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Kinetics of diamagnetic phase transitions
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The kinetics of first-order diamagnetic phase transitions into a Condon domain phase, which may
occur in normal metals under a strong magnetic field, is considered. Expressions for profile, veloci-

ty, and width of the interface between the homogeneous and diamagnetic domain phase are ob-
tained. Critical sizes of clusters of the diamagnetic domain phase are calculated as a function of
temperature. The experimental feasibility of observation of the kinetics of first-order diamagnetic
phase transitions is discussed.

In a strong magnetic field the transverse motion of
electrons is quantized into cyclotron orbits. The electron
energy spectrum is split, therefore, into Landau levels.
Many properties of the electron gas are periodic func-
tions of magnetic fields as successive Landau levels sweep
through the Fermi level due to an increase of the external
magnetic field. ' Thus the oscillations of magnetization
occur (de Haas —van Alphen effect). It has been shown
that the field acting on charges in a metal coincides with
the magnetic induction 8. This means that each charge
is acted upon by a magnetic moment produced by all the
remaining charges. As a result, a self-consistent nonlocal
interaction is produced between the charges, and leads
to a stratification into diamagnetic or Condon domains,
when the magnetic, susceptibility X (X=dM/dB, where
M is the magnetization) is larger than 1/4n Macrosc. op-
ically the formation of Condon domains is understand-
able since the magnetic induction 8 can be a multivalued
function of the field H when strong enough oscillations in
M(8}occur.

In the nuclear magnetic resonance (NMR) experiment
on the direct evidence for Condon domains it has been
noticed that the existence of the NMR splitting due to
domains depended on whether the sample has been heat-
ed or cooled indicating the thermal hysteresis in the
phase-transition temperature. Therefore, diamagnetic
phase transitions may be offtrst order ones. T-he creation
of the diamagnetic domain phase may be thus connected
with nucleation processes and appearance of metastable
states. In the case of first-order phase transitions the
homogeneous and diamagnetic domain phases must coex-
ist in the temperature interval between limits of stability
of two phases. Therefore, by studying a diamagnetic
phase transition in a constant magnetic field, as a func-
tion of temperature, one gets new insight in the appear-
ance and development of the diamagnetic domain struc-
ture. We present here a theory of kinetics offirst order di-
amagnetic phase transitions and discuss possibilities of its
measurement.

When the diamagnetic domain structure appears as a
result of a ftrst order phase transition-, the Landau expres-
sion for the thermodynamic potential 4 for a spatially in-
homogeneous case has a following form: '

where

M =4aM =B —H

and D is the positive coefficient of the nonuniform term.
The analogous expansion has been used for diamagnetic
periodic structures in ' where the amplitude of spatial
oscillations of the magnetization was an order parameter.
The expression (2), without the term of a sixth order (i.e.,
leading to a second-order phase transition) has been ap-
plied for the two-dimensional electron gas in Ref. 10.

One supposes here that the external magnetic field is
fixed and the temperature is varied. If coefficients b and c
are positive, a first-order phase transition occurs for the
temperature-dependent a ( T) which is given by

a ( T) =a'( T —To), (4)

where a is a positive constant and To is the stability limit
of the homogeneous phase On t.he other hand, as is
shown in Ref. 8 [see also (Ref. 10)j,

a =1—4m' .

The homogeneous and diamagnetic domain phases
coexist on the two sides of the phase transition tempera-
ture in the range restricted by points of absolute instabili-
ty of phases:

To&T &T

where T» is the stability limit of the diamagnetic domain
phase. Temperatures To and T* are given by

3b
o c 16

and

Q
2

T*= To+
4a 'c

4=4o+ f Pdv,

where P is the density of the thermodynamic potential
presenting an expansion in degrees of magnetization:

'aM —'bM —+—'cM +D—(VM}~
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aM „5y
Bt 5M ' (9)

where I is the Landau-Khalatnikov kinetic coefficient
which is assumed to depend noncritically on tempera-
ture, ' 5P/5M is the variational derivative of P with
respect to M (Ref. 13) that drives the system towards
equilibrium. The kinetic equation (9) reflects the fact that
the order parameter M is not a conserved quantity. ' '

In the one-dimensional case *' after substitution of Eq.
(2) into (9) we obtain:

where T, is the phase-transition temperature in which
the densities of thermodynamic potentials of the two
phases are equal. The range (6) gives the thermal hys-
teresis on supercooling and superheating, where To and
T* are supercooling and superheating limits of the
thermal hysteresis range (8).

For temperatures To & T & T' the thermodynamic po-
tential density exhibits three minima: two, corresponding
to two Condon domains (MAO), and the third one corre-
sponding to the homogeneous phase M=0. Since the
thermodynamic potential is an even function of magneti-
zation, we have 180' domains. For temperatures
To & T & T, the homogeneous phase is metastable,
whereas the diamagnetic domain phase is stable. At the
phase transition temperature T, the thermodynamic po-
tential densities of the two phases are equal. In the range
T, & T & T' the homogeneous phase is stable, whereas
the diamagnetic domain phase is metastable. At T & To
and T & T' one of the phases exists only. Temperature
changes in the range To & T & T' give rise to a motion of
the interface between the two phases.

The evolution of the order parameter M is determined
by the thermodynamic force, i.e., the derivative of the
thermodynamic potential density P with respect to the
order parameter M. The larger is this thermodynamic
force, the faster is the regression BM/Bt of a given fluc-
tuation in M towards equilibrium. In order to study the
evolution of M we use the time-dependent Ginzburg-
Landau equation

spondingly. Md is given by

Md = [1+(1 4—ac/b )' ],b

2c

The required solution of Eq. (11) is known

MdM=
&1+exp( —s /b, )

where

(12)

(13)

3D

2)bMd al—

' 1/2

(14)

The expression (13) presents a kink (soliton) solution of
the time-dependent. Ginzburg-Landau equation. In Ref.
17 it has been proved that this solution is stable under
small perturbations and it has therefore a physical mean-
ing. The kink solution (13) is shown in Fig. 1. It de-
scribes the interface between the diamagnetic domain
phase MAO and the homogeneous phase (M =0) with
the interface width b. The negative sign in the exponent
of Eq. (13) corresponds to a situation in which the homo-
geneous phase is located to the left, the positive one puts
the homogeneous phase to the right. The antikink solu-
tion of Eq. (11)

M=
v 1+exp(s/b )

(15)

exists, if we suppose that M~Md for s~ —~ and
M~O for s ~+ ao. This change leads to a mirror trans-
formation of Fig. 1. Equations (13) and (15) presents par-
ticular solutions provided v is given by

4a —bM„'
u =r, "„,&2D/3,

( Ibm,' —al )'" (16)

where v is the velocity of the interface between the di-
amagnetic domain and homogeneous phases. The sign of
the interface velocity in (16) depends on the direction in
which the interface propagates thus leading to formation

M +I (aM bM +cM —
)
—2I'D =0.BM

X
(10)

The original partial differential equation in the in-
dependent variables of coordinate x and time t, Eq. (10),
can be reduced to an ordinary differential equation in the
variable s by rewriting s =x —vt, where v is a velocity in
the direction x. After this transformation in (10) we ob-
tain

d M
2I D™+ u I (aM —bM +c—M ) =0 . (11)

ds2 ds

M
Md

&.0-

05- IC DOMAIN

SE

We seek for a stationary solution in the moving coordi-
nate system, of a wave-front type, in order to describe the
interface (the front) between two phases. We assume
therefore the following boundary conditions: dM/ds ~0
where s~+ao and M~Md (the index d is referred to
the diamagnetic domain phase) for s ~+ ao, M ~0 for
s ~—~, where Md and 0 are values of the order pararn-
eter in the diamagnetic and homogeneous phases corre-

0-
I
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0
s 3 10

FIG. 1. The interface separating the homogeneous and di-

amagnetic domain phases: M/Md as a function of s/A.
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of the homogeneous or diamagnetic domain phase in the
volume of a sample under the influence of temperature
(cooling or heating).

Substituting (7) into (14) and (16) we obtain

and

D
2a'(T, —To)[1—

—,'5+(1—
—,'5)' ]

v =2I [Da'(T, —To)]'/ f (T),

1 //2

(18)

I-

0

where

5 ——'[1+(1—
—,'5)' ]f (T)=

[1——', 5+(1—
—,'5)' ]'
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8= (T- T, )/(T, -T, )
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and

T To6=
Tc TO

(19)

FIG. 3. The temperature dependence of the interface velo-

city v ((v/21'}1/[Da'(T, —To}]'~t as a function of 5).

is a dimensionless temperature.
The interface exists between 5=0(T=To) and

5=—', (T=T'); 5=l is the phase transition temperature
(T = T, ). In Figs. 2 and 3 the interface width b. and ve-

locity U are presented as functions of the dimensionless
temperature 5 according to equations (17) and (18). It is
seen from Fig. 2 that the interface width is finite for all
the temperatures in the range To & T & T*. In other
words the sharp interface between the two phases is well
determined in the above-mentioned temperature range,
including the phase transition temperature. On ap-
proaching the stability limit of the diamagnetic domain
phase T' the width of the interface increases. %'e see
from Fig. 3 that at the phase-transition temperature
T, (5=1) the interface does not move (v =0). It is

caused by the equality of thermodynamic potential densi-

2.0

ties of coexisting phases. The velocity of the interface is
actually one of the growth of the diamagnetic domain
phase.

At first-order phase transitions a supercooled homo-
geneous phase in the temperature range, given by Eq. (6),
is stable against infinitesimal fluctuations and unstable
against finite heterophase fluctuations' which are critical
nuclei of the diamagnetic domain phase. Let us calculate
the critical size of the nucleus (cluster) R, of the diamag-
netic domain phase. According to the classical theory of
nucleation, ' the new phase c1uster whose radius corre-
sponds to the maximum of the thermodynamic potential
change, required for formation of this phase, is the criti-
cal nucleus. Consequently, to calculate the critical size of
the diamagnetic domain phase cluster one maximizes the
thermodynamic potential by varying R. ' For simplicity
we assume, according to, ' ' that the order parameter as
a function of the coordinate M(r) is approximately given
by

1.6-
M =M„, Irf &R, (20a)

M =Md 1— r —R
R ~r~R+6, (20b)

'~ &1.2-
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8= (T-T, }/(T,-T.)

2.0

M=0, Irl ~R+~ (20c)

4=1t(Md)V+ R [p(M„) p(M„)]—
M

+4mR D —+ + (21)

where R is the radius of the cluster. Integrating the ther-
modynamic potential density 1I)(R) over the volume V, in
Eq. (1), we obtain

FIG. 2. The temperature dependence of the interface width
b(46/3)[2a'(T, —To }/D]'~' as a function of the dimensionless
temperature 5=(T—T, j/(To —T, ). Here To is the stability
limit of the homogeneous phase, and T, is the phase transition
temperature.

where the index h denotes the homogeneous phase. For
large clusters (6/R «1), when this macroscopic con-
sideration is applicable, we have, after maximization of
P(R),
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R, =24
a/4a —b~,'/

(22)
The observation of the three states on a time scale of

NMR is possible, if

(26)Sg7~) && 1 )Substituting Eqs. (4) and (7) into Eq. (22) we obtain
1/2

(23)

In Fig. 4 the temperature dependence of R, is demon-
strated. It is seen that at T = T, (5=1), R, ~00. It is
caused by the equality of thermodynamic potentials at
the phase transition in which the minimum work re-
quired for formation of nuclei of the diamagnetic domain
phase is equal to zero.

Since the formation of the diamagnetic domain phase
is connected with increase of thermodynamic potential it
is possible only through thermal fluctuations. The proba-
bility of such fluctuations is

hR,
(27)+cl

where hR, is an increase of the cluster on a cooling (see
Fig. 4) and u is the interface velocity in the given temper-
ature range (it is seen from Fig. 3 that the temperature
dependence of u is relatively weak). We can present Eq.
(18) in the form

u =I RL [(a'/2)(T, —To)]'~ f (T), (28)—64/k~ T8'~ e (24)
where RI is the cyclotron radius given by

where co& is the NMR frequency (for example, in the ex-
periment for Ag co& ——18 MHz and ~,&

is the time during
which the cluster of the diamagnetic domain phase grows
as a result of cooling. The time ~, is determined by

where h4, the work needed for formation of a critical
cluster of the diamagnetic domain phase, is given by

D M
b,4= 3840m (25)

4a bMd—

This result is in accord with the nucleation theory in
fluids as h4 ~ D .

Let us discuss, now, the conditions for possible experi-
ments. The diamagnetic domain phase has been firstly
observed in NMR experiments. ' Therefore we shall nat-
urally discuss the possibility of measurements of the ki-
netics of first-order diamagnetic phase transition by this
method. Since the phase transition must be a first-order
one, three NMR lines accompanied by a thermal hys-
teresis should be observed in the temperature range
To & T & T*: one line is originated from the homogene-
ous phase and two lines are of the diamagnetic domain
phase resulting from each domain.

10-

Vf

c
(29)

Here uf is the Fermi velocity and uI, =eH/mc is the cy-
clotron frequency. We use here D =yRL. '

Using Eqs. (26), (27), (28), and (29) we obtain

Uf ARc
+x&ci RCt)~ V

(30)

To check the criterion (26), we take characteristic values
of applied parameters. For estimates we use

RL =10 —10 crn .

(31)

The coefficient a' may be estimated from the susceptibili-
ty y [see (4) and (5)] as g ~ I /4Ir near T, . The difference
T, —To is taken as 0.5 K. Taking the definite T, —To, we
do not need to use the coefficients b and c. However,
they may be calculated from measurements of the
thermal hysteresis T' —To according to Eq. (8) and the
latent heat of the phase transition

EQ= —', T, ., a'b
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FIG. 4. The temperature dependence of the critical size
of the cluster of the diamagnetic domain phase R,
((R, /8) [a '( T, —To ) 12D] ' ~' as a function of 8).

Near T' we obtain that b,R, /Rl -10—10 [Fig. 4 and
Eq. (23)]. It is reasonable to apply co~/co, =10 5. The
measured values of the interface velocities for ferroelec-
tric materials are

u =(0.6—70) X 10 cm/sec

(Refs. 21 —23). Consequently uf/u =10' . Therefore it is
clear that co&~,

&
&& 1 and the criterion, Eq. (26), is

fulfilled. Thus the simultaneous observation of three
phases by NMR is possible.

The temperature dependence of the NMR spectrum in-
tensity near the first-order diamagnetic phase transition
temperature may provide an interesting information on
the phase separation at diamagnetic phase transition. At
T & T* the single line corresponding to the homogeneous
phase is presented. For T, & T & T' three lines appear:
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1BT BT
a Bt

(32)

where cx is the thermal diffusivity given by

cp' (33)

where E is the conductivity coefficient, C is the specific
heat per unit volume and p is the density. Since conduc-
tivity expresses the rate of heat flow into a sample and
specific heat denotes its ability to store this received ener-

gy, it follows that the ratio (33) is a measure of the rate of
change of temperature of the material. ' Therefore we
can approximately estimate the rate of propagation of
temperature changes in a sample vT as

(34)

the line of the largest intensity corresponds to the homo-
geneous phase, whereas the two other lines are of Condon
domains. At T=T, all the three lines have an equal in-

tensity. In the temperature range To & T & T, the inten-
sities of the two NMR lines resulting from Condon
domains are larger than that of the homogeneous phase.
At T & T, two NMR lines of the diamagnetic domains
emerge. It is clear that the interface velocity v is equal to
the rate of the temperature change of the intensity of
NMR lines in the temperature range To (T (T*.

To observe the pure effect of the interface motion it is
desirable that the rate of establishing of temperature in a
sample is sufficiently large in comparison with the inter-
face velocity: uT »v. Let us check whether this condi-
tion is fulfilled for silver samples used in (Ref. 5) for the
direct evidence of presence of the diamagnetic domains.

A process of a temperature establishing in a sample
may be approximately described by the Fourier equa-
tion (for simplicity we consider a one-dimensional case):

where d is the thickness of the sample. We use a=1.71
cm /sec (Ref. 21) for silver. The specimen used in (Ref.
5) was a plate —8 mm X0.8 mm thick along a [100]
direction. Calculations of vz according to Eq. (34) for
two directions in the silver sample give vT=6 cm/sec
(along the width of the sample) and vT =21 cm/sec (along
the thickness of the sample). Thus the criterion vT »U is
fulfilled providing the possibility of the measurement of
the interface velocity. The related condition required to
observe the growth of clusters of the diamagnetic domain
phase ~,~&&~T, where vT is the time of the temperature
establishing, is also fulfilled. Indeed, if we roughly esti-
mate rT as rr=d/Ur, then using the latter expression
and Eq. (27) we obtain

r,i/aT =(hR, /d)UT/U » 1

for the values used of these parameters.
To summarize, the interface between the homogeneous

and diamagnetic domain phases is obtained as a particu-
lar kink (soliton) solution of the time-dependent
Ginzburg-Landau equation. Expressions for the profile,
width, and velocity of the interface are derived. Temper-
ature dependences of the interface width and velocity and
that for the critical size of the cluster of the diamagnetic
domain phase are presented. It is shown that the kinetics
of formation of the diamagnetic domain phase can be in-
vestigated in NMR experiments.
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