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Application of the classic McLaughlin-Scott soliton perturbation theory to a Josephson-junction
Auxon subjected to a microwave field that interacts with the fluxon only at the junction boundaries

reduces the problem of phase locking of the fluxon oscillation to the study of a two-dimensional

functional map. Phase-locked states correspond to fixed points of the map. For junctions of in-line

geometry, the existence and stability of such fixed points can be studied analytically. Study of
overlap-geometry junctions requires the numerical inversion of a functional equation, but the results

are qualitatively very similar. The map predicts significantly different behaviors for locking at odd

and even subharmonic frequencies and at superharmonic frequencies. It also gives indications re-

garding hysteresis in the current-voltage characteristic, the existence of zero-crossing steps, and a
description of the locking process in the frequency domain. The principal merit of the map is that it
captures much of the experimental phenomenology at a very low computational cost.

I. INTRODUCTION

Interest in the phenomenon of phase locking of fluxon
oscillations in long Josephson tunnel junctions has re-
cently been stimulated by the possibility of employing ar-
rays of such long junctions as local oscillators in integrat-
ed superconductive microwave or millimeter-wave re-
ceivers for radioastronomy and space communications. '

Phase locking in arrays of point Josephson junctions has
been under active study for some time; such arrays de-
scribed mathematically by systems of nonlinear, coupled
ordinary differential equations (ODE's). Fluxon oscilla-
tions in long junctions, on the other hand, are described
by partial differential equations (PDE's); this fact has
perhaps tended to retard the theoretical study of phase
locking in arrays of such junctions, even though the ear-
lier experimental studies also go back a number of years.

For the experimentalist, interest in fluxon oscillations
in long junctions derives largely from the fact that the in-
trinsic linewidth of the radiation emitted from a single
fluxon oscillator is quite narrow; relative linewidths as
small as 10 have been measured in the X band. A
significant obstacle to incorporating fluxon oscillators
into practical receivers has been that the po~er available
from a single oscillator has so far proved to be too small
to be practically useful. It is this fact that has suggested
the construction and study of arrays of long-junction os-

cillators.
A complete mathematical model of an array of fluxon

oscillators consists of a system of nonlinear coupled
PDE's. Results have been reported on systems of two
coupled fluxon oscillators, coupled through a resistance,
an inductance, and a capacitance, but the detailed study
of larger arrays still presents notable difficulties, also be-
cause the exact nature of the coupling between the indivi-
dual oscillators in such arrays remains to be clarified. A
simpler, but related, problem is to study the interaction
of a single oscillator with a fixed, external microwave
field. Scheuermann er, al. and Cirillo and Lloyd' have
described experimental measurements of the behavior of
a single long-junction oscillator in an external field.
Their results show that a study of this simpler system can
shed significant light on the more complicated problem of
the interaction between multiple junctions in an array.

Our theoretical approach to the study of this simpler
problem is based on the perturbation analysis of fluxon
dynamics pioneered by McLaughlin and Scott." This
perturbation analysis was extended to the interaction
with microwave fields by Chang. ' Our work takes this
approach one step further, reducing the problem to the
study of a discrete, two-dimensional functional map, in
which, for example, a stable phase-locked fluxon oscilla-
tion corresponds to one (or more) stable fixed point(s) in
the map. Obviously, this approach enormously reduces
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the computational efFort required to study the problem.
In spite of this drastic simplification, however, the ap-
proach remarkably succeeds in capturing, at least qualita-
tively, much of the experimentally observed phenomenol-
ogy. A brief, preliminary description of the phase-
locking map has been presented elsewhere. '

II. MATHEMATICAL MODEL

»n4=a0—, W, i r—, —

with the boundary conditions

(2a}

P„(0,t)+PP„,(O, t) =P„(L,t)+PP„,(L, t) =q . (2b)

Here, y=Ib;~/JDLA, z, where JD is the (physical) max-
imum pair-current density per unit length in the x direc-
tion, and q is a normalized measure of the y component
of the external magnetic field. A condition for the validi-
ty of the reduction is y 8' /8 « 1.

The essential difference for the in-line geometry is that
the bias current enters through the boundary conditions,
since Ib;„ is now applied in the x direction, rather than as
a term in the PDE. Thus the PDE becomes

The electrodynamics of a Josephson junction is de-
scribed by a (2+1}-dimensional sine-Gordon PDE for the
phase difference p between the junction electrodes. In
normalized form this equation can be written'

y„„+y„, 4„—sing —=ay, P(y„—„,+y„, )

(we ignore here the so-called cosP term). Here, x and y
are spatial coordinates normalized to the Josephson
penetration length A,J, t is time normalized to the inverse
of the Josephson angular plasma frequency co0, the term
in a represents shunt dissipation caused by quasiparticle
tunneling (here, as usual, assumed ohmic), the term in P
represents dissipation caused by the surface resistance of
the superconducting junction electrodes, and subscripts
denote partial derivatives. Details of the normalizations
may be found in Ref. 14. Boundary conditions for Eq.
(1), at x=O,L and y =0, 8', are determined, respectively,
by the y and x components of the magnetic field to which
the junction is subjected. '

In practice, a long, narrow junction structure is nor-
mally employed, i.e., L) 1 and 8' && 1, which permits the
reduction of Eq. (1) to a 1+1 dimensional model. The
exact form of the reduced model depends on the physical
geometry of the junction. The two junction geometries
that have so far received the most experimental attention
are the so-called ouerlap and in line geom-etries. ' For the
overlap geometry, assuming a constant (physical) bias
current Ib;„ in the y direction and a spatially uniform but
time-varying magnetic field applied in the y direction, the
model reduces to'

where ~—:Ib;„/2J0/A, J.
Our theoretical approach to the study of phase locking

in long junctions is based on two fundamental hy-
potheses. (i) The influence of an external microwave field
on a long-junction oscillator is felt only through the
boundary conditions, not through the PDE, i.e., we as-
sume the experimental conditions to be such that the mi-
crowave field does not significantly penetrate the interior
of the junction. (ii) The dynamics of fluxons in the interi-
or of a junction is adequately described by the perturba-
tion analysis of McLaughlin and Scott."

The essential motivation for hypothesis (i) is the obser-
vation' that in the numerical integration of Eqs. (2), an
ac driver introduced through the term g is much more
"effective" in generating phase-locked states than is a
similar driver introduced through a spatially uniform,
but time-dependent term y. Moreover, as pointed out by
Chang, ' there are physical reasons for supposing that a
microwave field cannot penetrate deeply into the junc-
tion. The motivation for hypothesis (ii) is the well-

demonstrated success of the perturbation approach in
describing various aspects of Auxon dynamics.

Furthermore, purely for computational convenience,
we make the following simplifying assumptions: (a) The
parameter P in Eqs. (2a) and (3a) is set to zero. Con-
sideration of a PAO would render the analysis somewhat,
but not overwhelmingly, more complicated. (b) The junc-
tion length L is large compared with unity so that we can
employ as a solution ansatz a form appropriate to the
infinite-length limit. A modification of this assumption,
involving a perturbation treatment of phase shift and
power dissipation effects at the junction boundaries' is
discussed in Sec. VII later. (c) Only dynamic states in-
volving a single fluxon (or antifluxon} are considered.

III. PERTURBATION ANALYSIS

We follow herein the procedure first reported by
McLaughlin and Scott" and further elaborated by Chris-
tiansen and Olsen, '

by Levring et al. ,
' and by Chang. '

Pf = —f p„p,dx . (4)

From Eqs. (2a) and (4), the equation of motion for a sin-
gle fluxon (with P=O) is

A. Overlap geometry

In the infinite-length limit, a fluxon solution of Eq. (2a)
is well characterized by its momentum Pf, defined as

4'n»n4 =a4

and the boundary conditions become

P„(0,t )+PP„,(0, t) = «+ g, —

P„(L,t)+PP„,(L, t ) = +a+ rt,

(3a}

(3b)

(3c)

dPf
dt

= —czP +2my .

For the pure sine-Gordon equation (a =y =0) in the
infinite-length limit, the single fluxon solution has the
well-known form



41 MICROWAVE PHASE LOCKING OF JOSEPHSON-JUNCTION. . . 6643

$0(x, t) =4 arctan I exp[ —(x —ut —xo )/(1 —u )'/2] }, (6)

in which xo is the initial position of the fiuxon, and u is its (constant) velocity of propagation. In this case, from Eqs. (4)

and (6), the momentum may be calculated explicitly as

P =8u/(I —u )'
fO (7)

The first essential ingredient of the perturbation analysis is to assume that if a and y in Eq. (2a) are sufficiently small,
the perturbed fluxon may be well described by the form

P (x, t)=4arctan(exp{ —[x —X(t)]/[1 —u (t)]' }), (8)

in which the fiuxon position X(t}is given by

X(t}=xo+f u(r)dr . (9)

The dynamics of the fiuxon in the interior of the junction
may then be calculated by inserting this form, through
Eq. (7), into Eq. (5). One simple, well-known result of
this procedure is that, for given a and y, there exists an
equilibrium velocity, called u „,for which energy input
and dissipation are exactly balanced. This velocity is
found from the stationary solution of Eq. (5), with Pf
given by Eq. (7). The result is

it „=[1+(4a/ny) ] (10)

z ( t) =z „+(zo —z „)exp( at), — (12)

in which zo is the initial value of z, and z „corresponds to
tt „ in Eq. (10). The fluxon trajectory may then be found

by combining Eqs. (9), (11),and (12). The result is'9

z +(z2+ 1)1/2

z +(z2+ 1 )1/2

Q„ 1+z„zo+(z +1)' 2(z +I)'
ln

1+ „+( +1)'/ ( „+1)'/2

1X(t)=x +u„t ——ln
a

(13)

(We note parenthetically here that Eq. (12) of Ref. 19
contains a printing error. )

The second essential ingredient of the analysis is the
treatment of the boundary condition, Eq. (2b). Following
I,evring et al. , ' we observe that during a reflection from
a boundary, due to Eq. (2b} a fiuxon undergoes an energy
variation EHf, given by

EHf =+4mg . (14)

For constant 2), this variation is positive at (say) the left-
hand boundary and negative at (say) the right-hand
boundary. To relate this energy variation to the Buxon
trajectory X(t), we recall that the energy of a solution of
the pure sine-Gordon equation in the infinite-length limit

Equation (5) may be conveniently integrated in terms
of the quantity z (t},defined as

z(t)—:u(t)/[1 —tt (t)]' =Pfo(t)/8 .

The approximation involved here is the identification of
Pf(t} in Eq. (5) with Pfo(t} in Eq. (11}.The result of the
integration is

1s

x+ 2 t+ 1 cos x (15)

For the pure sine-Gordon fiuxon of Eq. (6), this energy
may be calculated explicitly as

Hfo=8/(1 —u )' =Pfolu . (16)

Thus, an energy variation given by Eq. (14) may be relat-
ed to a velocity variation through Eq. (16), whereupon
the calculation of X(t) proceeds as before. An additional
approximation introduced here is that we can neglect the
effects of phase shift and dissipation during reflections'
and that the energy variation of Eq. (14) occurs instan-
taneously.

8. In-line geometry

The analysis for the in-line geometry, described by Eqs.
(3a)—(3c), is considerably simplified by the observation
that

y=O implies u„=O implies z„=O,
so that Eq. (12) is replaced by

z(t) =zoexp( —at),
and Eq. (13) is replaced by

1 z+(z +1)'
X(t)=xo ——ln

zo+ (zo+ 1 }'/

(17)

(18)

(19)

The energy variation at the boundaries, however, be-
comes now slightly more complicated, in that Eq. (14) is
replaced by

EHf =4m(a. kil), (20)

so that we now have to deal with two parameters, rather
than one, as in Eq. (14).

IV. PHASE-I.OCKING MAP

Perhaps the strongest limitation to the applicability of
the reduced model described earlier derives from the as-
sumption of single fluxon dynamics. Physically,
suSciently large or suf5ciently small energy exchange
terms can give rise to either the creation or annihilation
of fluxons; such effects are clearly manifested in computer
simulations of the full PDE model. An ad hoc numeri-
cal artifice for treating fluxon annihilation in in-inline
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geometry junctions is described in Sec. VI later. As re-
gards fluxon creation, we may note that a boundary term,

q or ~ & 2, is sufhcient to inject fluxons into a junction un-
der static conditions; this value is presumably thus an

upper limit for single fluxon dynamics with time-varying
boundary terms. Inasmuch as more detailed indications
are not available from the reduced model itself, we will

simply assume in what follows that g and a have values
such that creation and/or annihilation effects do not
occur.

notation

=2~
Tk k+2= Tk k+1+ Tk+1 k+2=

~ra
(23)

In addition, we may a priori expect to observe both har-
monic and subharmonic phase-locking phenomena.
Thus, the general condition for phase locking is

m 2m
Tk k+2

n co&'

A. Overlap geometry

We take for the term rI in Eq. (2b) the form

Y/='gosln(co„tt +8) (21)

as a model of the microwave field acting upon the junc-
tion. As a mathematical convenience, we consider a
periodically extended junction structure of length L lying
along the positive x axis, between 0 and + ~, in such a
way that the back and forth shuttling motion of the
fluxon in the physical junction is transformed into a uni-
directional, left-to-right motion on the extended struc-
ture, with boundary reflection effects taking place at spa-
tial points equal to integer multiples of L. A simple
mathematical artifice that describes this situation is to
rewrite Eq. (5) as

dI'g 00

aP~+2ny+—4n.rI g (
—1)"+'5(X(t)—kL ),

k=p

(22)

in which 5( ) is the Dirac 5, X ( t) is given by Eq. (13), and
the factor (

—1)"+' accounts for the alternating sign (for
fixed rI) of the energy variation felt by the fluxon during
successive reflections.

We define the fundamental period of a fluxon oscilla-
tion to be the time employed by the fluxon to complete
one back and forth round trip along the physical junction
or, equivalently, to travel from x =kL to x =(k +2)L on
the extended structure. Thus, the condition for phase
locking at the fundamental frequency is, with an obvious

I

where m and n are integers.
In the absence of a microwave field, the back and forth

shuttling of a fluxon in a long Josephson junction gives
rise to a structure called a zero-field step in the current-
voltage characteristic of the junction. In terms of our
model, current is proportional to the parameter y, and
voltage is proportional to the average fluxon propagation
velocity u,„,defined as

2L
Qgy-

k, k+2
(25)

1/2

Accordingly, phase locking of a fluxon oscillation to an
external field is manifested experimentally by the appear-
ance of a constant-voltage step in the current-voltage
characteristic. In terms of our model, the height in
current of such a step will be determined by how much
we can vary the parameter y without breaking the lock-
ing condition of Eq. (24}.

We can now proceed to calculate the dynamics of a
fluxon in the system described by Eq. (22}. Having
specified the parameters a, y, L, qp, co,&, and 8, we choose
an arbitrary initial value, zo ', of z at x=O, t=O [setting
xo in Eq. (13) to zero]. By inverting (numerically) Eq.
(13), i.e., by imposing X(TO, ) =L, we calculate the time
of flight, To, , from x=0 to x =L. Inserting To, into
Eq. (12), we calculate the final value, z&", of z at x =L,
i.e., z&"=z(TO, ). At this point, from the energy varia-
tion, dHI of Eq. (14), we calculate a z variation, bz"',
which, when added to z&", defines a new initial value,
zp", of z at x =L, t = Tp 1. Explicitly, we find

2[1)—zp [(z"') + 1]'~ + ( —1)"+' sin(cog +8) —1f 2
(26)

where, in this case, k=0 and t = Tp 1 ~ We then iterate
this procedure as desired for successive spatial intervals
of length L, substituting for t the sum of the preceding
times of flight. In this way, Eqs. (12), (13), and (26), gen-
eralized to arbitrary k, constitute a discrete functional
map for the quantities Tk k+, and zp +". Fixed points of
this map correspond to phase-locked states of the fluxon
dynamics, as given by Eq. (24).

I

viz. , the bias current, ~, and the magnetic field, g. The
effects of these two parameters on the fluxon dynamics
are significantly different: for fixed, constant parameters,
~ gives rise to an energy increase at both boundaries,
whereas g gives rise to an increase at one boundary and a
decrease at the other, exactly as for the overlap geometry.
Thus, for the in-line geometry, Eq. (22) is replaced by

B. In-line geometry

In this case, from Eq. (20), there are two parameters
that contribute to the energy variation at the boundaries,

aPI+4mg[a—+( —1)"+.'g]5(X(t) —kL ),dt

(27}
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with X(t) given by Eq. (19). Since, in the absence of a
microwave field, an energy input is necessary in order to
maintain fluxon propagation, we take for the term K the
form

It =ad, +re~in(cozt +8), (28)

z(t)=sinh[a(t)] . (29)

In terms of this quantity we can write, from Eq. (19), that

whereas for the term g we take once again the form of
Eq. (21). We consider two separate limiting cases; (i)
electric coupling, in which z,+0 and rt0=0, and (ii) mag-
netic coupling, in which i~~=0 and r10%0. For both cases
we take s'&,%0.

Calculation of the fluxon dynamics proceeds as before,
with the added simplification that, for the in-line
geometry, the times of flight, TI, I, + &, can be calculated
explicitly, rather than by numerical inversion of a func-
tional equation as in the case of the overlap geometry.
Having specified the parameters a Kd L K~ 'gp N f and
8, we choose, as before, an arbitrary initial value, zo ', of z
at x=0, t=0 [setting xo in Eq. (19) to zero]. Following
Levring et al. ,

' we now define the quantity a (t) as

by

cosh(ao" ) =cosh(ao ' a—L)+ —[xd, +K sin(co, tt +0)],

(33)

where K =~,t for electric coupling and K =( —1)"+'rio
for magnetic coupling. As in Eq. (26), in this case k=O
and t = Tp &, whereas in general k is an arbitrary integer
and t is the sum of the preceding times of flight.

V. EXISTENCE AND STABILITY OF FIXED POINTS

A. In-line geometry

The fact that the phase-locking map for the in-line

geometry can be written in explicit form renders con-
venient the analysis of existence and stability of fixed
points in this case. To this end, we note first that in the
generalization of Eq. (33), the term t is a sum of preced-
ing times of flight; this means that we are dealing with a
map with memory. To eliminate (formally) this fact, we
define the variable

a(TO, )=ao
' aL . — (30)

n —1

n= X k, k+i
k=0

(34)

From Eqs. (18), (29), and (30) it follows that

sinh(ao ' —aL) =sinh(ao ' )exp( —aTO i ),
from which, in turn, we can write explicitly

sinh(ao ')
Tp (= ln

sinh(ao ' —aL)

(31)

(32)
U„=cosh(a 0"' ), (35)

Secondly, we note that S„appears in the map only in the
argument of the sine function. This means that we may
consider S„ to be defined modulo 2n/co, t, whi. ch implies
that we are working in a cylindrical phase space. Finally,
for convenience, we define the variable

The rest of the procedure is as before: we calculate zf'",
this time using Eq. (18) instead of Eq. (12), and zo", this
time using Eq. (27) instead of Eq. (22). In terms of the
variable a (t) defined in Eq. (29), Eq. (26) is thus replaced

I

which, from Eqs. (11) and (29), is seen to be just the
Lorentz contraction factor at the nth boundary. In terms
of these variables, the in-line map may be written explic-
itly as

1
S„+,=S„+—ln

( U2 1)1/2
Inod

cosh(aL)( U„—I )'~ —sinh(aL) U„
(36a)

U„+,=cosh(aL) U„—sinh(aL)( U„—1)'~ + [~d, +K sin—(co+„+,+8)] .dc (36b)

From the definition of the term K [K =~& or
K =( —1)"+'rto], it is clear that the symmetry of the map
is different for electric and for magnetic coupling. In par-
ticular, in the case of magnetic coupling, we expect to
find fixed points for identical times of flight, TI, I, + &

for all
k, at the fundamental frequency and all odd subharmon-
1CS~ VIZ. ,

Tk k+, =male&)~, m =1, 3, 5. , . . . .

This means that

co+„+&=(n+1)m (mod2m) .

For even subharmonics, equal times of flight are not, in

general, possible. For electric coupling, the situation is
reversed: equal times of flight are possible for even
subharmonics, i.e., m=2, 4, 6, . . . , but not for the fun-
darnental frequency or for odd subharmonics. In this
case, co,P„+,=0 (mod2n. ) at the fixed point.

To calculate the fixed points of Eqs. (36), which we
denote S*, U', for equal times of flight, we use the fact
that, at the fixed point, U„+&=U„and

S„+&—S„=T„„+&=me/m, f .

Here, odd values of m apply to magnetic coupling and
even values to electric coupling. Inserting these facts into
Eqs. (36), we find that
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arcsin[(K —
~d, )/~K~ ]—8

(37a)

with

cosh(aL) —E
[1 2E—cosh(aL ) +E )

'~ (37b)

and

E —=exp( mn a—/co&) (38a)

2[cosh(aL) —1](1+E)
n [1 2E cos—h( aL )+E ]'

By using ~K~, i.e., absolute value of K, in Eq. (37a) we ob-
tain that Eqs. (37) apply to both magnetic and to electric
coupling. From Eqs. (36b) and (37a) it is apparent that K
is just the value of the bias current ~d, at which the rf-
induced step intersects the unperturbed zero-field step:
For xd, =K, setting K=O yields the same point as that
obtained by setting 8=0 with KAO.

From Eq. (37b}, a necessary condition for the existence
of U~ is that the argument of the square root be positive,
which implies that L &mn/co&. Physically, this condi-
tion says only that the limiting maximum fiuxon velocity
is 1. Assuming this condition to be satisfied, we conclude
from Eq. (37a) that S', and hence the fixed point, exists
for bias currents in the range

0&cos8(A/iKi . (43)

The left-hand inequality in condition (43) says that, for
stability, the fluxon must arrive at the junction boundary
at which the energy variation is positive during the
positive-slope edge of the microwave field. For A) ~K~,
the right-hand inequality says that the range of stability
is the entire range of existence, as given by condition (39).
For A ~K~, we may cast the stability condition into a
more useful form by substituting for S' in condition (41)
the value given by Eq. (37a}. This procedure yields that
the fixed point is stable for bias currents in the ranges

K —
~K~ (K,&K (~K—~2 —A2)' 2, (44a)

(44b)

%e emphasize that our analysis predicts the onset of in-
stability for the equal-times-of-flight fixed point first at
the center of the step, inasmuch as cos8=1 implies that
~d, =K, rather than at the extremes of the step, as one
might intuitively expect. Moreover, from Eqs. (38a) and
(42), we note that A decreases rapidly with increasing I,
which means that the stability range for subharmonics
decreases rapidly with increasing subharmonic order.

The question now arises: what happens when the
equal-times-of-Night solution loses stability? In an at-
tempt to answer this question, we hypothesize the ex-
istence of a solution having

K iKi «„&K+iK[ . (39) ~„T„„+,=me- —a, (45a)

We note that this result is in agreement with that report-
ed by Chang. '

To analyze the stability of this fixed point we linearize
the map of Eqs. (36) around the fixed point of Eqs. (37),
i.e., we consider the variational equation

5S„+, 5S„
5U

=J'S' U' 5U (40)
n+1 n

where J(S', U') denotes the Jacobian matrix of Eqs. (36)
evaluated at the fixed point, and 5S and 5U denote small
deviations from this point. The condition for stability is
that the eigenvalues of J(S', U'} lie within the unit cir-
cle in the complex plane. After somewhat lengthy calcu-
lations, we find that this condition reduces to

0&c o(cs,0iS +8) &A/iKi,

with

4aE(1+E)sinh (aL)
ecole 1 2E cosh(aL)+E—]

and

CgrfTn + $ n +P Pf 7T+ Ji~ak (45b)

where, again, odd values of m apply to magnetic coupling
and even values to electric coupling. Physically, such a
solution leaves the junction biased on the same rf-induced
step, but now a new half-harmonic frequency appears in
the spectrum.

A solution of the type specified by Eqs. (45) corre-
sponds to a fixed point of the second iterate of the map of
Eqs. (36},i.e., it has

S„+z
=S„(mod2m /co&)

and U„+2= U„. This means that

co+„+,=(n +1)nim b, , —

and

cgnS„+2=0 (mod2~) .

Inserting this information into Eqs. (36) and defining the
quantity

Recalling that co+'=0 (mod2m) for electric coupling
and co+'=0 or n(mod2m) for m. agnetic coupling, we
may simplify condition (41) to

D =exp(ab /co&),

we find the pair of equations:

(46)

cosh(aL) —(E/D } 1 ED cosh(aL)—
[1 2(E/D)co—sh(aL)+(E/D) ]'~ [1 2ED cosh(aL)+(E—D) ]'m, , cosh(aL) —ED 1 —(E/D)cosh(aL)

[1 2ED cosh(aL}+(ED) ]—'~ [1—2(E/D)cosh(aL}+(E/D) ]'~

(47a)

(47b}
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Eqs. (47) can be solved for 8 and b, . To simplify this cal-
culation, we now assume that the equal-times-of-flight
solution bifurcates smoothly into the two-times-of-flight
solution, and we study this solution near the point of bi-
furcation, i.e., we assume that ~b, ~

&&1, and we linearize
Eqs. (47). Under this assumption, we find that

tion (39). However, in contrast with the equal-times-of-
flight steps, the centers of these steps do not intersect the
unperturbed characteristic, but they are shifted upward
in current by an amount proportional to the applied mi-
crowave power. We note that these conclusions are in
agreement with those reported by Chang. '

cos8= A/iKi, (48a) B. Overlap geometry

K Kd
sin8= +—cos8,

2

Comparing Eq. (48a) and condition (43), we see that the
two-times-of-flight solution comes into existence at just
the point where the equal-times-of-flight solution loses
stability. An obvious condition for its existence is
cos8& 1. We have not attempted to analyze the stability
of this second-iterate fixed point. Instead, we refer to
Sec. VI below for numerical results regarding rnultiple-
times-of-flight solutions.

We now consider the case of even subharmonics for
magnetic coupling and odd subharmonics (including the
fundamental) for electric coupling. As mentioned earlier,
the symmetry of Eqs. (36) does not, in general, permit
equal-times-of-flight solutions in these cases. We there-
fore hypothesize once again the existence of a solution of
the type specified by Eqs. (45), where, however, even
values of m now apply to magnetic coupling and odd
values to electric coupling. With this change, we see that
such solutions are again described by Eqs. (47), provided
that we change the plus sign preceding the term ~K~ in

Eq. (47a) [but not in Eq. (47b)] to a minus sign. For sim-

plicity, we again assume that
~
5

~
&& 1, and we expand the

modified Eqs. (47) to the second order. The result is

Analysis of the existence and stability of fixed points
for the overlap geometry is complicated by the fact that
the phase-locking map is available only in implicit form.
Qualitatively, since there can be only magnetic coupling
in this case, we are led to expect again the existence of
equal-times-of-flight solutions for the fundamental fre-
quency and all odd subharrnonics. Assuming this to be
true, we can, using the ideas developed in Ref. 16, calcu-
late approximately, in the limit of sufficiently small values
of go, the range of bias current for the existence of the
fixed point. To this end, we note that, in the absence of a
microwave field, the average fluxon propagation velocity,
given by Eq. (25), is just u„. Equation (10) therefore
gives the current-voltage characteristic of the unper-
turbed first zero-field step. From Eq. (22), which de-
scribes the force acting on the fluxon, we see that, under
the assumption that Tz k+&=m~/~, f, with m odd, the
total work performed on the fluxon in propagating from
x =kL to x =(k +2)L is just 4nyL +Snq. For constant
work, we expect u,„ to remain (approximately) con-
stant. ' This implies that the average junction voltage
remains constant, which means that the junction is based
on an rf-induced step. Since g can vary in the range +go,
we conclude that the fixed point exists for bias currents in
the range

with

wr
41KI

sin8 1 — cos8

(49a}

(49b)

y 2$Q/L &y &—y+2r)p/L,

where

4aL co~

n [(m m ) (co,fL )2]'~z—

(52)

(53)

a 3A 2 aL+ tanh
2E

(50)

which, as for the in-line geometry, is just the current
value at which the rf-induced step intersects the unper-
turbed zero-field step.

We have assumed that ~h~ &&1. From Eq. (49b), we see
that, for consistency, we must have ~K~ &&A/2, which
thus gives an explicit condition for checking the validity
of the approximation. Combining Eqs. (49a} and (49b),
we find that the extremes of the step occur for
tan(28) = 1/I . Using this fact, we conclude that the fixed
point exists for bias currents in the range

sc~'K+ ~ [r—()+I')'"]
2A

& a. ,& K+ [I +(1+I )' ] . (51)

The height in current of these steps should thus vary
linearly with the applied microwave power (in the low-
power limit), rather than as the square root of the power
as for the equal-times-of-flight steps described by condi-

VI. NUMERICAL RESULTS

A. Computational procedure

The basic idea of the computational procedure has
been outlined briefly in Sec. IV earlier. Here, we fill in
some salient operational details. To calculate the
current-voltage characteristic of the junction we proceed
as follows:

(i} Fix the parameters of the map. These are a, y, L,
'go, co~, and 0 for the overlap geometry and a, K~„L, x~
(for electric coupling), qo (for magnetic coupling), co& and
8 for the in-line geometry.

(ii) Iterate the map a certain number, say M, times to
eliminate transients.

(iii) Iterate the map another N times to calculate the
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average time of fiight from T,„=(tsr+N —tsar}/1V. For
multiple-times-of-flight solutions, measure the individual
times of flight in a similar fashion.

(iv) Double M and N until T,„, as well as individual
times of flight, if present, converge to within a designated
uncertainty (typically l%%uo}.

(v) Calculate the average voltage from V,„=2~/T,„.
In a phase-locked state V,„=2',f/m, where m is the
subharmonic number.

(vi) Plot y versus V„ for the overlap geometry or ad,
versus V,„ for the in-line geometry. To check for the
presence of hysteresis (see further), it is necessary both to
increase and decrease monotonically y or xd, .

Since the map is available only implicitly for the over-
lap geometry, it is necessary to invert Eq. (13) numerical-

ly to obtain the successive times of flight, Tz k+&. Be-
cause the time dependence of X(t) in Eq. (13) is very
smooth and regular, we have found a simple Newton
method to be adequate for this purpose.

For the in-line map, it can occur that the fluxon does
not acquire enough energy to cross the junction. This
fact is evident from Eq. (32): the time of flight TI, k+, is

defined only if ao ' & aI.. This is purely an artifact of the
map, which is not present in the PDE system of Eqs. (3).
It is because of the fact, apparent from Eq. (27), that in
the map the fluxon receives energy only at the mathemat-
ical boundaries of the junction, whereas in the PDE the
fluxon "feels" the effect of the boundary conditions of
Eqs. (3b) and (3c}also in the interior of the junction. To
obviate this limitation of the map we have employed the
following ad hoc artifice: If we find a given ao'" to be less
than ar., we arbitrarily set the corresponding Tk k+ &

to a
large, but finite, value and continue with the iterations.
We then double M and repeat the run, using as initial
values for zo ' and 8 the final values obtained in the previ-
ous run. We repeat this procedure until either the solu-
tion settles into a steady state that does not require such
resets or the value required for M exceeds 1000. In the
former case we proceed with the calculation of T,„,etc.
We interpret the latter case to mean that the junction
switches to the zero-voltage state.

An aspect of fluxon oscillators that is of considerable
interest to the experimentalist is the frequency spectrum
of the radiation emitted by the oscillator. To model qual-
itatively this aspect of fluxon dynamics we represent the
time sequence Tk k+z (we use TI, k+2 rather than Tk „+,
to reflect the fact that we are "detecting" radiation from
just one end of the junction) as a sequence of unit 5 func-
tions, and we calculate the Fourier transform of this se-
quence.

B. In-line geometry

Figure 1 shows two examples of the current-voltage
characteristic of an in-line junction with magnetic cou-
pling; Fig. 1(a) refers to locking at the fundamental fre-
quency (m=1) and Fig. 1(b) to locking at the third
subharmonic (m=3). In order to directly compare the
two results we have set co& in Fig. 1(b) to three times the
value used in Fig. 1(a). In both Fig. 1(a) and Fig. 1(b) the
smooth curve is the profile of the zero-field step in the ab-
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FIG. 1. Current-voltage characteristic of in-line junction
with magnetic coupling. Smooth curve: no field; discontinuous
curve: with field. (a) Fundamental frequency, m = 1, co&=0.225;
(b) third subharmonic, m=3, co&=0.675. Parameters: a=0.05,
I.= 12, go=0.4, M= 100, and %=200. The arrows represent the
switching to the zero-voltage state because of the fluxon annihi-
lation.

sence of a microwave field, and the discontinuous curve is
the step induced by a field of amplitude go=0.4. From
condition (39) the bias range for the existence of both
steps is identical, equal to +go about the center point.
From condition (43) the equal-times-of-fiight fixed point
corresponding to Fig. 1(a) should be stable for rlo ~ 4.824;
that corresponding to Fig. 1(b) should be stable for

1.608. Both of these limits are considerably larger
than the value used. The two characteristics are almost
identical, the most salient difference being that the lower
portion of the step in Fig. 1(b}is slightly shorter than that
in Fig. 1(a}. This difference is attributable to the mecha-
nism, described earlier, of switching to zero voltage,
which is not contained in the theoretical analysis.

Figure 2 indicates the situation for locking at the
second subharmonic (m =2). Figure 2(a) refers to electric
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FIG. 2. Current-voltage characteristic of in-line junction at
second subharmonic. Smooth curve: no field; discontinuous
curve: with field. (a) Electric coupling; (b) magnetic coupling.
Parameters: a=0.05, L=12, a~=g0=0.6, co~=0.450, M=100,
and N= 200.

coupling, again governed by conditions (39) and (43), and
Fig. 2(b) to magnetic coupling, described by condition
(51). The qualitative difference between the two cases is
evident.

Figure 3 demonstrates the dependence of the locking
range in bias current on the field amplitude. Figure 3(a)
refers to the situation of Fig. 1(a) and Fig. 3(b) to that of
Fig. 2(b). In Fig. 3 the solid curves are the analytical pre-
dictions, given by condition (39) for Fig. 3(a) and by con-
dition (51) for Fig. 3(b), and the crosses are the extremes
of the step obtained by numerical solution of the map.
The agreement is quite good in both cases. %'e have
verified that the crosses in Fig. 3(b) correspond to two-
times-of-flight solutions. Moreover, from Eq. (42),
A=2.41 for the parameter values used, so the condition
that gp&&A/2 is amply satisfied, but we have not at-
tempted to perform a stability analysis for multiple-
times-of-Aight solutions.

FIG. 3. Dependence of locking range in bias current on field
amplitude for in-line junction with magnetic coupling. (a) Fun-
damental frequency, m=1, co&=0.225. Solid curve: Eq. (39);
crosses: numerical result. (b) Second subharmonic, m =2,
co,t=0.450. Solid curve: Eq. (51); crosses: numerical result.
Parameters: a=0.05, L=12. M and S are different for
different field values.

Figure 4 illustrates the evolution of multiple-times-of-
Aight solutions for in-line junctions with magnetic cou-
pling at the third subharmonic. Equation (48a) predicts
that, for the parameter values used, cosO= 1 for
gp=0. 03324. The numerical result for the first bifurca-
tion in Fig. 4 agrees with this prediction to three
significant digits. In addition, Fig. 4 shows a second bi-
furcation at gp=0.0403 and a thir'd at gp=0.0419. The
appearance of Fig. 4 strongly suggests the existence of a
Feigenbaum cascade. ' Assuming this to be the case, we
find from these first three bifurcations an estimate of 4.44
for the Feigenbaum ratio, as compared with the universal
asymptotic value of 4.669. . .

Figure 5 shows an example of superharmonic locking.
The figure refers to an in-line junction with electric cou-
pling, having m =1 and n=2 in Eq. (24) (we have tacitly
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FIG. 4. Dependence of time of flight on field amplitude for
in-line junction with magnetic coupling at third subharmonic.
Parameters: a=0.05, ~«=0.1295, L=10, and co&=0.3. M and
N are diferent for diferent field values.

assumed n=1 in all of the preceding discussion). The
right-hand curve in Fig. 5 is the profile of the zero-field
step in the absence of a microwave field, and the left-hand
one is the step induced by a field of amplitude ~&=0.8.
The induced step corresponds to a four-times-of-flight
solution. We have not yet studied the case of superhar-
monic locking in any significant detail, but a few prelimi-
nary calculations consistently show the following distinc-
tive features: (i) The induced steps are very small. (ii)
They are shifted upward in current with respect to the
unperturbed characteristic. These results are qualitative-
ly consistent with the experimental results of Scheuer-
mann et al. and with the analysis of Chang. '

As mentioned earlier, the field-induced steps calculated
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from the map sometimes show hysteretic behavior, in
qualitative agreement with experimental observations on
real junctions. We have not yet conducted an exhaus-
tive study of this phenomenon, but preliminary observa-
tions suggest that: (i) Hysteresis is more readily observ-
able with magnetic coupling than with electric coupling.
(ii) Hysteresis increases with decreasing loss coefficient a.
(iii) Hysteresis increases with decreasing junction length
1. (iv. ) For fixed a and I., the ratio of hysteresis current
to total step height is approximately independent of field
amplitude.

Figure 6 indicates the a dependence of hysteretic be-
havior for an in-line junction with magnetic coupling. A
significant feature visible in Fig. 6 is that the field-
induced step crosses the zero-current axis, extending to
negative current values. This phenomenon is frequently
observed experimentally. Zero-crossing steps have at-
tracted interest for Josephson voltage-standard applica-
tions.
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FIG. 5. Current-voltage characteristic of in-line junction
with electric coupling at second superharmoni, n=2, m=1.
Right-hand curve: no field; left-hand curve: with field. Param-
eters: a =0.05, L= 12, v~=0.8, co~=0.1125, M= 300, and
N= 300.

FIG. 6. Variation of hysteresis with loss parameter for in-line

junction with magnetic coupling at fundamental frequency. (a)
a=0.02; (b) a=0.01. Parameters: L=3, F0=0.4, co~=1.0,
M=100, and %=200. The arrows represent switching to and
from the locked state.
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C. Overlap geometry

The results for the overlap geometry are qualitatively
very similar to those for the in-line geometry with mag-
netic coupling. This fact is illustrated in Fig. 7. Figures
7(a), 7(b), and 7(c) show phase locking in the same cir-
cumstances as depicted, respectively, in Figs. 1(a), 2(b),
and l(b). Figure 7(d), which shows the dependence of the
locking range in bias current on field amplitude, may be
compared with Fig. 3(a). The soHd curve in Fig. 7(d) is
the prediction of Eq. (52). Although this equation is only
an approximation, the agreement with the numerical re-
sult (crosses) is surprisingly good.

Figure 8 shows the dynamics of the phase-locking pro-
cess in the frequency domain. In this figure the Auxon

frequency is defined as 2rrlTk ), +p l.e., we consider lock-
ing at the fundamental frequency. The drive frequency
co& is 0.230 in the lowest trace; it increases in increments
of 0.003 in the higher traces. Clearly evident in Fig. 8 is

the fact that as the drive frequency approaches the un-
locked Auxon frequency, frequency pulling is observed,
and mixing products (the small peaks near the edges of
the figure) begin to appear. At a certain point, the fluxon
frequency is pulled into synchronism with the driver,
where it remains locked for a certain interval (the central
region of the figure). Beyond this region the fluxon fre-
quency unlocks, and mixing products are once again
seen. This behavior should be compared with Fig. 3 of
Cirillo and Lloyd' and Fig. 3 of Monaco et a/. , ' which
depict experimental recordings of the same scenario.

VII. REFINEMENTS OF THE MODEL

In Secs. III and IV earlier, we have made several sim-
plifying assumptions in order to construct the phase-
locking map. We now consider possible modifications of
the proposed map, which take into account the following
efFects:
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FIG. 7. Current-voltage characteristics [(a)—(c)] and locking range [(d)] for overlap junction with magnetic coupling. (a) m= I,
F0=0.4, co&=0.225; (b) m =2, go=0.4, co&=0.450; (c) m = 3, go=0.4, co„=0.675; (d) m = I, co„f=0.225; solid curve: Eq. (49); crosses:
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(a) The presence of a constant bias current in the over-
lap geometry modifies the fluxon ground state, and the
presence of an a-loss term modifies the Lorentz contrac-
tion factor of the fluxon waveform.

(b) The reflection of a fluxon as an antifluxon (or
Dice versa) at a junction boundary introduces, even for
the unperturbed sine-Gordon system, a phase shift in the
fluxon position. This phase shift causes an effective ad-
vance in the fluxon motion that affects the phase-locking
mechanism.

(c) During a fluxon-antifluxon reflection in the presence
of an a-loss term, a fraction of the fluxon energy is dissi-
pated, resulting in a slowing down of the fluxon motion.

A. Bias and Lorentz contraction effects
for the overlay geometry

The McLaughlin-Scott perturbative approach, " em-
ployed earlier, is based on the idea that if a and y in Eq.
(2a) are small enough, the perturbed fluxon is adequately
described by Eq. (8). In practice, however, the bias term

y is not always a small parameter; in such cases, the true
fluxon waveform is significantly different from the ansatz
of Eq. (8}. Ferrigno and Pace proposed a modified an-
satz for the perturbed fluxon, given by

P t=ar csi ny+4 ar ct an(exp I
—[x —X(t)](1—y )'~ /[1 —tt (t)]'~ ) ), (54)

Pfp Pfp(1 —y )' (55)

in which X(t) is again given by Eq. (9). Equation (54)
evidently reduces to Eq. (8) for y «1. The term arcsiny
in Eq. (54) is the shift of the fluxon ground state due to
the constant bias current. Its presence gives rise to a con-
stant energy density, and hence an infinite energy contri-
bution for an infinite-length junction, which, however,
may be removed by a simple renormalization. Although
McLaughlin and Scott" did not explicitly include this
term in their ansatz, it is fairly evident that they tacitly
assumed its existence. As shown in Ref. 24, the term
(1—y )'f in Eq. (54) gives a nonzero limiting width for
the fluxon in the limit y~ l, u ~1, in (better) agreement
with analytic and numerical results.

It is easy to show that the use of the ansatz of Eq. (54)
in place of that of Eq. (8) in Eq. (4) and in the renormal-
ized Eq. (15), leads to the following modifications of Eqs.
(7) and (16):

Bfp Hf0( 1 y ) (56)

since the substitution of y,s for y in Eq. (22} leaves that
equation unchanged.

B. Phase-shift effects

It is well known that the reflection of a pure sine-
Gordon soliton from an openended boundary, i.e., a
$„=0boundary condition, is mathematically equivalent
to a soliton-antisoliton collision. Comparison of the
asymptotic forms of the single soliton of Eq. (6) and the
soliton-antisoliton doublet" shows that such a reflection
gives rise to an asymptotic spatial phase advance g for
the single soliton, given by

It is thus apparent that all of the consequences of using
Eq. (54) in place of Eq. (8) can be accounted for simply by
defining an effective bias current y,~, given by

(57)

g= —2(1 —u )'~ Inu, (58)

where u is the soliton propagation velocity, as in Eq. (6).
Olsen et al. ' accordingly suggested that the effect of
phase shift on a finite-length junction could be taken into
account by defining an effective junction length L,z,
given by

(59)

I I I I

0.23 0.26 0. 25 0.26 0.27 0.28

SOLITON FREQUENCY

FIG. 8. Frequency-domain representation of phase-locking
process for overlap junction with magnetic coupling at funda-
mental frequency. See text for details. Parameters: a =0.05,
y =0.34, L=12, and go=1.0. g'= —(1—u~ )' lnub —(1—u, )' inu, , (60}

For the perturbed sine-Gordon model used in the map,
the result of Eq. (58) no longer holds exactly because of:
(i) the presence of the perturbing terms, a and y, in the
PDE (ii) the presence of nonhomogeneous boundary con-
ditions (terms in g and/or sc), and (iii) the fact that the
fluxon undergoes an abrupt velocity variation at the
boundaries, as specified by Eq. (22) or by Eq. (27). An
operationally simple, even if by no means theoretically
rigorous, way of taking fact (iii) approximately into ac-
count is to replace 1( by an "average" phase-shift g',
given by
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C. Energy dissipation during reflections

During a fluxon reflection in the presence of an a-loss
term, there is a momentary increase in the level of energy
dissipation because of the fact that the voltage of the
fluxon-antifluxon doublet is larger than that of an isolated
fluxon. Pedersen et al. calculated this loss to be given
approximately by

bHd = —2m. af (u), (61)

in which f (u) is a function of the velocity, which de-
creases smoothly from f(0)=2 to f(1)=1. Near u=1,
Eq. (61) can be replaced by the analytic approximation

where ub, are, respectively, the fluxon velocity before
and after the reflection. For the first iteration of the map
we use L for the junction length. At this point, ub and u,
are available from zf'" and zo", respectively. These
values are used to calculate L,ff for the second iteration,
etc. In practice, the correction of Eq. (60) gives an im-
proved agreement with the full numerical simulation of
the PDE model except when ub, «1: in such cases g'
can become comparable with L, which means, from Eq.
(59), that the correction no longer has sense.

A slightly more complicated, but perhaps more correct
(although still certainly not rigorous) procedure is to
Lorentz transform the system into a frame in which
ub =u,'=u, calculate the phase shift in the transformed
frame by inserting this value into Eq. (58), and then
Lorentz transform the phase shift back into the laborato-
ry frame. We have not explored this approach in detail,
but preliminary calculations indicate that it is somewhat
less susceptible to divergence than is the correction of Eq.
(60).

VIII. DISCUSSION AND CONCLUSIONS

The phase-locking map, described earlier, offers a rela-
tively simple tool for studying a complex phenomenon of
considerable experimental interest. Its great merit, aside
from conceptual simplicity, is computational economy:
with respect to full numerical simulation of the PDE sys-
tem of Eqs. (2) or Eqs. (3), results from the map can be
obtained with a saving of several orders of magnitude in
computer time. The most significant drawback of the
map derives from the hypothesis, mentioned before, that
the basic dynamic configuration of the fluxon oscillator is
that of a single fluxon shuttling back and forth along the
junction. Physically, this is not always true, and the map
obviously will predict wrong results when it is not true.
In spite of this shortcoming, however, the convenience of
the map is such that it seems definitely worthwhile to ex-
tend its use.

In its present form, the map offers a number of specific
predictions that can be compared with experimental and
numerical simulation results. In particular, we have
specific predictions regarding the field-amplitude depen-
dence of the locking range in bias current and in frequen-
cy, the qualitatively different behaviors at odd and even
subharmonics and at superharmonics, the parameter
dependence of hysteresis, and the existence of zero-
crossing steps. An important objective for the immediate
future is to perform a detailed comparison of results from
the map with those from a full simulation of the PDE
system, incorporating into the map the refinements dis-
cussed in Sec. VII earlier (and perhaps others) in such a
way to minimize the discrepancies. At this point, an ap-
plication of the map to the problem of mutual locking of
oscillators in multijunction arrays would seem to be a
particularly fruitful avenue to explore.

bHd = —2m a[1+4(1—u)lm ] . (62) ACKNOWLEDGMENTS

This energy loss should thus be combined with the varia-
tion given by Eq. (14) for the overlap geometry or Eq.
(20) for the in-line geometry. Olsen et a!.' demonstrated
that taking into account the correction of Eq. (61), to-
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