [dPre™ T (x*Vix—xVix*) . 37
In (35), the London term, proportional to the

superfluid density, goes to zero at the superconductor-
insulator phase transition. Substituting (33), we see that
the phase-only modes couple purely longitudinally to the
electromagnetic field, hence do not contribute to the opti-
cal absorption. On the other hand, the mixed term

il (x)=2ixm(x)V b(x) (38)
will couple transversely producing an absorption band
formed from a phason together with an amplitude fluc-
tuation (see Fig. 3)

+d)(0
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tex loops in 2+ 1 dimensions, the effective-field theory (7)
needs to be extended in the superconducting phase. Once
a long-range superfluid order parameter has been estab-
lished (i.e., for J >J.), the effects of the long-range part
of the Coulomb interaction must be included by an addi-
tional time-dependent term of the form postulated in Eq.
(1) that acts on the phase variable of the coarse grained
order parameter x(r,7).

To do this, we work to quadratic order in fluctuations
about the mean-field minimum phase coherent superfluid
order parameter X:

X(r,7)=xee 4" [1+7(r,7)], (33)
where ¢ and 7 are purely real fields.

A reasonable form for an effective-field theory in the
superconducting phase may then be written as

do o a¢
a, az

an |
ar

8 ] , (34)

q:9;
2

S gdingd (1), (39)

REgD= [1—
k

where

k? exp(iQ 1)
g;f(t)':-' 2 2 2 J ’
(e, /4N k2+Kk2) 20]

4 exp(iQit)

8% (t)z—_ﬁf;d—_ ,

and
Qf =[Cxd(4me? /e ap)k? /(k?
Qi=[Q|r|+Ck?)/d])? .

+(kzdo/ao)2]l/2 ,

The optical conductivity is then given as
o(w)=ImK(q =0,w)

sz 47T (4

8w)+oflw), (42)

where

amplitude

mode}

phason )

mode

FIG. 3. Contribution to optical absorption in the supercon-
ductor.
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Q Ty correlated Hubbard model, we have not attempted to jus-
o (@)=ImR (g =0,0)= k% 4Cd 6:5(“’ Q=) . tify the localization hypothesis starting from a micro-

(43)

Thus we do expect to see optical absorption below the
BCS gap frequency, where the threshold frequency

0o=Q| i+ Q5 =V2|r[/d (44)

will go to zero as |r|—0 and the amplitude of the super-
conducting order parameter, x,—0. So in the region just
above the critical doping concentration, where T, is re-
duced below T'pcg, We expect to see a precursor absorp-
tion with threshold frequency scaling with the thermo-
dynamic transition temperature, 7,. Expanding J about
8. [from Eq. (12)] we see that the threshold absorption
frequency then varies as

wox T2 . (45)

A numerical evaluation of the optical absorption (41) is
plotted in Fig. 4 for a selection of values of §>5,. The
frequency scale is set by the basic unit 4e2/e_a, of the
phenomenological theory, which, however, bares no sim-
ple relationship to the BCS energy gap of an underlying
microscopic model. The curves are computed using an
arbitrary choice of model parameters and are given for il-
lustration purposes only.

V. RELATIONSHIP TO THE NEGATIVE-U
HUBBARD MODEL

The basic thesis of this paper is the idea that the com-
petition between short-range effective attraction between
fermions and longer-range repulsion can lead to a transi-
tion between a superconducting state and a pair-localized
state that breaks translational symmetry. Although we
have derived the phenomenological phase-stiffness pa-
rameter from a mean-field treatment of the strongly
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FIG. 4. Diagram representing contribution to intragap in-
frared absorption at three different values of the hole concentra-
tion, 8. Frequency is in units of ec =4e2/€,a,.

scopic model. One can, however, make an analogy with
the negative-U Hubbard model by considering an ideal-
ized system in which a set of strontium acceptors (for the
case of 2:1:4 compounds) form a regular superlattice with
period a,/V'2. We may then suppose that the added
holes form a set of impurity bands with Wannier orbitals
built out of the hole states of the original, underlying
Hubbard model. If we now restrict ourselves only to the
lowest superlattice band (i.e., average over all details on a
length scale <<a,/ V2), the resulting model Hamiltonian
may be written as a negative-U model with general form

H Tl 2 CIUC_[U eﬁ"zntfn
(ij),o

TWer X Nighjo (46)
(ij),a,o'

superlattice ~

where we neglect the Coulomb repulsion beyond the first
neighbor cell and U is an appropriate average over the
superexchange coupling of the original, underlying Hub-
bard model. Since one additional hole per Sr is added,
the superlattice band is J full.

Clearly this approximation would not represent the ki-
netic energy for an uncorrelated system since the true
band width for the holes is much wider than the superlat-
tice band width. However, it does simulate the correlat-
ed band in the mean-field slave-boson model band, since
there the band width ~8(8¢), and §=(a /a,)* where a is
the lattice spacing of the original Hubbard model. Hence
(46) may not be such a bad description for the system
close to § filling of the underlying model.

We may now use the results of studies of the negative-
U Hubbard model to discuss properties of (46). Follow-
ing Robaszkiewicz et al;’ we can map the charge degrees
of freedom of (46) onto spin degrees of freedom of a
transformed system in which down-spin particles are re-
placed by down-spin holes. In the strong-coupling limit
ts/Ueqg<<1, this becomes an anisotropic Heisenberg
model:

Hg=—Jg 3 (SS7+S!S))+ W 2 SSP. @47)
(ij) (ij)

t + filling the external magnetic field (equivalent to a
chemical potential in the original representation) is zero.

For J.4> W, the lowest state has (S*)#0 and
(S§7%) =0, equivalent to a superconducting state (SS). For
J.g < W the ground state is Néel-like with sublattice
(§?)#0 corresponding to a charge-density wave, or
charge-ordered state (CO) with two lattice sites per unit
cell.

A corresponding between the quantum Ginzburg-
Landau model of Sec. II and the preceding model may be
made by writing

‘"’S 12 ’

48
i L . (48)
dp; ho

where 1 and 2 refer to the two sites in the extended unit
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cell, since the two sides of (48) have the same commuta-
tion relations.

In mean-field theory for the spin model, the transition
between the SS and CO states is first order as a function
of J/W. This is because of the constraint (S7)?
+(S?+(S7)*=2. The analogous transition for the
quantum rotor model is second order in mean field since
this constraint does not apply in the latter model. For
the anisotropic Heisenberg model it seems likely that the
inclusion of zero-point fluctuations would also drive the
transition second order.

While the preceding analogy helps in visualizing the
physics of the insulator-superconductor transition, it
should not be taken too seriously as it neglects the cou-
pling to the degrees of freedom of the original Hubbard
model for the CuO, planes from which the doping depen-
dence of J (i.e., the phase stiffness) was derived in Sec. II.

V1. DISCUSSION OF PROPERTIES OF YBa,CuO;_,
PREFORMED PAIRS ABOVE T, IN OXYGEN
DEFICIENT SAMPLES

In this section we compare the qualitative physics ex-
pected from our model with available experimental data.
There are many experimental indications that fully oxy-
genated Y-Ba-Cu-O has a BCS-like phase transition at
T.~90 K, albeit with 2A /kT. ~6—8.2! However, oxy-
gen deficient samples appear to show a number of
anomalies. In particular the Pauli susceptibility appears
to decrease with decreasing temperature below 7'~200 K
(Johnston??) as does the Y Knight shift (Alloul er al.?).

Optical data of Thomas et al.?* for Y-Ba-Cu-O ap-
pears to show a gap-like feature in the optical conductivi-
ty at =54 meV whose energy is rather independent of
oxygen concentration, but give indications of further ab-
sorption at lower frequencies, which is much more sensi-
tive to oxygen deficiency.

Although we cannot claim to give a quantitative inter-
pretation of the data, the above behaviors are qualitative-
ly consistent with our phase diagram of Fig. 1 if it is as-
sumed that the fully oxygenated sample lies close to the
top of the T, curve, i.e., where the charge fluctuation
effects are small. On removal of oxygen, 6 decreases and
the system becomes an insulator: we then assume 8, cor-
responds to Ogs. For intermediate doping our model
suggests T, < T'gcs and the appearance of optical absorp-
tion below the BCS gap. The onset of BCS pairing above
T, may be indicated by the susceptibility and Knight-
shift data. It is also consistent with data on the nuclear
relaxation rate, 1/T,, below =100 K comparing a
T.=90 K sample and a T, =60 K sample,?® which shows
evidence of Cu-singlet formation well above T, for the
oxygen deficient sample.

Finally, as mentioned in the introduction, the sensitivi-
ty of both the 1:2:3 and 2:1:4 compounds to Zn doping
may be interpreted in terms of closeness of the system to
a second-order phase transition.

A quantitative inconsistency with our basic pairing hy-
pothesis appears to be a lack of sharp transition associat-
ed with pair localization in the vicinity of the pairing
temperature, Tz as seen in the lack of an abrupt change

6675

with temperature in the susceptibility or Knight-shift
data. However, it seems possible that the randomness of
distribution of the dopants (Sr?* for 2:1:4 or oxygen va-
cancies for 1:2:3) may have the effect of smearing out this
transition.

Equally puzzling at first sight is the absence of any up-
turn in dc resistivity above T, on lowering the tempera-
ture for samples with §>8.. However, the observed be-
havior may be understood qualitatively by noting that
charge-density fluctuations, represented by time depen-
dence of the GL order parameter in Eq. (13), will carry
current. At temperatures T > T,(8) one therefore has a
hot plasma of pseudo relativistic positive and negatively
charged Bose particles with energy Q, =(k2+r)!/? and
“mass” V'r which tends to zero as T— T,. Simultane-
ously, there will be thermally activated single fermions
due to breakup of Cooper pairs. Evaluation of the mean
boson density

1
n=(Nposons )= > —7—— (49)
boso! % eBﬂk—l

for r <(T —T,) leads to a parameter-dependent function
which increases roughly linearly with T provided the
cutoff in the k sum is not too large, i.e,
Ck2 ., ~(ec/2ZJ)=0(1).

The scattering cross section for charged bosons in the
resulting classical plasma will be given in terms of the
Debye screening length

=(4mne’/e kyT)~'"?

which is roughly temperature independent for n=~T.
The scattering rate may then be estimated in Born ap-
proximation via the scattering rate (in the center-of-mass
frame) for two bosons:

2

2
Te
——2 85(Q, — Q) (50)
PRREAD 7 e k) :
leading to
2
1 T
—= |— Q, . 51
- n %nk k ( )

Since (Q, ) ~T, then provided one is in a parameter re-
gime where n = T, the resistivity varies approximately as

«T, (52)
ne‘r

where 7 represents an average over the effective mass,

m '=(d*Q, /dk?). Since our phenomenological

Ginzburg-Landau approach is only valid close to §,, the

above result is justifiable only for temperatures well

below T'gcs-

For 8 <8, r remains finite at all T, and n drops to zero
exponentially at low temperatures leading to a rapid in-
crease in resistivity (see Fig. 5). Thus the resistance
minimum observed for samples with low doping?® may be
interpreted in terms of freezing out of Cooper-pair fluc-
tuations which lead to a finite conductivity at higher tem-
peratures.
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FIG. 5. Resistivity vs temperature for a variety of values of 6
from Eqs. (49) and (50). [Upper curves: (8/6.—1)
=—0.01,—0.001; lower curves: 0.3, 0.5, 1.0]. Temperature is
in units of €.

VII. DISCUSSION

Our approach to the physics of the insulator-
superconductor transition in the CuO,-based materials is
based on the hypothesis that pairing occurs even in the
insulating state. Our main evidence to support his hy-
pothesis is the observation that conventional lowering of
T, due to unbinding of Cooper pairs (e.g., due to magnet-
ic impurities) does not seem to occur in these materials
since this would be expected to lead to a normal-
metal-superconductor transition as opposed to the
insulator-superconductor transition universally observed
in both the p-type and the n-type superconductors.

Our assumption of Cooper pairing in the insulating
state implies that conduction at finite temperatures close
to the critical concentration, §,, must take place by pre-
formed pairs, i.e., by carriers of charge 2e rather than e.
We have argued that this is not in qualitative conflict
with currently available transport or optical data. Prob-
ably the best experimental test of this picture will be a
more precise study of the intragap infrared absorption in
materials close to §,. such as oxygen-depleted Y-Ba-Cu-O.

On the other hand, our phenomenological approach
has not taken into account the effects of randomness of
dopants such as Sr** or oxygen vacancies, which will cer-
tainly modify the quantitative details of our conclusions
if included in a more comprehensive theoretical treat-
ment.?’
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APPENDIX A: DOPING DEPENDENCE
OF THE PHASE-STIFFNESS PARAMETER

In this appendix we derive the phase-stiffness parame-
ter for the Ginzburg-Landau model of Eq. (1) using the
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extended mean-field theory for a Hubbard superconduc-
tor of Inui et al.'® In this treatment, both BCS ordering
and Néel ordering are allowed to occur simultaneously.
For the real system, one expects magnetic frustration
effects to remove the long-range order.?® Nevertheless,
short-range magnetic order is likely to persist so that the
mean-field theory may be expected to give qualitatively
reasonable answers for a local parameter like the phase
stiffness.

The mean-field Hamiltonian of Inui et al.'® may be
written as

1
ﬁ kzq lquMk,qlpkq

H. (A1)

. + +
with =(c , C c c ) and
Vg k4t k*Q+—‘21t’ ~k+§1’ ~k+Q+ %1

Q=(m/ay)(X+7¥) is the antiferromagnetic nesting vector.
The matrix m, , is given by

erqn Sk+qn Pk 0
Sk+q/2 Ck+qn2 0 " P
M = Pig 0 —€k+~q/2 Sk—qr2 | "
0 “Pkg  Sk—qn2 kg2
where
e =12 /U {£[8(U' /1) +(68+2)r g, (k)
—[18g,(k)+4]p} ,

qu= zpliquqs
=3 (1*/U")[8gs(k,q,5)+28,4(k,$)]A, ,

and
s =—(t2/U")[6g,(k)+8]m, .
Here
g1(k)=2(cosk,a +cosk,a) ,
g,(k)=g3(k)—4,
gi(k,)=g,(k)g,(l)—g(k—=1),
gilk,D=g(k +D)+g(k—=1),
gs(k,l,s)=g3(k +1/2,1/2—s)+g;(k +1/2,1/2+s5)
+g3(—k+1/2,1/2—s5)
+gi(—k+1/2,1/2—5),

and Rr——-(c,TTc,-T):(C,-TlC,-l), p={ni+n;), m
=e'® Cnjp—n; )72,

Aqs=1—1v- D expl—il(x +x")g/2—i(x —x")s]A, .,

and A, = (cy1c,)).
We now follow Kleinert!® to calculate the response of
the ground state to a change of order parameter relative



41 LONG-RANGE COULOMB INTERACTIONS AND THE ONSET OF . ..

to the broken symmetry direction:

Alx,x")=Ag(x —x")+A'(x,x") . (A3)

Then we need the propagators of the generalized
mean-field Hamiltonian (A1). To obtain these we per-
form a rotation on (Al) in order to diagonalize with
respect to the antiferromagnetic coupling.

Defining
Ck +q/21 Cosek +Ck,Q+q/2TSlnek
+ t .
Ck+4/21 COSOL —C 40 1q,2) SINOy
By = .
kq T Ch4g/21 SO FCh g4 g/21 COSOY

t o —et
C kg1 SINOL—C_t 4 g4q/2) COSOY

this leads to

=1 t i
Heﬂ*_EI—v— kq ﬁququkq > (A4)
with
€iiqn Drq 0 0
it pl:‘q _El_c'-vq/z 0 0 (AS)
— s A5
o* 0 0 €k+q/2 Pkq
0 0 _pI:q _Ek_—q/Z
where

Zr=(ef /2)(1% cos20,)
+ (e, /2)(1F cos26; )ts, sin20,
and

sin20, =25, /[ (e —e; ) +4s2]'2 .

The Hamiltonian is now expressed in terms of a pair of
2 X2 matrices involving BCS coupling within upper and
lower antiferromagnetic bands, respectively. We now fol-
low Kleinert to compute the dependence of the action on
A’ to quadratic order in terms of Green’s functions given
by the inverse of Mk,o- The relevant diagrams are given
in Fig. 6. We have evaluated expressions L,z corre-
sponding to L,; in Eq. (10) numerically. The results were
fitted to a quadratic form for small g in order to extract
lim,_,, (3/3¢%)L «p- On diagonalizing the resulting quad-
ratic in A’, we found the Ginzburg-Landau parameter C
of Eq. (1) to vary linearly with 8 for small &, but to be-
come strongly nonlinear for § in the region of 15%.

APPENDIX B: OPTICAL ABSORPTION
IN THE QUANTUM XY MODEL

In this Appendix we give some justification for the phe-
nomenological model of Sec. IV by considering the effect
of coupling to a transverse electromagnetic field on the
basic quantum xy model of Eq. (2). The gauge-invariant
coupling to an external vector potential may be put in the
Josephson coupling term by replacing
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FIG. 6. Contributions to the response functions L 4.

—J Y cos(¢;—¢;)—>—J 3 cos [¢,~—¢j— fij A-dl] .

(ij) (ij)
(B1)

Then the corresponding current operator connecting sites
iand jis

jij:Jaosin(¢i_¢j) . (BZ)

In the phason limit of Eq. (26), this may be expanded in
powers of V¢ to give

i(r=Jla,Vé—La Ve)@P+---1. (B3)
On using this operator in the paramagnetic response
function (35), the V¢ term contributes only to the longi-
tudinal response and does not lead to optical absorption.
So the leading contribution to the optical absorption is a
three-phason term.

R =—i0O{{LagV8(r,)]’,1[a,V6(0,001}) .
(B4)
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Comparing this to the result derived from our phenome-
nological model (38), we see that the role of an amplitude
fluctuation is played by a phason-pair propagator

N=i{T{[agVad(r,)],[aoV$(0,0)%}) .
Using the phason limit (28), this may be evaluated as
HaB(k,t)=5a32g,?+kl (t)gif'l (1),
k

1

(B5)

(B6)

where the phason propagator is given by

gH(0=1{TLV.9(r,-V,$(0,0)])
1/2

4e?/€a
2 /€= 1 exp(—iQ¢|t])

J kK2

(B7)

and the plasmon mode frequency Q7 is given by
2 172
ki

k?4(dy/ay)k?

with Q3 =V7 4e? /e ,a,.

Comparing I1(k,w) with g 4(k,w) given in Eq. (40), we
see that the amplitude spectral density with a & response
at mode frequency Q is now broadened out into a con-

Q=0 (B8)
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tinuum stretching down to zero frequency in the limit
that interplane Josephson tunneling is zero. This means
there is no finite threshold for optical absorption. How-
ever, on inspecting the spectral density of Il(k,w) with
positive frequency part given by

oo
ImIl(k,0)=3, —J—Zﬁ(w~ﬂkl—ﬂk+kl) , (B9)
kl
we find that at frequencies (o /Q7) <<1,
3
ImMe | — (B10)

0

so that the bulk of the spectral weight occurs in the vicin-
ity of 2QJ. Hence in the phason limit, we can think of
amplitude fluctuations of the effective order parameter
(expli¢)) as occurring at twice the phason frequency.
Then the main optical absorption will occur at an ap-
proximate threshold frequency 2QJ, even though there
will be a weak tail stretching down to zero frequency. In-
cluding higher-order terms in the phason expansion of
Eq. (2) will eventually renormalize the phason frequency
to zero, leading to the loss of long-range phase coherence,
so that the amplitude mode energy will go to zero and the
threshold for strong intragap optical absorption will go to
zero at the critical doping concentration §,.
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