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It is shown that one of the class of variational spin-liquid wave functions recently derived by

Wen, Wilczek, and Zee [Phys. Rev. B 39, 11 413 (1989)] is identical to the fractional-quantum-Hall

analog state proposed by Kalmeyer and Laughlin [Phys. Rev. Lett. 59, 2095 (1987); Phys. Rev. B 39,
11 879 (1989)) and Laughlin [Ann. Phys. (N.Y.) 191, 163 (1989)], and that the neutral spin- —,

' excita-

tions of the two states are also the same. The —,
' fractional statistics obeyed by these particles is

demonstrated explicitly. The spin-spin correlation function and quasiparticle profile for the Wen-

Wilczek-Zee states are calculated both numerically and by a hypernetted-chain procedure. Both are

consistent with the idea that spontaneous breaking of time-reversal symmetry is an essential feature

of any spin state lacking magnetic order. A version of this state for a three-dimensional spin system

is reported and shown to have similar properties. A case is made that the neutral spin-2 excitations

of the three-dimensional spin liquid behave like anisotropic monopoles.

I. INTRODUCTION

In a recent paper, Wen, Wilczek, and Zee' showed that
the ANeck-Marston variational procedure, when applied
to a two-dimensional frustrated Heisenberg antiferromag-
net, leads to a class of spin-liquid states lacking the parity
and time-reversal invariance of the underlying Hamil-
tonian. While the accuracy and appropriateness of the
procedure for the problem they studied is currently un-

clear, it is significant that two very different lines of
reasoning, the Baskeran-Zou-Anderson analogy with the
Fermi sea and the Kalmeyer-Laughlin ' analogy with the
fractional-quantum-Hall state, have now led to ground
states for this problem with similar properties. One of
the purposes of this paper is to show that this similarity is
more than cosmetic. One of the class of states found by
Wen, Wilczek, and Zee is, in fact, equal to the
Kalmeyer-Laughlin state. In addition, for this particular
state, the Anderson procedure of making a "spinon, " the
neutral spin- —, excitation of the spin liquid, namely, mak-

ing a hole in the band and then Gutzwiller projecting, is
also equal to the Kalmeyer-Laughlin version of the
spinon. We also wish to promote the point of view that
the time-reversal symmetry-breaking characteristic of the
class of states is actually essential for liquifaction of the
spins. The main purpose, however, is to address one of
the outstanding questions in the fractional quantum-Hall
problem: What is the appropriate abstraction of fraction-
al quantum-Hall behavior to a three-dimensional system?
We find that the Wen-Wilczek-Zee calculation can be
performed simply for a three-dimensional frustrated
Heisenberg model, and that the solution is identica1 in
most respects to the two-dimensional version. The
ground state has broken parity and time-reversal invari-

ance and exponentially decaying spin correlations. The
elementary excitations are well-localized neutral spin- —,

'

particles with a gap. However, the most peculiar feature
of spinons in two dimensions, the —, fractional statistics

obeyed by them, cannot be the same because fractional
statistics is undefined in three dimensions. We shall
make the case that the behavior we observe, and the ap-
propriate analog of —,

' fractional statistics for a three-

dimensional system, is the dynamics of an anisotropic
Dirac monopole.

II. VARIATIONAL PROCEDURE

Let us begin by reviewing the Aleck-Marston varia-
tional method for constructing the ground state and ele-
mentary excitations of the Heisenberg Hamiltonian

g JjkS Sk, (2. 1)

1~O 2 g jk g Cjscks Ckscjs' T
S, S'

(2.2)

where the c's are site annihilation operators and s =( f, $ )

is a spin index, by

(2.3)

where j and k denote sites on a square two-dimensional
lattice, J k is the strength of the spin exchange coupling
between these sites, and S=—,'~. As illustrated in Fig. 1,
we are interested in the case of positive, i.e., frustrating,
near-neighbor and second-neighbor interactions J and J'.
This Hamiltonian is related to the electron Hamiltonian
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=0, (2.6)

however, which is computationally difficult, one requires
that

5
& +SD~P~ +SD &

& +sD~+sD&
=0, (2.7)

arguing that the two conditions are similar and that
~
4 )

was only variational in the first place. The solution of
Eq. (2.7) is a Slater determinant of orbitals y&( j) satisfy-

ing the Hartree-Fock equations

FIG. 1. Illustration of the frustrated Heisenberg Hamiltoni-
an assumed by &en, Wilczek, and Zee. The first- and second-
neighbor couplings are J and J', respectively.

g &JI~HFlk&ql(k)=EIqI(j),
k

where EI is a Lagrange multiplier and

& j~%„„~k&
= —J,„g&ctc„, &

(2.8)

where HG is the Gutzwiller projection operator, defined

by

II,=g . f exp iP gc,„c,„—1 dP . . (2.4)
J . 7l

The action of %p on an allowed configuration, one for
which each site is singly occupied, is the same as the ac-
tion of &. The Gutzwiller projector destroys all

configurations except the allowed ones.
The ANeck-Marston procedure amounts to looking for

a variationa1 ground state for the system of the form

(2.9)

y(0)
gI(j)=e' ' q, (j), (2.10)

where P' ' is any function of position, also satisfies it and
is manifestly different from the original set, i.e.,

These equations have many solutions, for if a set of orbit-
als Ital( j) I comprises one solution then the set of orbitals

I A)I( j) I defined by

)q ) =II, ie, ), (2.5)
f & es'D[esD& ]@1 . (2.11)

where +sD is a single Slater-determinant electron wave
function. Rather than satisfying the variational condi-
tion

However, the state made by Gutzwiller projecting ~ Vsn )
is the same as that made by projecting

~ VsD ), since

HGl+sD)=p . exp(ip,'
) f exp i(p, +p, ') 'gc, „c,„1' dp, —, lesD&

J

=exp i gP)~~' IIG~+sD) . (2.12)

Thus, the transformation g&(j)~yI( j) has no physical
meaning, and we refer to it as a gauge transformation.
Its relationship to an ordinary gauge transformation is
actually central to this problem, but will not be dis-
cussed here.

III. GROUND-STATE WAVE FUNCTIONS

Following Wen, Wilczek, and Zee, ' we look for a solu-
tion of Eq. (2.9) of the form

& jlaHFlk &
= i' '""' "

where the ordered pair (l, m) locates the kth site, in the
manner

R, =(lx+my)b, (3.2)

with b the bond length, and where T and T' are self-
consistently determined parameters. The complex factor
in this expression, which was originally discovered to be
appropriate by ANeck and Marston, mimics the effect of
a uniform magnetic field threading half a magnetic flux
quantum through each plaquette. We have specifically

(3.3)
k

T, j and k near neighbors

X . T', j and k second neighbors

0, otherwise,
(3.1)

where

A= yx .
b2

(3.4)
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iq R
q (j)=e 'u (j), (3.5)

where q is the crystal momentum and uq is periodic, we
have

where

uq(1) uq(1)

uq(2) q uq(2)=Eq (3.6)

The configuration of phases given by Eq. (3.1) is shown in

Fig. 2.
Let us now demonstrate the self-consistency, and thus

the extremal nature, of this solution. %e first need to
solve Eq. (2.8). Picking a unit cell as shown in Fig. 2 and
writing

and dispersion relation are shown in Fig. 3. Writing the
Green's function in the manner

E +&q
9 (E)=(E —% +i 7)e )

E —E +ig
(3.12)

T/J =y= —g f (2~9(E)~1&e'" dE e
X 2+i

m'/2 m /2

2m —~n ~n ( A +m tiH)'/'

with the sign of the infinitesimal picked to occupy the
lower band, we obtain for the self-consistency conditions,
with ~1 & and ~2& defined as in Fig. 2,

&q=2T[ cos(q„b)a„+cos(q b)a

+mosin(q„b)sin(q b)P], (3 7) aild

(3.13)

with

1 0 0 1

x Q l & y l Q

0 i
(), (3.8)

T'»'=X'= 'y —'. f" &2I&(E)l»e'"'«
q

—i(q +q )b
Xe

and

= T'
mp=2 (3.9)

f 77/2 p m/2 B
/2 n. /p ( A +m+2)1/2

Xd H, d Hq, (3.14)

[a„,a„I=25„„ ta„,P) =0, P =1, (3.10)

Since these matrices satisfy the anticommutation rela-
tions

where

A =cos (H, )+cos (H2), 8 =sin (H, )sin (H2) . (3.15)

Eq. (3.6) is a two-dimensional Dirac equation, for which
we may write immediately

E =+2T[ cos (q„b)+cos (q~b)

+m Osin (q, b )sin (q~b) ]' (3.1 1)

Note that the states at q and q+ (rrlb)x are distinct, even
though they have the same energy. The Brillouin zone

Combining these equations, we obtain a condition for the
mass of the form

I
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FIG. 2. Illustration of matrix elements of the Hartree-Fock
Hamiltonian defined by Eq. (3.1) for the two-dimensional chiral
spin liquid. Left: Near-neighbor interactions. All of these are
positive except for the bold line, which is negative. Right:
second-neighbor interactions. These are purely imaginary. The
arrow points to

~j & when Im( &j~%H„~ k & ) is positive.

FIG. 3. Illustration of Brillouin zone for two-dimensional
chiral spin liquid state and Lagrange multiplier spectrum E~, as
defined by Eq. (3.11), for the case of mo =0.2. Either band may
be interpreted as the energy to make a spinon with a given crys-
tal momentum.
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g —4 J' Jg
—~/2 ~ /2 ( A +m Q )

' ' (3.16)

which has a nontrivial solution for J'/J) 0.4454. Self-
consistency is actually demonstrated by satisfying Eq.
(3.16}since the eigenstates of &HF do not depend on the
magnitude of T. The numerical aspects of this solution
are further discussed in Sec. XII.

IV. GUTZWILLER PROJECTION

In order for a wave function of this form to be useful
we must be able to do computations with its Gutzwiller
projection. Let us begin the discussion of this by show-
ing that the projected state is, up to a sign, the square of a
spinless electron Slater determinant.

When the number of sites N is even, the unprojected
state is a function of N electron positions j and spin coor-
dinates g of the form

1
q'sD(jl, , jNlril, , AN)= —,gsgn(p}[vl(j, (()}5(& ri, ()))][el(jp(2)}5(l 2), (2))]N!

X ' ' [0 N/2(Jp(N 1))5(1& fp(N 1))][0N/2(Jp(N))5( 1& /p(N))] (4.1)

where the ((() s are the negative-energy solutions of Eq. (2.8}, 5 denotes a spin 5 function, and p is a permutation of N
things. Since this wave function is antisymmetric under simultaneous interchange of position and spin variables, it
suffices to know its value when the 6rst N/2 spin variables are up and the second N/2 down, given by

' —1/2
N

+sD(J)» JNl1 '' »' 1&1'»' ' ' 1) N/2 @(Jl &JN/2)@(JN/2+) ' ' ' &Jjv) &
(4.2)

where

1
@(J1». JN/2} 2 sgn(p )(p)(Jp'(l)) '(pNI2(Jp'(nl2)}

(N/2)!
(4.3)

and p is a permutation of N/2 things. With the wave functions expressed in this way, Gutzwiller projection may be
understood as forcing the set l jl, . . . , jN/2] to be distinct from the set [jN/2+1, . . . , jN ].

The two factors on the right-hand side of Eq. (4.2) are equal, up to a sign, because the positive- and negative-energy
solutions of Eq. (2.8) are related [cf. Eq. (3.5)] in the manner

(4.4)

Since occupying both the upper and lower bands with spinless fermions is tantamount to occupying all the sites, we
have

(0 (c
j))j/2+1 JN/2 q q

q q

(4.5)

for some integer M. This phase is commonly referred to as the Marshall sign. The first factor in Eq. (4.2) may be writ-
ten

0I(j, , . . . ,j,)= 0 c, , rl ' '

0) . (4.6)

The second factor may be written

4(jl&/2+I jN ) (0 c
jX/2-t 1

c 11c' ''
0)jx

=(0 Qc' ' (c c ) 0'
jX/2+1

q

rrjx/z q q
q q

q

=( —1) exp i y (R +—. . +R ) 4(J), . . . , JN/2), (4.7)
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which proves the assertion.
Let us now pick an ordering for the sites, as illustrated

in Fig. 4, and define Go(j) to be + 1 if the site is even and
—1 if the site is odd. With an ordering thus established
we may define the Bose wave function O'B(jl, . . . , jN/2)
to be the Fermi wave function of Eq. (4.2) with the argu-
ments tj„.. . ,jN/2) and Ij N/2+1, . . . , jN I placed sepa
rately in ascending order. In light of Eq. (4.7),
'PB(j, , . . . ,jN/2) must equal 4 (j, , . . . ,jN/2) up to a
sign. This sign need not be determined absolutely, but
only up to the change induced by modifying the argu-
ments (j„.. . , jN/2j. By definition there is no change in

sign when the arguments are permuted. It suffices, there-

fore, to consider the sign change resulting from moving
one of the boson coordinates, say j&, to a location
di6'erent from Ij, , . . . , jN/2I. This new location must be
one of the I jNI, +, , . . . , jN ). Let us assume for the sake
of discussion that it is jr&2+, . Then the wave function
with the boson moved is

+B(J1»' ' ' JN/2) —@(JN/2+1&J2»' ' ' JN/2)

X@(Jl&JN/2+2»' ' ' JN ), (4.8)

where the sign counts the number of elementary ex-
changes required to place IjN/2+ „j2, . . . ,jN/2 I and

Ij „jN /2+2, . . . , jN ] separately in ascending order. As il-

lustrated in Fig. 4, however, this is simply the number of
sites "between" j, and j~&2+„which is counted by the
factor Go(jl)GO(jN/2). Thus, taking into account the
fact that j, and jr&2+~ might be in different rows by
defining

GL(j)=exp i yR~—Go(j)=( —1)™, (4.9)

13 =@1 =O6 =O6
with 1 and m defined as in Eq. (3.2), we have finally

+B(J1
' ' ' J V/2) Gl. (J 1 ) GL(JN/2)

X4 (jl JN/2) (4.10)

I
I J 9 J2 J1o

I
12 I J40 '

J13 J5 J6 J 14

J16J15~ 0 ~ 0
0 ~ ~ 0

I

0 ', 0
~ W W W

J3

~ 0
w w w

J13 JS

J2 J1o

~ 0
J4

J 140 ~ ~ 0
J7 J15 Js J16

~ 0 ~ 0

GI (j) is the Landau gauge version of the "gauge" factor
used by Kalmeyer and Laughlin. '

Let us now discuss the condition that +z is a spin sing-
let. This must be the case because Gutzwiller projection
commutes with total spin. It is obviously an eigenstate of
S' with eigenvalue 0 since the numbers of up and down
spins are equal. The singlet condition thus reduces to
showing that the lowering operator S destroys the state.
The action of S is to Aip each spin down, annihilating
any configuration for which the spin is already down.
For the original Fermi wave function, this gives

(5 q sD)(J1' ' ' ' JN Iraqi . 1N

(4.11)

where g denotes the opposite of g. Because of the an-
tisymmetry of +so under interchange of spin and position
coordinates, Eq. (4.11) may be expressed as the "Fock"
condition' on N

FIG. 4. Top: Site ordering assummed in discussion of Bose
version of chiral-spin-liquid wave function. Gp( j) is +1 accord-
ing as whether the site is even or odd. Middle: Moving the bo-
son at j J to an unoccupied site is tantamount to interchanging
the "up" coordinate jl with the "down" coordinate j. The
number of elementary exchanges required to put the up and
down coordinates back into ascending order is the number of
sites "between" j, and j, which is counted by Gp(jl)Gp(j~).
Bottom: GI (j) is made from Gp( j) by negating every other row.

@(J1 »' ' ' JN/2)@(JN/2+1& ' ' JN )

(JN/2+1&J2»' ' ' JNI2) (J1 &JN/2+2»' ' JN)

+@(JN/2+2&J2»' ' ' JN/2)

+(JN/2+1&J1&JN/2+3»' JN)+ (4.12)

which is satisfied whenever @ is a Slater determinant.
However, since each term on the right-hand side of this
expression is of the form



41 PROPERTIES OF THE CHIRAL-SPIN-LIQUID STATE 669

—Gi(Ji)GL(J)4 (J,J„.. . , JNn),

we have

g GL(J)+'(J J2 . JN)
J

2b
—,
' g lrl'[g(r) —1]=—

is not zero. This requires that v be of the form

v (r)= —2I lnlrl+5v(r),

(5.8)

(5.9)

which is the singlet sum rule found by Kalmeyer and
Laughlin, ' and Zou, Doucot, and Shastry. "

V. PLASMA ANALOGY

In light of these considerations the problem of calculat-
ing with the projected state reduces to finding an efficient
way to generate 4 . Let us do this by appealing to the
theory of liquids, ' which tells us that many properties of
a system of this kind may be calculated by approximating
its probability distribution function as the product of pair
factors. This is appropriate because the function is van-

ishingly small in most of configuration space, so that Tay-
lor expansion near the extrema, which for most liquids
amount to the crystalline configurations, converges rapid-
ly. Thus, let us make a fit to l&I2l of the form

where t)v (r) is short ranged. This is most easily under-
stood in the context of the hypernetted chain approxima-
tion ' for g (r), defined by the equations

g(r)=exp[ —v(r)+h (r) —c(r)],
h (r)=g(r) —1,
t2 (q) =c(q)+ —,'h (q)c(q),

with Fourier transforms defined in the manner

(5.10)

(5.11)

(5.12)

h(q) =g h (r)e (5.13)

which is appropriate for this problem. The short-range
nature of h (r), together with Eq. (5.10), requires that c
and v cancel at large r:

lr), . . . , rJ4'/2)
'—= g e " ' ge ', (5.1)

p(v T

where r, denotes the position of j, , and so forth. Again
borrowing from the theory of liquids, we use as fitting cri-
teria that the density, defined by

c(r)—= —v(r), Irl~rr2 .

This, in turn, requires that c and u cancel at small q:

c(q) —= —v(q), lql ~0 .

Thus, if u takes the form

(5.14)

(5.15)

p(ri)= & X ' ' X l@( i rNi2)l
N 1 2

2 Z
r2 rN/2

(5.2) 4+Iv(q)= lim +v, (q),
p b2( q 2+q2 )

(5.16)

where where v, (q) does not diverge at small q, then we have

(5.3) 2

h(q)= —2+ +0(lql"),~r (5.17)

and two-point correlation function, given by

N(N —1)
g(r, —r, )= roan) I'

(5.4)

regardless of v„which is consistent with Eqs. (5.7) and
(5.8). If the singularity at q —+0 is weaker than lq (it
must be even) then Eq. (5.7) is not satisfied. If the diver-
gence is stronger than lql, on the other hand, then Eq.
(5.9) is not satisfied. Thus, this form of v is the only pos-
sibility. In the limit of qp~0, u (r) must be of the form

be correct. Since 4 is a Slater determinant, the quantities
to be fit may be evaluated easily: The density is —,

' and the
two-point function is the exchange hole of 4, or

u (r) =I'—2r lrl'
4 b2

(5.18)

g(r)=1 —4 g q2q(0)q2q(r)
q

(5.5)

where q2 is defined as in Eq. (3.5) and normalized in the
manner

to neutralize the plasma.
The short-range correction may be evaluated in the

hypernetted chain approximation by solving the equa-
tions

v, (r) = —ln[h (r)+ 1]—c,(r)+ h (r) —2I Kp( girl ),
g lq2 (r)l'=1 . (5.6)

(5.19)

The fitting of v to g, while straightforward, is compli-
cated by the fact that the exchange hole contains exactly
one particle, i.e.,

and

"( )= "' ' +4~r
1+-,'h(q), lq+al'(lq+Gl'+g')

—,
' g [g(r) —1]=—1, (5.7) (5.20)

while sum rule defining the "coupling constant" I, that is
where Ko is a modified Bessel function of the second
kind, G is a reciprocal lattice vector, and Q is a regulari-
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TABLE I. Chiral-spin-liquid correlation for m0=1.0 as evaluated using Eqs. (5.23)-(5.26) and by
direct Monte Carlo integration of Eq. (5.21). The quantity (S S) is —of hG(r). h (r) is the correlation
function of the unprojected state. Monte Carlo evaluation involved 7400 sweeps through an 8 X 8 lat-
tice. The coupling constant of the unprojected state is I =0.99.

Shell v, (r)

0.026
0.016

—0.004
0.002
0.003

—0.002
—0.001

0.001
—0.001

h(r}

—0.189
—0.059

0.000
—0.001

0.000
—0.001

0.000
0.000
0.000

—0.269
—0.028

0.037
0.009

—0.001
0.009

—0.002
0.000
0.001

Monte Carlo

—0.272+0.002
—0.023+0.001

0.039+0.001
0.00720.002
0.002+0.002
0.007+0.001

—0.001+0.001
0.000+0.002
0.003+0.002

TABLE II. Chiral-spin-liquid correlation function for mo =0.5 as evaluated using Eqs. (5.23)-(5.26)
and by direct Monte Carlo integration of Eq. (5.4). The quantity (S S) is —of h~(r). h (r) is the corre-

lation function of the unprojected state. Monte Carlo evaluation involved 5800 sweeps through an 8X 8

lattice. The coupling constant of the unprojected state is I =0.95.

Shell v, (r) h(r) Monte Carlo

0.191
—0.003

0.031
—0.004
—0.015

0.018
0.004

—0.008
0.010

—0.213
—0.028

0.000
—0.002

0.000
—0.003

0.001
0.000
0.000

—0.320
0.047
0.048

—0.010
0.003

—0.011
0.002

—0.001
0.002

—0.336+0.001
0.061+0.001
0.061+0.001

—0.015+0.001
0.006+0.001

—0.010+0.001
—0.001+0.001
—0.003+0.001

0.004+0.002

TABLE III. Chiral-spin-liquid correlation for m0=0. 1 as evaluated using Eqs. (5.23)—(5.26) and by
direct Monte Carlo integration of Eq. (5.4). The quantity (S S) is 4 of hG(r). The fifth column is the

correlation function of the unprojected state. Monte Carlo evaluation involved 2000 sweeps through an
8 X 8 lattice. The coupling constant of the unprojected state is I =0.69.

Shell v, (r)

0.567
0.124
0.136
0.038

—0.005
0.060
0.019

—0.005
0.022

h(r)
—0.228
—0.002
—0.000
—0.003

0.000
—0.006

0.000
—0.001

0.000

—0.357
0.103
0.062

—0.030
0.012

—0.021
0.010

—0.006
0.006

Monte Carlo

—0.380+0.001
0.123+0.002
0.082+0.001

—0.034+0.001
0.008+0.001

—0.017+0.002
—0.005+0.001

0.007+0.001
0.011+0.001
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where

&g =X X l@(ri
rN)2

(5.22)

is given approximately by the solution of Eqs.
(5.10)—(5.12) with U doubled. Written in their regulated
form, these become

gg(r) =exp[ —2U, (r)+hg(r) —c, (r) —4I Ko(Q lrl )] .

zation parameter. With U and u fit in this manner, the
two-point function of the projected state, namely,

N(N —1)
gg(r) —rp)=

3 N/2

(5.21)

fold "center-of-mass" degeneracy associated with the
quantum-Hall wave function on a torus. ) The ability of
handedness to be acquired spontaneously is particularly
important in light of the assertion by one of us' that the
occurrence of —, fractional statistics, which requires hand-

edness to make sense, ' is a necessity whenever the
ground state of the spins is disordered. This reasoning
also says' that such a state should be characterized by an
energy gap, that collapse of the gap as the Hamiltonian is
modified should reflect the divergence of the spin-spin
correlation length, and that both of these should signal
the transition to the antiferromagnetically ordered state.
Let us now show that all of these ideas are consistent
with properties of the chiral spin-liquid state.

We first observe that no "magnetic" Hartree-Fock
Hamiltonian of the form

(5.23) (jl&„Flk)=(jlT k)exp i f A ds
J

(6.1)

hg(r) =gg(r) —1,
fg(q) =cg(q)+-,'fg(q}cg(q),

(5.24}

(5.25)

cg(q) =c, (q) —8m I' g . (5.26)
q+G ( q+G 2+Q2)

The details of the solution of these equations have been
discussed previously.

Tables I—III compare a calculation of the spin-spin
correlation function, given by

(S(0}S(j})=—', hg(j}, (5.27)

VI. CHIRAL SYMMETRY BREAKING

One of the most significant features of the Wen-
Wilczek-Zee state is its spontaneous breaking of time-
reversal and parity invariance. From the discussion of
Sec. III it is clear that the extremal condition is met
whether mo is positive or negative, and thus that the sys-
tem has two ground states, transformed into one anoth-
er by complex conjugation or reflection about the x
or y axis. (This degeneracy is diff'erent from the two-

using Eqs. (5.23)—(5.26) with a direct semiclassical Monte
Carlo integration of Eq. (5.21) on an 8 X 8 lattice using a
numerical Slater determinant routine. The agreement is
extremely good for the first two values of mo and accept-
ably good for the third. There is a clear trend in the
tables for the analytic calculation of the near-neighbor
correlation to be 1 —10 /o too positive. This trend was
also found by Kalmeyer and Laughlin, however, and
thus may be attributed to the hypernetted chain approxi-
mation, rather than to Eq. (5.1). For the smaller values
of mo, there is also a trend for the Monte Carlo calcula-
tion to give small antiferromagnetic correlations of the
wrong sign at large r. Given that this is an artifact of the
periodic boundary conditions, which is likely, these re-
sults show that Eq. (5.1) provides an efficient and quanti-
tatively correct procedure for calculating properties of
the Gutzwiller projected wave function.

where ( jl Tlk ) is a real-valued function of the separation

RJ —Rl, and A is given by Eq. (3.4), can have a gap in its
Lagrange multiplier spectrum if it is time-reversal invari-
ant. In light of Eq. (3.3), &H„ is obviously time-reversal
invariant if (jl Tlk ) is zero whenever the x and y com-
ponents of R, —Rk are both odd. This sufficient condi-
tion is also necessary whenever any of the other matrix
elements are nonzero, as it then becomes the condition
that the flux enclosed by any loop of tunneling matrix ele-
ments is integral. Invoking the Bloch condition for this
problem as we did in Eqs. (3.5) and (3.6), we obtain a re-
duced Hamiltonian of the form

with

a(q) y(q)
y'(q) p(q)

(6.2)

Xexp[i [lq„b+(2v+1)q b)), (6.5)

where
l I, m ) is defined as in Eq. (3.2). Since

(0, 1 l&„„l1,2v+ I ) =( —I)'(0,0l&'„„l1,2v), (6.6)

a(q) and p(q) must be equal when +q =+q = ,'m/b-.
Letting

q„= +Aq, q = +Aq„,x 2b x&

we have to lowest order in Aq,

(6.7)

and

—=g (
—I )"+"(0,0l&HFl2}u, 2v), (6.8)

2
p, v

a(q)=g (0,0l&H„ll, 2v)exp[i(lq„b+2vq b)], (6.3)
I, v

P(q)=g (0, ll&HFll, 2v+1)exp[i(lq„b+2vq b)],
l, v

(6.4)

y(q)=g (O, OI~HFl1, 2v+1)
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(q) P(q) y ( 1 )p
2

P&V

X (o,ol&„„l2p+1,2v) bq„b . (6.9)

Thus, unless the coefficients

(0,0lJVHFl2p+ 1,2v)

conspire so as to make the right-hand side of Eq. (6.9)
zero, or unless the matrix ( jl Tlk ) is so long-ranged that
the sum fails to converge, the deviation from equality is
linear in b,q, . Reasoning in a similar way for y(q), we

obtain

y(q) —=g (
—I )"+"[(0,0lWHFl2p+1, »+I) +(»+1)(0,0l&„Fl2p, 2v+1)&q, b] . (6.10)

Eo =g (
—1)~+"(0,0l&„„l2p,2v),

P, V

a velocity

(6.1 1)

= y( —1)~+"(2p+i)(o,ola„i2p+1, 2 ) b,

(6.12)

and a gap

g ( —1)"+'(0,0l&HFl2p+ 1,2v+ 1), (6.13)
P, V

in the manner

The constant term in this expression is pure imaginary
and thus identically zero whenever &HF is time-reversal
invariant. The second term is equivalent to Eq. (6.8).
Thus, the eigenvalue spectrum near the zone corner is
characterized by an offset

spin-spin correlation length of the projected state is
longer than that of the unprojected state, since projection
effectively halves the temperature of the classical statisti-
cal mechanics problem to which the square of the wave
function corresponds. It suffices, therefore, to show that
the correlation length of the unprojected state diverges,
which is straightforward. Returning to Eq. (5.5), we ob-
tain

gy'(0)tp (r )=
8 2

q

i ( l Ol +m 02 j

(6.15)

where A and 8 are defined as in Eq. (3.15), I and m are
defined as in Eq. (3.2), and

C =( A +moa)'~ [cos(8,—)+cos(82)

E =—E +(U lbqbl +5 )' (6.14)
+imosin(8, )sin(82)] . (6.16)

It follows that any reasonable Hartree-Fock Hamiltonian
respecting time-reversal invariance must produce light-
like dispersion at the point ( —,', —,

' )alb and cannot have a

gap.
We next observe that the spin-spin correlation length

of the Gutzwiller projected state diverges as the mass gap
goes to zero. This follows in part from the discussion of
the preceding section, in which it was established that the

I

C
(A +m~2)'"

C D+D, —(6.17)(A+m~)'"
where

In the mo ~0 limit, the integrand of Eq. (6.15) develops a
weak singularity which causes h(r) to acquire a long-
range tail. Let us evaluate this by regularizing the in-
tegral, in the manner

D =g I( —1)"[8,—(p+ —,')m]+( —I)"[8~—(v+ —,')m. ]+(—I)"+'imoI

exp[ —a( l [8,—(p+ —,
' )m] +[82—(v+ —,

' )~] + ma I
'~ —mo)]

I[8,—(p+ —,')m] +[82—(v+ —,')m] +moI'~
(6.18)

The quantity in square brackets in Eq. (6.17) contains no singularity and thus generates only short-range correlations.
Evaluating the Fourier transform of D analytically, we obtain

;~+~+~ exp[ —mo[(l +m2+a2)'~ —a]I
~ I I Dexp[i(18, +m8~)]d8, d8~=

8m. 2~ (I +m +a )'

—mo, I and m both odd

X . 0, I and m both even

I', otherwise,
(6.19)

where
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Shell Monte Carlo Gros

TABLE IV. Monte Carlo evaluation of hG(r) for mo=0
compared with values reported by Gros (Ref. 16). The present
calculation involved 2000 sweeps through an 8X8 lattice. The
calculation of Gros was performed on a lattice with 122 sites.

N/2

%'xz(z„. . . , zz&z)= g (z„—z„)
@&v

N/2
X g G(z~)exp

—0.382+0.001
0.133+0.001
0.089+0.001

—0.049+0.001
0.020+0.001

—0.018+0.001

—0.419+0.014
0.186+0.021
0.133+0.022

—0.101%0.023
0.065+0.024

—0.068+0.028

(7.1)

G( ) (
1)l+m+Im+1 (7.2}

where z =(I +im )b is a complex number locating the
yth up spin considered as a boson, and the "gauge" func-
tion is defined in the manner

P?l p + 1

(I +m +a )' I +m +a

That this state was similar to the class of "Aux" phases
was first pointed out by Zou, Doucot, and Shastry. " To
do this, we shall make use of Eq. (4.10) and the fact that
the Vandermonde determinant, given by

I, I even and m odd
X '

m, m even and l odd . (6.20) g (z„—z„)=g sgn(p)z~(, ) z~(g/z)
p, &v

(7.3)

Thus, in the mp~0 limit, antiferromagnetic correlations
fall off' as ~r~ to a radius of mo ' and exponentially
thereafter, so that the spin-spin correlation length g,
defined in the manner

is the wave function of a filled Landau band.
We first recall that the eigenstates of the continuum

Hamiltonian

gh(r)~r~ g h (r) —= —in(2mo), ma~0, &,s= ——.V+ A
1 1

l
(7.4)

(6.21)
diverges.

The fact that the unprojected wave function at ma=0
has power-law decay in its correlation function suggests
that the classical liquid to which it corresponds lies at a
critical point. ' The exponent 4 is much larger than the
Halperin-Nelson' value of 0.3, but this could be ascribed
to the presence of long-range "potentials. " If this is true,
then the projected state, which corresponds to the same
liquid with its temperature lowered by a factor of 2, prob-
ably possess magnetic order. The assertion of Gros' that
the spin correlations of the mp~0 projected state decay
as r implies algebraic order, as opposed to true long-
range order, but this distinction is unimportant, since the
spinon size is still undefined. It should be noted that the
validity of Gros's exponent, which is an unusual num-
ber, ' is not yet clear. The presence of order is also con-
sistent with the tendency of the numerical results to be
sensitive to lattice size. This is illustrated in Table IV,
where we compare a Monte Carlo calculation on a lattice
with 122 sites reported by Gros' and by Zhang et al. '

Note that the "d-wave" state with t =5 discussed in
these papers is identical' to the mp=0 chiral-spin-liquid
state.

VII. RELATION TO THE
KALMEYKR-LAUGHLIN STATE

Let us now show that one of the class of ground states
proposed by Wen, Wilczek, and Zee' exactly equals the
Kalmeyer-Laughlin ' state, defined by

with A as given by Eq. (3.4), take the form

p~"'(x,y) = exp(iq„x)exp[ —,'(y —q„) ]

n

Xexp[ —(y —q„) ],
with the length units picked so that b =m and with

&, y'"'(x, y) =(n + —,')p'" (x,y) .

(7.5)

(7.6)

Since the states with n =0, which comprise the lowest
Landau level, may also be written

l
g~ (x,y) = exp( —

—,'q„)exp ——xy

Xexp( ,'z +iq„z—)exp(——,'~z~ ),
they are linear combination of states of the form

(7.7)

l
(x,y)=z exp ——xy exp( —

—,'~z~ ), (7.8)

the totally occupied Slater determinant of which is given
by Eq. (7.3} times exponential factors. We next observe
that the number of these states, namely, L /(2m)=N/2, .
is exactly the number of Bloch states y as defined in Eq.
(3.5). Thus, it is meaningful to restrict their arguments to
lattice sites and find the combination of them that
satisfies the Bloch condition on the lattice. Written out
with the length units reinstated, these become

T T

tl 2K 7T
yq(x, y) =JVq g exp(i2nq b)exp i q + x exp — y-

Qo
J

b n2m

bq +
2

(7.9)
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with JV a normalization constant. Since these X/2
states are orthogonal under the lattice inner product and
are not zero, they span the Landau level, and thus give a
wave function of the form of Eq. (7.3) when totally occu-
pied. Thus, in order to prove the Kalmeyer-Laughlin
state equivalent to the Wen-Wilczek-Zee state, it su5ces
to find a tight-binding Hamiltonian of the form of Eq.
(3.1) for which q1q as defined in Eq. (7.9) is an eigenstate
for all q. The gauge factors defined by Eqs. (4.9) and (7.2)
are related by

~ ~G(z)= —G (z)exp —i xyI.
t 2

and

a(q) =
I q, (0,0) I' —

I g, (0,b) I', (7.17)

y(q) =2q1q (0,b)q2q(0, 0)e (7.18)

Evaluating these expressions using Eq. (7.9), we obtain

a(q) =g (
—1)"exp{—(m/4)[(2@+1) +(2v) ]I

or zero, depending on the sign of a. Since y/a=0 is un-

physical, we must have a) 0 when IzI ) 1 and a&0
when IzI &1, assuming that the negative eigenvalue is
the appropriate one. In light of this, an obvious choice
for %'(q) is given by

Returning to Eq. (3.6) with &q defined as in Eq. (6.2),
let us find matrix elements a(q), p(q), and y(q) for which
the ratio of the amplitudes to be on sites 1 and 2 satisfies

and

p&v

Xexp{i [(2p+1)q„b+(2v)q~b]], (7.19)

uq(2) q&q(0, b),.
~ b

u (1) q1 (0,0)
(7.11) y(q)=g (i)'"+'"exp{ (n/4)[—l'+(2v+1)']I

l, v

Since a shift of the energy has no effect on the eigenstate,
we can assume without loss of generality that
p(q) = —a(q). When this is the case, the eigenvalues are

X exp{i [iq„b +(2v+1)q„b]] . (7.20)

g —+( 2+ Iy I2)1/2

and the ratio of the amplitudes is

+( 2+ Iy I2)1/2
z =

y

(7.12)

(7.13)

Working backward using Eqs. (6.1)—(6.4), we find that
the tight-binding Hamiltonian to which this corresponds
1s

(jITIk }= Toexp ——[(I—l') +(m —m')2], (7.21) '

=Ez (7.14)

for some real e. Substituting this into Eq. (7.13), we ob-
tain

eIzI =+ (1+e IzI )' (7.1 5)

the solution of which is

2z*

1 —IzI'
' (7.16)

Since the numerator of the right-hand side of this expres-
sion is real, we must have

with To a constant. This expression is negligibly small
beyond second neighbors, and has a ratio of the second-
to-first neighbor values of exp( —m/4)=0. 46. Since the
mass mo is twice this value, or 0.92, the Wen-Wilczek-
Zee state with m 0

= 1 described in Table I is almost iden-
tical to the Kalmeyer-Laughlin state. This accounts for
the similarity of their correlation functions.

Let us now ask what exchange couplings J k as defined
in Eq. (2.1) lead to this particular solution when used
with the variational procedure described in Sec. III.
While a precise answer to this question requires accurate
numerical calculations beyond the scope of this work, an
approximate answer may be obtained by making use of
the continuum result'

z', * —z' z, —z z„—z, exp
1(p(v

(Iz',
I

+ Iz, I )

7T
Xexp —g IzrI d z2 . d z 1v/2c sotnexp

~) 2b ' 4b , ( Iz', I'+ Iz, I') exp, z", z,
2b

(7.22)

which is exact in the thermodynamic limit. Thus, the self-consistency requirement is that I k be roughly constant.

VIII. SPINON %'AVE FUNCTIONS

Since the set of allowed spin configurations is considerably smaller than the number of ways of deploying N spin- —,

electrons on N sites, the basis set consisting of Gutzwiller projections of ordinary electron and hole excitations of the
Hartree-Fock ground state is capable of describing any excitation of the chiral spin liquid. Furthermore, the validity of
the variational reasoning leading to the ground state implies that these wave functions should themselves approximate
true elementary excitations, since pairs of them constitute the lowest-energy excitations that can be expressed as pro-
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jected Slater determinants. These particles, termed "spinons" by Anderson, carry no charge, since the Gutzwiller pro-
jector forces each site to have one electron, but must have spin- —„since the projector commutes with total spin. The de-
struction of the charge by the Gutzwiller projector does great violence to the wave function and causes the spinon to
have properties that are very different from those of an ordinary electron or hole.

Let ps begin the discussion of spinons by showing that

rt, (c,'+,')'c,'-,'Ies ) =II,c'-.
,
'(c'+,

,')'IesD),
qz~

where

(8.l)

q', =—x —qi, q2= x q2 ~ (8.2)

In other words, an "up" spinon may be made either by projecting a hole or by projecting an electron, so that the basis is
massively overcomplete. Returning to Eq. (4.2), we have

—1/2
N

[(cq 1 ) cq 1 q SD1(J1 ' ' ' JN I l, (+) ~ ( —)
@q) (J 1 »' ' ' JN/2+1)+q2 (JN/2+2»JN ) &

where

(8.3)

=(o
q

11.t-~ ),t.~)), ", )' o)
~

J l JN/2+ l

) )M+~(o
q

) )&&+N/2+ 1
(p iN/2+2

'')
p)*jN/2+2 JN q

)( (+)) 'II 1+1'1'
()

JN
q

=( —I) +" '+'exp 1
—

y (R, + +R ) 4(jN/2+2, . . . , jN) . (8.4)

Similarly, we have

@'q, '(jN/2+2»''' JN) ( ) ""exp 1 y'(, + ' '+R, , ) +'+'(j1 jN/2+1 (8.5)

which proves the assertion. This relation shows that a spinon state is uniquely indexed by its spin s and crystal momen-
tum q, and thus that the number of linearly independent states is ¹ Counting the degrees of freedom in the manner ap-
propriate to ferrnions, we obtain 2, which is the correct number for the spin problem. However, if we use the same
reasoning to estimate the maximum possible z component of spin, we obtain (N/2)(1)2/2), which is manifestly incorrect.
Evidently the spinons can pack more tightly together than is allowed for spin- —, fermions in N/2 orbitals. This behav-
ior is also exhibited by the quasiparticles in the fractional quantum Hall effect' and is an indication that the particles
obey fractional statistics. '

Let us now show that for the particular chiral spin-liquid wave function discussed in Sec. VII, the spinon state as
defined above is identical to the Kalmeyer-Laughlin spinon. To do this, we first superimpose the itinerant magnetic
Bloch states y defined in Eq. (7.9) into a magnetic Wannier state centered at location jo in the manner

q, (j)=gyq*(jo)yq(j) .
q

(8.6)

We then observe that placing a spinon in such a state is the same thing as placing an ordinary hole in it before project-
ing, i.e.,

(J )II (&, ) &,1 lq' D)) =II (c', )' y q, , '(j )c,', 1' lq' (8.7)

We observe finally that since the states g are complete, we have

X 9 q2 (JO)@q) (JN/2+2»' ' JN ) +JO JN/2+2 &' »JN ) . (8.8)
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In other words, placing a hole in the down band is tantamount to holding one of the electron coordinates at jo. Thus,
the wave function of a down spinon at jo and an up spinon at jo, written in the manner of Eq. (4.2), is

—1/2

@'(Jo&J2»A'/2)@(Jo&JN/2+2& . . ~ J v&) &
(8.9)

with the set [jo,j2, . . . , jz/zI forced to be distinct from the set I jo,jz/z+z, . . . , j& I. For the particular orbitals yq de-

scribed in Sec. VII, we have for a down spinon at location zo in the thermodynamic limit

lzo) =g(z, —zo) g (z„—z„)'P G(z, )exp (8.10)

which is the Kalmeyer-Laughlin ' wave function.
Equation (8.9) has the useful feature of the facilitating computation of spinon properties for any chiral-spin-liquid

state. For example, suppose we wish to compute (S,(r) ) in the presence of a spinon pair. Per Eq. (5.21), this may be
written in terms of the boson density in the manner

(8.1 1)

where

pG(r2)= 2 ' ' ' 2 I+(ro r2 &v/2)l l@(ro r&v/z+z
X 1 2 r 2

2
~&v /&

(8.12)

Let us assume for simplicity that ro and ro are far apart, so that we need consider only one of them at a time. In light of
Eq. (5.1), we have approximately in the vicinity of ro

(8.13)

(S,(r) ) =
—,'h, (r), (8.14)

This may be interpreted as a correlation function of a
classical plasma with two components and may thus be
evaluated using the multicomponent hypernetted chain
equations. In the vicinity of the down spinon we have

The solution of Eqs. (8.15)—(8.17) for three values of rno

is shown in Table V. We note that the spinon is

effectively confined to a single site in all three cases, as is

expected of an eigenstate of total spin. The 1% tails seen
at mo=0. 5 and ma=0. 1 are errors attributable to the

hypernet ted chain procedure.

where h, (r} satisfies

g, (r ) =-exp[ —v (r)+ h, (r) —c, (r }],

h, (r) =g, (r) —1,

h, (q) =c,(q)+ —,'h, (q)cG(q) .

(8.15)

(8.16)

(8.17)

IX. FRACTIONAL STATISTICS

We shall now explicitly demonstrate that the spinons
defined by Eq. (8.9) obey —,

' fractional statistics. 's zo Fol-
lowing Arovas, Schrieffer, and Wilczek, ' we shall do this
by evaluating the Berry phase for adiabatic interchange
of two particles. Let us recall the definition of the Berry
phase. Suppose that the spin Hamiltonian is modified so
as to include a well that traps a spinon at location zo.
This might be accomplished, for example, by adding a
Zeeman interaction of the form

Shell rno =1.0
—1.000
—0.008

0.006
0.002
0.000
0.000
0.000
0.000

mo =0.5

—1.000
—0.012

0.010
0.005

—0.001
0.000

—0.001
0.000

mo =0. 1

—1.000
—0.015

0.012
0.007

—0.003
0.001

—0.001
0.001

TABLE U. Spin profile h, I' r ), as evaluated using Eqs.
(8.15)—(8.17). (S, ) in the vicinity of a down spin is —,

' h, (r}.

E&(zo)=QB(z —zo) S (9.1)

where B(z) is large only near zo. If ~zo) is the exact
ground state in the presence of L&(zo), then changing
the parameter zo causes the spinon to track with the well,
always being in the state ~zo). However, viewed as a se-
quence of small perturbations

~(zo )~~(zo+ 6zo ),
the evolution must at every step produce a change to the
wave function that is orthogonal to it. This follows
directly from the second-order perturbation formula
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)
&nl~~lm

l )E —E
(9.2) Qs=J Ads, (9.4)

The orthogonality condition requires that lzp) evolve to

lzp+5zp ) times a phase 5$, given by

(zp lzp+5zp &
I5$

Q&z, lz, &&z, +5z, lz, +5z, &

Thus, if the parameter z0 is evolved around a closed path
P, the wave function goes back to itself up to a phase Ps,
given by

where

&z, lvlz, )
A( (9.5)

Let us now evaluate the Berry phase for evolving a sin-
gle spinon around a closed loop. The vector potential
defined in Eq. (9.5) may be calculated simply from the
overlap integral

(z'olzo) =y y g(z,"—z;)(z, —z, ) g z„—z,, l'/exp
p(v

z '
b2

(9.6)

This, in turn, may be obtained by analytic continuation from the normalization integral (zp lzp ), since the coefficients
a „ofany function of the form

f (zp)= g a „(zp ) (zp)",
m, n

are given by
' m+n

1
a „=

(m +n)! Br f f (re ig)ei(m —n )bdP
2K 0 r=0

(9.7}

(9.g)

However, because (zp lzp ) is the partition function of a plasma with one of its particles held fixed, it must take the form

(z, lz, &=P(z, )exp, lz, l'
2b

(9.9)

where P(zp) is a periodic function. Writing this as a Fourier series, in the manner

{1/2){9 Zp GZp )Pzp= ace
$7

where 0= ( t +i m )(2m /b ), we obtain

(9.10)

(zp lzp &

((zp Izp ) (zp lzp &
)'"

T

gage ' [P(zp)P(zp)] ' exp — (lzpl +lzpl ) exp zp'zp . (9.11)
4b 2b2

The vector potential is then

A(zp}= —
yp

—— ln[P(zp)] x+ xp+ — ln[P(zp)] y .a ~ 1 a
2 Byp 2bz 2 Bxp

(9.12)

Up to an unimportant periodic contribution, this is the symmetric gauge version of Eq. (3.4}. Thus, adiabatic evolution
of a spinon around a closed loop yields a Berry phase equal to the enclosed Aux of the background "magnetic field"
found in the self-consistency procedure. This shows that the violation of time-reversal symmetry necessary to stabilize
the liquid state has measurable consequences even for one particle.

Let us now repeat this calculation for a pair of "down" spinons described by the wave function

)(z,, —z ) Q (z„—z„)'gG(z, )exp (9.13)

If zz and zz are farther away from each other than a plasma screening length then the arguments leading to Eq. (9.9)
give

(z„,zs lz„,z~ ) —=constlz„—zs lP (z„)exp lz„ l
P (zs )exp lzs l

2b 2b
(9.14)
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It is not possible to continue the function globally without taking into account the correction when z~ and z& are close
together. Local continuation is possible, however, as may be seen by idealizing the core correction in the manner

Izg —zi)l=— f Izlexp( 13lz —z„+zsl )d z . (9.15)

The limit of this expression when z„' =z„,ze =zi), and lz„—zs I
)) 1/P is

—f lzlexp[ —13(z*—z„'*—z'*)(z —z„—z )]d'z —= (z„'*—z'*)'/'(z„—z )'/', (9.16)

regardless of P. Thus, the vector potential associated
with moving z~ in a loop about z„ is equal to that of Eq.
(9.12) plus the correction

as well as the relation

iq„x«(x y) e @ +( /b)[ 1(0 0) (10.5)

l
b, A(z )= ——8

(xi) xg) +(ys yg)

1 (xa —x„)+
(xa —x~ )'+(ys —y~ )'

(9.17)

which together are equivalent to Eqs. (10.1) and (10.2).
Thus, any set of Bloch states satisfying Eqs. (10.3) and
(10.4) for the case of x =0 and y =0 is interpolated in a
natural way by Eq. (10.5). To make sense, such a wave
function must also satisfy

the line integral of which is

f SAds=~.
P

(9.18)

Since this is twice the extra Berry phase associated with
interchanging the particles, the latter must equal m/2.

((() (O, b)=y
( s (0,0) . (10.6)

Let us now consider the set of magnetic Bloch states
described by the general reduced Hamiltonian &q of Eq.
(6.2). We inay write

X. INTERPOLATING MAGNETIC BLOCH STATES

z(q) 13q Eq-
g (O, b)

q fqe
(10.7)

In order to evaluate the Berry phase of spinons it is
necessary to define the wave function lzp ) for zp different
from a lattice site. Since Eq. (8.10) is defined between lat-
tice sites and is obviously reasonable, let us ask if there is
a generalization of this property that works for any
chiral-spin-liquid state. Returning to Eq. (7.9), we ob-
serve that the Landau Bloch states are defined for all x
and y, and satisfy the periodicity relations

where

Eq= —,)(aq+P )+[—,'(aq —Pq) +Iy„l ]'/

[(p g )2+ ly 2]1/2

(10.8)

(10.9)

and y(q) is a phase we wish to choose to satisfy Eqs.
(10.3)—(10.6). In light of definitions of aq, Pq, and yq, Eq.
(10.6) may be written

and

«(x+b, y ) =e "«(x,y), (10.1) I'g[q —(~/b )x]— q 'qy i g(q)

I y, l

(10.10)

i2bq 2 /b
p (x,y+2b)=e 'e' "/

q& (x,y) . (10.2)

—i 2bq

+q+(2m/b)x 'y «( (10.3)

and

In addition, however, they satisfy the momentum periodi-
city relations

+(P)(0 0)

Ig',"(o,o) I

' (10.11)

which, when iterated, gives Eq. (10.3). Equation (10.4) is
satisfied if y(q) is periodic in q . These conditions do not
specify y(q) uniquely, since any set of phases defined in
the region 0~q, (n./b and 0(q (m/b may be extended
by Eqs. (10.4) and (10.10) to all values of q, and is thus
consistent. However, a convenient solution is

&q+( /b)) y =« (10.4)
I

where yq
' is one of the normalized Landau Bloch states

2'(m)( )

' m+1
3/2 i

—1/2
n2&

exp(i 2nq b )exp i q„+
n = —oo

2

X exp y—
26

n 2 iTq„+

2

B

By

b n2m
Xexp — y —

q +
b2 ~ b

(10.12)
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TABLE VI. Landau-level expansion coefficients, as defined in Eq. (10.15), for Wen-Wilczek-Zee state
at various values of the mass mp. The coefficients are identically zero for odd m and satisfy the sum

rule g ic i'= l.

mp

1.0
0.5
0.1

Cp

0.999
0.998
0.993

Cp

0.004
—0.013
—0.024

C4

—0.036
—0.013

0.014

C6

0.003
—0.006
—0.015

C8

—0.021
—0.041
—0.058

c]o

—0.007
0.019
0.045

Since these functions also satisfy Eqs. (10.1)—(10.5), we have

fq
' ~,y '

yq
' ~,y ~ y =

pq o ' y' ' 0,0 q (10.13)

and thus

f'q = Q cm g q™i (10.14}

k
exp if Ads

J
i[(1+I')( m —m ')+ ( m + m ')( n —n ')+ ( n + n ')( I —i') ] (11.3)

where

c =
yq '00 ' qq00 q. (10.15)

XI. THREE-DIMENSIONAL SPIN-LIQUID STATE

Let us now investigate whether the reasoning discussed
in Secs. II and III will go through in three spatial dimen-
sions as well as two. The chiral spin liquid in two dimen-
sions is associated with a uniform magnetic field thread-
ing —,

' fiux quantum through each square unit cell. By
analogy, we expect the corresponding phase in three di-
mensions to put —,

' flux quantum through each face of a
cubic unit cell, i.e., with a vector potential of the form

Thus, every magnetic Bloch state qq may be interpreted
as a superposition of Landau Bloch states. The
coefficients c associated with the Wen-Wilczek-Zee
state are listed in Table VI for various values of the mass
mo. The dominance of the lowest Landau level in all

cases further supports the idea that the Wen-Wilczek-Zee
state and the Kalmeyer-Laughlin state are one and the
same. 0 1

1 0
0 0
0 0

x Q Q

0 0
0 0
0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 —1 0 0
0 0 —1 0 0 0
0 0 0 0 0 —1

0 0 0 0 —1 0

(11.5}

Let us first consider the case for which ( jiTik ) is zero
except for near neighbors, where it is a constant T. This
causes the hopping matrix elements to be positive or neg-
ative, according as Fig. 5. In this gauge, the unit cell
contains eight sites. With these labeled as in Fig. 5 the
reduced Hamiltonian at wave vector q is

&q=2T [cos(q„b )a„+cos(q„b )a +cos(q, b )a, ],
(11.4)

where

RJ =(ix+my+nz)b,

then the phase in Eq. (6.1) is

(11.2)

A= —(+xykyz+zx) .
b

The eight possible sign choices in this expression corre-
spond to the eight body diagonals along which the net
magnetic field may point. Let us concentrate on the one
of these for which all the signs are positive. We further
expect the extremal condition to give rise to a tight-
binding Hamiltonian of the form of Eq. (6.1), where the
coefficients (j i Ti k ) are real numbers that respect the
point-group symmetries of the lattice, and where the in-
tegral is performed along the straight line between sites j
and k. If we denote a lattice site with three integers in
the manner FIG. 5 Illustration of near-neighbor matrix elements of

Hartree-Fock Hamiltonian for three-dimensional chiral spin
liquid, as defined by Eqs. (6.1) and (11.3). As in Fig. 2, negative
interactions are indicated as bold lines.
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and

10

I 0

0 0 1 0 0 0 0
0 —1 0 0 0 0 0
—1 0 0 0 0 0 0
0 0 0 0 0 0 0,
0 0 0 0 0 0
0 0 0 0 0 —1 0
0 0 0 0 —1 0 0
0 0 0 1 0 0 0

(11.6)

0 0 0
0 0 0
0 0 0
0 0 0
1 0 0
0 1 0
0 0 —1

'0 0 0

0
0
0
0

0 1 0 0 0
0 0 1 0 0
0 0 0 —1 0
0 0 0 0 —1

0 0 0 0
0 O 0 0
0 0 0 0
—1 0 0 0

FIG. 6. Second-neighbor matrix elements of Hartree-Fock
Hamiltonian for three-dimensional chiral spin state, as defined

by Eqs. (6.1) and (11.3). As in Fig. 2, the arrow points to ~j)
when Im(( j~fl ak ) ) is positive. Conversion of the mass matrix
P' defined by Eq. (11.11) into the matrix P defined in Eq. (11.16)
is accomplished by negating the dashed line.

The a's satisfy the Dirac anticommutation relations

Ia„,a„]=25„„,
in light of which we have for the eigenvalues of &q

E =+2Ticos (q„b)+cos (q b)+cos (q, b)]' . (11.9)

and

m, =2&3
T ' (11.13)

Thus, as in the case of two dimensions, the Lagrange
multiplier spectrum in the absence of time-reversal sym-
metry breaking has lightlike dispersion at the point
(nlb)( —,', —,', —,'), consistent with the behavior of tnassless

Dirac fermions.
Let us now consider the case in which an additional

matrix element T' is added across the diagonals of the
cube faces, as illustrated in Fig. 6. The reduced Hamil-
tonian becomes

I tx„,P'I =b b„ I a,P'I =cd„ I a„P'j =ah,

where

(11.14)

with the eight possible sign choices corresponding to the
eight field directions. Unfortunately, the anticornrnuta-
tors of P' with the a's are not zero, but rather take the
values

0

—ia

0 ia 0 0
0 0 —ia Ic

0 0 0 0

I,c ib
0 —ib 0
ib 0 —ic

ia 0 0 —ib 0 —ic 0

% =2T[cos(q„b)a„+cos(q b)a +cos(q, b)a, + mP'o],

(11.10)

where

0 0
0 0
0 0
0 0
0 0
0 0
i 0
0 —i

0 0 0 0 —i 0
0 0 0 0 0 i

0 0 —i 0 0 0
0 0 0 i 0 0
i 0 0 0 0 0
0 —i 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

(11.15)

0 —ic 0 ib 0
1c 0 —ib 0 0

ib 0 ie ia

0 —ia 0
0 0 ia
0 0 0

with

a =+sin(q„bo )sin(q~ ho ),
b=+sin(q bo)sin(q, bo),

c =+sin(q, bo)sin(q„bo ),
(11.12)

0 ic 0 0 —ia 0 0

(11.11)

This reflects the fact that the phases specified by Eq.
(11.3) single out a preferred direction, i.e., a particular
body diagonal. The issue of degeneracy never arises
when T'=0 because the eight configurations are then re-
lated by gauge transformations, which are unphysical.
We now observe that this problem disappears if a vector
potential generated by a lattice of monopoles, as illustrat-
ed in Fig. 7, is substituted for the uniform magnetic field
vector potential in Eq. (11.3). This has the effect of
negating the magnetic flux through all odd surfaces of the
unit cell. The a's are unaffected by this change, but the
mass matrix now becomes
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BL We then have

Ia„,PI =0, Ia,Pj =0,
Ia„Pl =0, P =a +b +c

(11.17)

and thus an eigenvalue spectrum of the form

Ez =+2T[cos (q„b )+cos (q~b)

+cos (q, b)+m (a +b +c )]' (11.18}

0 0 ia 0 0 ic 0 ib

FIG. 7. Lattice of anisotropic monopoles associated with the
mass matrix P defined in Eq. (11.16). Each of the eight possible

ways flux +—,
' can thread the three cube faces is represented in

the unit cell, which now has eight times the volume of a primi-

tive cell. The cube at the lower left is equivalent to the one Fig.
6.

g2 4
3

(11.19}

we have immediately

'2
mo mo

E =+2T cos(q„b)+ —a + cos(q b)+ b
3

J'

1/2

2

A total energy calculation is not necessary for determin-

ing which of these states has the lower variational energy.
Using the fact that

—ia 0 0 0 0 —ib 0 ic
0 0 —ia ic 0 ib 0 mo+ cos(q b)+ c (11.20)

1

v'3
I,c

ib—

la

I,C

—ib

0 ib

ib 0
0 0 ia 0
0 0 0 —ia

0 —ic —ia 0
—ic 0 0 ia

0 0
0 0

(11.16)

0 0 —ib 0 ic 0
for the state characterized by p'. Thus, the lightlike
singularity is not removed in this state, but is merely dis-

placed from the zone corner, so that the cohesive energy
associated with the opening of a gap is absent.

The self-consistency conditions for this state analogous
to Eqs. (3.13)—(3.16) are

and

TlJ=y= g f (2lQ(E)ll)e'" dE e
q

n/2 n/2 m/2

3ir3 —n/2 —n/2 —n/2 ( Q +m+2 )

(11.21)

T'//J'=y'= g . f (3l9(E)ll )e'" dE e

1 p 7T/2 f 7r/2 t 7r/2 B
v'3ir2 —~/z ~/2 —~/2 ( g + + }'m &" &" &" d0,d0 d03, (11.22)

where

and

A =cos (8, )+cos (82)+cos (8,), (11.23)

rr/2 f rr/2 f m/2 2 —6(J /J)B
—vr/2 —7r/2 —rr/2 ( 3 +m oB) / 2 3

(11.25)

B=
—,'[sin (8, }sin (8~}+sin (82}sin (83}

+sin (83)sin (8,)),
and thus

(11.24)

which has a nontrivial solution for J'/J) 0.6704. The
Brillouin zone and Lagrange multiplier dispersion rela-
tion for the case of mo =0.2 are shown in Fig. 8.

Let us now consider the properties of this state. Since
the validity of the hypernetted chain procedure outlined
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TABLE VII. Self-consistent parameters for two-dimensional
chiral spin liquid.

)
CV 0-

Q
LLI

-2
v.0

I

2.0 4.0 6.0 8.0
I

10.0

1.00

0.98
0.96
0.94
0.92
0.90

0.88
0.86
0.84
0.82
0.80

mo

1.289

1.234
1.179
1.126
1.073
1.020

0.969
0.918
0.867
0.817
0.768

0.419

0.422
0.425
0.427
0.430
0.433

0.436
0.439
0.441
0 PEA.

0.447

0.270

0.265
0.261
0.256
0.251
0.245

0.240
0.234
0.228
0.221
0.215

U/J
—0.497

—0.494
—0.491
—0.489
—0.486
—0.484

—0.481
—0.479
—0.477
—0.475
—0.473

in Sec. V is established in Tables I—III, particularly when

the mass gap is large, it suSces to evaluate the spin-spin
correlation of the projected state by solving Eqs.
(5.19}—(5.26) with the substitution

e
2&o(Qlrl )

r
(11.26)

FIG. 8. Illustration of Brillouin zone for three-dimensional

chiral spin liquid state and Lagrange multiplier spectrum Eq, as
defined by Eq. (11.18), for mo =0.2. Note the similarity to Fig.
3. Either band may be interpreted as the energy to make a
spinon with a given crystal momentum.

0.78
0.76
0.74
0.72
0.70

0.68
0.66
0.64
0.62
0.60

0.58
0.56
0.54
0.52
0.50

0.720
0.672
0.625
0.578
0.532

0.487
0.442
0.398
0.354
0.311

0.269
0.227
0.186
0.146
0.106

0.449
0.452
0.455
0.457
0.460

0.462
0.464
0.466
0.469
0.471

0.472
0.474
0.475
0.477
0.478

0.207
0.200
0.192
0.184
0.175

0.165
0.155
0.145
0.134
0.122

0.110
0.096
0.082
0.067
0.051

—0.471
—0.469
—0.468
—0.467
—0.465

—0.464
—0.463
—0.462
—0.461
—0.461

—0.460
—0.460
—0.459
—0.459
—0.459

as appropriate for a three-dimensional plasma. The re-
sult, together with the spinon profile evaluated by solving
Eqs. (8.15)—(8.17), is shown in Table IX for the case of
mo =1.0. Note the similarity to Table I. As was the case
with the two-dimensional system, the spin correlations
become negligible beyond third neighbors, the near-
neighbor correlation &S S) is of order —0.24, and the
spinon is a compact object roughly one lattice constant in

diameter.

XII. VARIATIONAL ENERGIES

0.48
0.46

0.067
0.034

0.478
0.479

0.033
0.018

—0.459
—0.459

TABLE VIII. Self-consistent parameters for three-
dimensional chiral spin liquid.

mo

Let us now consider the energetics of the chiral spin
liquid in the context of the Hamiltonian of Eq. (2.1).
Solving Eqs. (3.13)—(3.16} for the two-dimensional state
and Eqs. (11.21)—(11.25) for the three-dimensional one,
we obtain the results listed in Tables VII and VIII. The
energy U, the total energy per site of the unprojected
state, defined in the manner

1 & +sD lol +sD &

+SD~+SD ~

(12.1)

is the quantity being minimized. The quantities mo, p,
and g' are also plotted in Figs. 9—11. The behaviors of
the two systems are quantitatively similar. A minimum
frustration of J'/J-=—,' is required in either case for the
mass gap to open, i.e., for the magnetic order to be de-

1.00

0.98
0.96
0.94
0.92
0.90

0.88
0.86
0.84
0.82
0.80
0.78
0.76
0.74
0.72
0.70

0.68

1.660

1.552
1.446
1.343
1.242
1.144

1.047
0.952
0.858
0.767
0.676
0.586
0.496
0.406
0.313
0.216

0.101

0.338

0.342
0.347
0.352
0.357
0.361

0.365
0.370
0.374
0.378
0.381
0.385
0.388
0.391
0.394
0.396

0.397

0.162

0.157
0.151
0.145
0.139
0.132

0.125
0.118
0.110
0.102
0.093
0.083
0.073
0.062
0.049
0.035

0.017

—0.499

—0.496
—0.493
—0.490
—0.488
—0.486

—0.484
—0.482
—0.480
—0.479
—0.478
—0.477
—0.476
—0.476
—0.475
—0.475

—0.475
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2.0 0.3

0.2-

1.0-

0.44

0.1-
i0 4

0.0
0.5 0.6 0.7 0.8 0.9 1.0

0.0
0.5 0.6 0.7

~

/

0.8 0.9 1.0

~

/

FIG. 9. Self-consistent mass gap mo, as defined by Eqs. (3.16)
and (11.25) for two-dimensional (solid) and three-dimensional

(dashed) chiral-spin-liquid state, vs frustration parameter J'/J.
These results are also listed in Tables VIII and IX.

(12.2)

stroyed. The value of g associated with the m0=0 state
is 0.4790 for two ditnensions (2D) and 0.3979 for three.
U is approximately —0.48J over the entire range. The
true variational energy per site, defined in the manner

1 &e»~n, %,n, ~e»&UG=- (+„ill,ie„)
—',JhG(1)+ —,'J'hG(2), d =2

—,'JhG(1)+ —', J'hG(2), d =3

is listed for the two-dimensional system in Table X.
Three features of this result should be noted: (1) The
overall magnitudes of U and UG are comparable. (2)

Frustration has the opposite effect on U and UG. One
goes up and the other goes down. (3) The amount of en-

ergy gained by opening the mass gap is comparable in the
two cases. We define the latter in the manner

U+0.479J, d =2
U+0. 379J, d =3, (12.3)

FIG. 11. Second-neighbor hopping matrix element y', as
defined by Eqs. (3.14) and (11.22), for two-dimensional (solid)
and three-dimensional (dashed) chiral-spin-liquid state, vs frus-
tration parameter J'/J. These results are also listed in Tables
VIII and IX.

0.50

0.02

0.45-
'0.4454

0.00—

0.40- 0.4454

-0.02-

0.35- 0.6704

0.30
0.5 0.6

I

0.7
t/

0.8
I

0.9 1.0

-0.04 I I

0.5 0.6
I

0.7

~

/

I I

0.8 0.9 1.0

FIG. 10. Near-neighbor hopping matrix element y, as
defined by Eqs. (3.13) and (11.21), for two-dimensional (solid)
and three-dimensional (dashed) chiral-spin-liquid state, vs frus-
tration parameter J'/J. These results are also listed in Tables
VIII and IX.

FIG. 12. Energy 6U gained by opening the mass gap, as
defined by Eq. (1.3), for two-dimensional (solid) and three-
dimensional (dashed) chiral-spin-liquid state, vs frustration pa-
rameter J'/J. These results are also listed in Tables VIII and
IX.
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TABLE IX. Analog of Table I for three-dimensional chiral spin-liquid state with mo =1. AG(r) is
evaluated using Eqs. (5.19)—(5.26), with the substitution indicated in Eq. (11.26). h (r) is the correlation
function of the unprojected state. The coupling constant of the unprojected state, defined by Eq. (5.16),
is I = 1.55. h, (r) is the spinon profile, as given by the solution of Eqs. (8.15)—(8.17). 5h&(r) is evaluated
using Eqs. (12.7) and (12.8).

Shell v, (r)

0.000
0.105

—0.006
—0.034

0.035
0.006

—0.007
—0.001
—0.005

0.012

h(r)
—1.000
—0.125
—0.015

0.000
0.000
0.000
0.000
0.000
0.000
0.000

—1.000
—0.217
—0.017

0.003
0.022

—0.002
—0.001

0.000
0.000

—0.003

h, (r)
—1.000
—0.006

0.003
0.000
0.001
0.000
0.000
0.000
0.000
0.000

XSI,(r)
0.000
0.365

—0.095
0.008

—0.072
0.014
0.000

—0.002
0.000
0.011

and for two dimensions only

5UG UG+0. 600J =0.245J' . (12.4)

5U is also plotted in Fig. 12. The similarity of 5U and
5UG is important in light of the inability of the hypernet-
ted chain equations to accurately describe hG(r) when mo
becomes small. It enables us to estimate that the energy
gained in opening the mass gap of the three-dimensional
system must be roughly twice 5U, or —0.05J, when
ma=1. Table X also shows that the hypernetted chain
gives a reliable value of UG when mo is large. From
Table IX we thus obtain —0.56J for the three-
dimensional system at ma = 1. Both of these numbers are
comparable to the corresponding two-dimensional values
listed in Table X.

It has been pointed out to us by Rokhsar that the
unprojected variational energy U, while an extremum, is
not the absolute minimum because the energy of the "di-
mer" state is lower. To make the dimer state, we imagine
pairing each site with exactly one of its near neighbors
and then looking for a solution for which y, as defined in
Eq. (3.13), is a constant for the dimer neighbor and zero
otherwise. Self-consistency is achieved when this con-
stant is 1, giving U ' "=—0.5J. However, when pro-
jected, this wave function gives an energy of
UG' "= —0.375J, which is higher than UG. Even
though this particular dimer state has an uncompetitive
projected energy, the fact that its unprojected energy is
lower than U casts doubt on the validity of the entire
variational procedure, beginning with Eq. (2.7). It is con-
ceivable that the approximation of Eq. (2.6) by Eq. (2.7)

f f (A +moB)' d8&d8z,—n/2 —n/2
(12.5)

in the two-dimensional system, with A and 8 defined as
in Eq. (3.15). The projected energy is given by

b G
=——' JN25hG(1)+ ,'J'N5hG(2), — (12.6)

where 5hG(r) is the change to hG(r) caused by the pres-
ence of a spinon localized at a site. Kalmeyer and Laugh-
lin showed that the hypernetted chain approximation to
5hG(r), obtained by solving the equations

51t G(r) = [I+hG(r)][5hG(r) —5cG(r)], (12.7)

works well near some extrema but not others, but this is
not clear at present. One fact supporting the validity of
the calculation is the similarity of the value of UG at
J'/J=O, namely 0.572J; to the classical Nel energy of
—0.5J and the "exact" energy of —0.668J.

Let us now consider the variational energy of the
spinons. Kalmeyer and Laughlin found a dispersion re-
lation for spinons qualitatively similar to that of Fig. 3.
Specifically, they reported a Brillouin zone half the linear
dimension of the full zone, a center-of-mass of the band
of roughly J, a dispersion of roughly 0.2J across the zone,
and a minimum at the corner of the reduced zone. Be-
cause of the diSculty of the calculation, particularly in
the absence of analyticity of the wave functions, we will
not attempt to compute the entire dispersion relation, but
rather only its center of mass, which is properly com-
pared to the unprojected energy

TABLE X. Total energy per site U and UG, as defined in Eqs. (12.1) and (12.2) and energy gained by
opening the mass gap, as defined in Eqs. (12.3) and (12.4).

0.892
0.686
0.497

1.0
0.5
0.1

Ug /J
—0.438+0.002
—0.441+0.001
—0.478+0.001

5U~/J
—0.060+0.002
—0.012+0.001
—0.002+0.001

U/J
—0.483
—0.464
—0.459

5U/J
—0.024
—0.005

0.000
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TABLE XI. N5hz(r) calculated using Eqs. (12.7) and (12.8).

Shell m0=1.0

0.404
—0.047
—0.106
—0.017

0.006
0.023
0.007
0.000

—0.005

mo =0.5
0.510

—0.208
—0.147

0.048
—0.015

0.036
—0.013

0.005
—0.009

mo =0. 1

0.586
—0.322
—0.201

0.115
—0.055

0.069
—0.047

0.026
—0.026

and

[1—
—,'cG(q)]5hG(q) =[1+—,'fG(q)]+ —c,(q)f, (q),1

(12.8)

with Fourier transforms defined by Eq. (5.13), is quantita-
tively correct. Evaluating these expressions, we obtain
the results shown in Tables XI and XII. The similarity
between b, and 6G is surprising in light of the fact that
the unproj ected wave function strongly weights
configurations for which the expected charged on the site
is 1, configurations which are destroyed by H&. From
Table IX and an appropriately modified version of Eq.
(12.5) we obtain 6=0.96J and b, G=0.45J at mo=1 for
the three-dimensional state.

It should be remarked that the chiral order parameter
(S, (S2XS3)), where sites 1, 2, and 3 form a near-
neighbor triangle, is much larger for the projected state
than the unprojected one. For the unprojected state, we
have

pact spin- —,
' particles. If we assume the plasmon analogy

to be valid, which is both reasonable and likely, we also
know that the normalization integral of a spinon pair
grows with separation. This growth is an effect of the
Gutzwiller projector and is, in light of Eqs. (9.14) and
(9.16), an indication that the set of localized spinon wave
functions is overcomplete and possesses a complex over-
lap matrix. Overcompleteness is also indicated by the
similarity between Figs. 3 and 8. Let us now imagine, as
illustrated in Fig. 13, that the bonds between vertical lay-
ers become weaker as one approaches the sample edges,
so that the layers effectively decouple. Since anisotropy
in the coupling does not destroy the gap, at least at the
mean-field level, adiabatic transport of the spinons to and
from the decoupled region should be well defined. Ac-
cordingly, we can imagine transporting the particles to
the boundary, interchanging them there, and transport-
ing them back, resulting in a Berry phase of n. /2. While
it is not clear that the same phase results when the parti-
cles are interchanged in the interior, a reasonable guess is
that it does. The qualitative behavior of the Berry phase
inferred from this thought experiment is exactly that as-
sociated with a Dirac monopole of unit charge. As illus-
trated in Fig. 13, the Dirac quantization condition may

I 2D

5D

—,
' g g g &~lo, lP& (&plo, lv& X &ply, l5) )

a,pp, vp, o

X (c,~c,pc~„c2„c3 c3$ ) 8y y', (12.9)

which gives a value of 0.018 when m, =1. This is ap-
propriately compared with the value 0.074 obtained for
the Kalmeyer-Laughlin wave function on a square lattice.

XIII. MAGNETIC MONOPOLES

TABLE XII. Energy gained by adding a localized spinon, as
defined by Eqs. (12.7) and (12.8) using the results of Tables VIII
and XI.

mo

1.0
0.5
0.1

0.969
0.929
0.918

0.543
0.550
0.638

Let us now ask what the analog of —,
' fractional statis-

tics might be in three dimensions. We know that the
chiral-spin-liquid vacuum has correlations similar to
those of the two-dimensional system. We know that
wave functions for the spinons exist that these are com-

FIG. 13. Top: Illustration of thought experiment in which
layers of three-dimensional chiral spin liquid are unleaved as
one approaches the sample edge. A pair of spinons adiabatical-
ly transported to the edge, exchanged, and then transported
back to the interior give a Berry phase of m/2. Bottom: Illus-
tration of the Dirac condition for monopole charge. The Berry
phase for evolving a test particle in a closed path is the flux en-
closed by the path. Consistency requires that the flux through
the upper cap equal the flux through the lower cap, modulo 1

flux quantum. When the monopole charge is 1, the Berry phase
associated with an equatorial path is m, which amounts to m/2
for interchange along this path.
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be understood as requiring the Berry phase of an elec-
trically charged test particle moving in a closed path to
be well defined. This will be the case provided that the
magnetic flux passing though any surface bounded by the
closed path is the same, modulo a flux quantum. If the
total flux emitted by the monopole is one quantum, then
the flux passing through a surface bounding an equatorial
path is —,', which gives a Berry phase of ~ when one parti-
cle is moved in a circle about the other. This is the same
result obtained in the two-dimensional case.

Since fractional statistics is known not to make sense in
three dimensions, it is important to emphasize that even
and odd planes of the three-dimensional chiral spin liquid
have the opposite handedness. Thus, if spinons are
monopoles, they are unusual in that the location of one
spinon in the unit cell is sensed by a test spinon far away.
While the meaning of this is not presently clear, one pos-
sibility is that the "potential" generated by a spinon is as-
sociated with a gauge group larger than U(l). ~ Behavior
of this kind, broadly construed, has been suggested by
studies of nonabelian gauge theories with parity violating
terms in their Lagrangians. There is also precedent in

the high-energy literature for condensation of charged
monopoles, or "dyons, " into superfluid phases. All of
these features of the problem need to be clarified in future
work.

XIV. SUMMARY

In this paper, we have given a detailed account of
properties of the chiral spin liquid state proposed by
Wen. Wilczek, and Zee. We have reviewed the variation-
al reasoning leading to this state, emphasizing that its

correctness is not yet established. We have shown that
one of this class of states exactly equals the Kalmeyer-
Laughlin state, and that the spinon excitations are also
the same. We have demonstrated explicitly that spinons
obey —, fractional statistics. We have introduced a simple

technique for computing properties of these states and
shown that the approximations inherent in the technique
are valid. We have shown that variational energies asso-
ciated with the true Gutzwiller projected version of the
states are comparable in magnitude to those of the unpro-
jected states. We have made the case that chiral symme-

try breaking is essential for a spin liquid to make sense,
and, in particular, that the AfHeck-Marston flux phase is
ordered. Finally, we have repeated the Wen-Wilczek-Zee
calculation in three dimensions and found the properties
of the three-dimensional state to be similar to those of the
two-dimensional one. In particular, we find that three-
dimensional spinons are well-defined spin- —,

' particles

roughly one lattice constant in diameter when the mass

gap is 1. We have argued that the analog of —,
' fractional

statistics in this system is behavior associated with a
Dirac monopole.
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