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Dependence of some electromagnetic properties of superconductors on coupling strength
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We have calculated select electromagnetic properties for many real superconductors based on
tunneling-derived electron-phonon spectral densities. We use this data to fit coefficients in semi-

phenomenological forms derived through a series of approximations to the exact microscopic ex-

pressions. It is found that the derived forms represent we11 the strong-coupling corrections.

I. INTRODUCTION

Expressions for the electromagnetic properties of a
strong-coupling superconductor valid within Eliashberg
theory were derived by Nam. ' Perhaps because of the
complexity of the formulas involved and the fact that
finite-temperature solutions to the Eliashberg gap equa-
tions are needed as input, few numerical results have been
obtained so far for specific systems. Nam himself calcu-
lated the zero-temperature frequency dependent conduc-
tivity for Pb which was later reconsidered by Swihart and
Shaw. ' Blaschke and Blocksdarf calculate the surface
resistance of Sn, Pb, Nb, and amorphous Ga. The tem-
perature dependence of the dc Josephson current in a
superconductor-insulator-superconductor (SIS) tunnel
junction was measured and calculated by Lim et al. in
Pb and calculated by Vashishta and Carbotte in Pbo 9

Bio ]. The temperature dependent electromagnetic coher-
ence length was estimated by Kerchner and Ginsberg as
well as its zero-temperature reduction over the BCS
value. The zero-temperature reduction in the dc Joseph-
son current was considered by Ginsberg et al. and by
Carbotte and Vashishta. ' Blezius and Carbotte" have
calculated the temperature dependent London penetra-
tion depth for several impurity concentrations in V3Si.

In this paper, we wish to consider the London penetra-
tion depth, the electromagnetic coherence length, and the
dc Josephson current for an SIS junction, a quantity also
related to the local penetration depth. The aim is to cal-
culate these quantities for many different materials from
a knowledge of their spectral density a F(co) and
Coulomb pseudopotential p*. These quantities are
known from tunneling inversion. ' A second aim is to
derive, from microscopic theory, simple semiphenomeno-
logical formulas involving the single parameter
T, /co]„, ' ' and fit the unknown coefficients in the result-
ing form to the real materia1 data so as to provide a sim-
ple useful approximate formula for strong-coupling
corrections.

In Sec. II, we introduce formalism and formulas for the
various electromagnetic properties of interest which de-
pend on solutions of the Eliashberg equations. In Sec.
III, we consider the dc Josephson current as well as the
local limit penetration depth quantities which are related
by an appropriately constant factor. Section IV is con-

cerned with the penetration depth in the London limit,
while Sec. V. deals with the electromagnetic coherence
length. Conclusions are found in Sec. VI.

II. FORMALISM

The equations for the Matsubara gaps b (ice„) and re-
normalization factors Z(ice„) are' '
b(iru„)Z(ice„) =n'T g [A(ice„ico —)

—p'(co, )&(~, —l~ I)]

b(ice )
X

2 +g2( )]1/2

and

Z(ice„)=1+

HATT

~m
X g A,(iso„—ice )

[co +b, (in) )]'

(2)

where the Matsubara frequencies are ice„=in T(2n —1),
n =0,+1,+2, . . . . The electron-phonon spectral density
a F(v) appears through the relation

~ 2vdva F(v)
2 2v —z

(3)

and p*(co, ) is the Coulomb pseudopotential with cutoff
S

Electromagnetic properties of superconductors were
discussed in the original paper of Bardeen, Cooper, and
Schrieffer' within pairing theory. The work was extend-
ed to strong-coupling form by Nam' who gave formulas
for many electromagnetic properties and also gave limit-
ed numerical results for the specific case of Pb. The basic
formulas are complex and a solution of Eq. (1) and (2) is
fundamental to evaluating properties.

Within linear response theory, the Fourier transform
of the current density'

J„(q;co)= —K„„(q;co)A '(q;co),
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where p=1,2, 3 corresponds to components x y z of the
vector J and q, cu are momentum and frequency, respec-
tively. In Eq. (4), A "(q,co) is the v'th component of the
vector potential A describing the electromagnetic field.

K„„(q,ro) is a tensor which gives the current response
function and is the Fourier transform of the current-
current correlation function.

Electromagnetic properties of interest here are expres-
sible in terms of the kernel K„„(q;u) of Eq. (4}. For ex-

ample, the frequency dependent penetration depth for the
penetration of a magnetic field into the surface of a bulk
superconductor is given, for the case of specular
reflection, by the formula'

00 1
A,(T,a))= — dq

q +K(q;co)l4m
(5)

where we have assumed isotropy and have made explicit
the temperature dependence. What is most often quoted
as the penetration depth is the frequency co~0 limit of
(6) which describes the static situation and is denoted by

A,(T)= lim A,(T,co) .
67~0

(6)

Moreover, simple expressions for A, (T) are possible in

limiting cases. In a dirty superconductor, the mean free
path (l) of an electron can be greatly reduced due to the
increased scattering probability of impurities or other de-
fects. In that instance, the electromagnetic response be-

comes local which implies that the q ~0 limit of K (q, co}
is the important quantity. The integration in Eq. (5)
weights most the q =0 part and we get'

5 (ice„)
A)(T)= 4nrr~T g„=i a)„+b, (i co„)

a quantity that depends only on the Matsubara gaps
b(Ice„}. In Eq. (7), the subscript I stands for local limit

I

and 0.& is the normal-state conductivity due to impurity
scattering which is given by

cr N
= ', N—(0)e vFrN,

with N(0} the single spin electronic density of states at
the Fermi surface, e the charge on the electron, vF the
electron Fermi velocity, and ~z the impurity lifetime.
The local limit, for which Eq. (7) holds, is generally
characterized by the condition g(0) » I where g(0) is the
zero-temperature coherence length to be introduced later.

Except for an appropriate change of the numerical
coefficient and proportionality constants in Eq. (7),

( T) also gives the critical dc Josephson current

[J, ( T)] observed in a superconductor-insulator-
superconductor (SIS) tunnel junction so that'

A((0)

A, i(T)

When nonlocal effects come into play, the Pippard or
London limits are often introduced. The Pippard limit is
characterized by A, ((g(0) while the London limit implies
l»g(0). The Pippard liinit is determined through the
zero frequency limit of Eq. (5) where most of the contri-
bution comes from the q ~ 00 region of the integral. The
result is'

' —1/3

(10}

where n is the free electron density and m the electron
mass. It is clearly related to the local limit and will not
be discussed further here. The London limit which de-
pends mainly on the q~0 limit of the electromagnetic
response function is given by'

b (iso„)
Ar (T)= 3mN(0)e vFT g-

„=i Z (i co„)[co„+b (i co„)] ~

—1/2

qK (q, 0) 3n.
q- ~ K (0,0) 4g( T)

and more explicitly'

(12)

(13}

where we see that the renormalization factor Z(iso„) of
Eq. (2) now enters explicitly. It was not needed in the lo-
cal limit case.

Another quantity of interest is the electromagnetic
coherence length g( T) which describes the nonlocality in
the response of a superconductor to an electromagnetic
field. It is given by the formula

and is therefore related to the ratio of local and London
limit penetration depth. Explicitly

I,(( T) g( T)
AL(T)

(14)

which is just the ratio of coherence length to mean free
path 1 =vF~. Local, London, and coherence lengths will

be discussed in turn in the following three sections
(III—V). To calculate these quantities for any given spec-
tral density a F(co} and Coulomb pseudopotential p*, it
is necessary to have numerical solutions of Eqs. (1) and
(2) for the Matsubara gaps A(ice„) and renormalization
factors Z(ice„). Besides precise numerical solutions of
these equations, we will also want to consider approxi-
mate analytic solutions which contain a first correction
for strong-coupling corrections to the BCS results for the
corresponding quantity. To obtain such approximate ex-
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pressions for the above-mentioned electromagnetic prop-
erties, we follow our previous work on thermodynamic
properties and use a model for the gap 6 and for the re-
normalization Z, namely'

5(ico„=ho(T), lco„l &coo,

outlined in the Appendix. The results will be used in the
next three sections.

III. LOCAL PENETRATION DEPTH
AND dc JOSKPHSON CURRENT

and

(15)
For both local limit penetration depth and dc Joseph-

son current, the relevant quantity that is to be calculated
is [see Eq. (7) and (9)]

Z(ico„)=ZO(T), lco„l &coo,

=1, lco„l )coo, (16)

6 (ico„)
I, =nT g

n = I ~n +~ (i~n }
(18)

where co0 represents a frequency which is taken to be
roughly a few times the maximum phonon energy in the
system. We will introduce as well a characteristic pho-
non energy coi„which is related to a F(co) through the
definition' n.b 0( T)

8T
(19)

We will start with T near T, . In conformance with the
discussion in the Appendix, we can neglect the n depen-
dence of b, (ico„), since the sum in (18) converges, and get
for the model gap defined in Eq. (15) and (16)

2 ~ ln(co)a F(co)
lncoi„=

dt's

0 CO

(17) where to lowest order in (T —T, } we get from the Ap-
pendix equation (A19)

This characteristic frequency has already played an im-
portant role in the work of Allen and Dynes' on critical
temperature and of Marsiglio and Carbotte' on thermo-
dynamic properties. In the work to be described below
and particularly in the Appendix, we will assume that
col„/coo«1 and also that T, /co„l«1. The BCS limit
corresponds to the T, /coi„—+0 limit. With these approxi-
mations, we can obtain, after considerable algebra, solu-
tions for 50(T) and Zo(T). The essential derivations are

I

(20)

and so for T~ T,

ncrN F'(T, )
Y((T)=hi (T)=4o~I(= (1 t), —

2 6 T,
(21)

with t =T/T„ the reduced temperature. Reference to
Eq. (A17) gives, after some simple algebra,

F'(T, )

G(T, )

8~2 2(nT, )

7g(3) '
A, 7g(3) ' 6 7g(3)

(22)

1.13')~
a, ln

B c

On substituting Eqs. (A20) and (A21) into (22), we get

4o ~ 7g(3)
ap

(1.57)
a&

(23)

i. - d~ a'(~)
4c7~ 0 2 co~+ Q2( )

(24)

where a& and az are to be treated as arbitrary parameters.
Next, we consider the T=O limit. In this case sums

over Matsubara frequencies are replaced by integrals
with AT+„",~ ,' f 0"d.co —sothat

where a3 and b3 are again to be thought of as arbitrary
constants. A best fit to data on real materials gives
Q 3 12. 5 and b 3

=2. Such formula have already ap-
peared in the literature for the gap to critical temperature
ratio, for some thermodynamic coefticients as well as oth-
er quantities.

From Eq. (23) and (25) we get

If we ignore the co dependence of the gap, this integral be-
comes

Yt (0) T, col„=0.376 1 —a, 1n
?, I Yi(T, }l

(26)

2b, o( T =0}
kBT,

T ~in
1n

b3T,
=3.53 1+a3

~&n
(25)

= —bo(T =0),
4a~ 4

where b,o(T=0) is given in the Appendix '' by Eq.
(A34),

where a, and b, are related to a, , a2, a3, and b3, but, as
these are treated as arbitrary, we need not exhibit this re-
lationship explicitly. In Fig. 1 (solid dots), we show re-
sults for Y, (0}/T, l

Y (T,1)l in real materials based on
tunne1ing-derived kernels and complete numerical solu-
tions of the Eliashberg equations (1) and (2) and the exact
evaluation of formula (18). The materials in increasing
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0.40

0.38—

reader is referred to the previous work of Marsiglio and
Carbotte. ' The solid line in Fig. 1 is a visual best fit
through the exact numerical data of the form

0.36
YI(0} =0.376 1 —1.5

T, I
YI'(T, )I

0.34—

0.30-

0.28—

0.26—
/

Ga

0.24—

0.22—

0.20 I I I I I

0.04 0.08 O.I2 O.I6 0.20 0.24
TC~~ln

Note that a linear term has been required for an accurate fit.
The dashed curve corresponds to a model Einstein spectra for
a'F(co), the model spectra upon which our derivations are
based. The trend is quite similar to that of the real materials.
Note, however, that the initial decrease from BCS is more quad-
ratic, and hence no linear term would be required. Thus, it ap-
pears that the effect of the realistic shapes used has been to pro-
duce a linear correction below the BCS value.

FIG. 1. The ratio Y~(0)/T, I Y,'(T, )I vs T, /co, „. See text for
identification of materials. Note that amorphous Ga has also
been included and deviates substantially from the trend. The
solid curve corresponds to

'2
~((0) Tc Tc ~tn=0.376 1 —1.5 —7.6 ln

T, I Yl ( T, ) I ~l~ CO~ 4T,

—7.6

'2
Tc in

ln
~in 4Tc

(27)

where we have added, purely on a phenomenological
basis, a linear term to the derived form (26}. Such a term
is needed to get a really good fit. It can be thought of as
necessary to compensate for the approximations made
during the derivation of (26). This derivation should be
more accurate for a 5 function spectrum. Such results
are shown as the dashed line in Fig. 1. We note that near
T, /co~„~0 this curve is more quadratic and does not in-
dicate the need for a linear term which can then be inter-
preted to be resulting from the frequency spread that
occurs in real spectra. Phonon frequencies are normally
spread over a significant frequency range. To end, we
note that amorphous Ga falls way off the main trend
curve. This is not surprising since such a spectrum ex-
hibits considerable weight at low energies and hence our
approximation v/T, &&1 does not apply for all important
frequencies (v).

IV. LONDON LIMIT PENETRATION DEPTH

(28)

In analogy with the procedure followed in the preced-
ing section, we start by introducing a quantity II (T)
which does not depend on external normal-state parame-
ters, but depends only on the solutions of the Eliashberg
equations (1) and (2). That is, we write

(T)
IL( T) =

—', N(0}e uF

order of T, /co~„are Al, V, Ta, Sn, Tl, T109Bio &, In, Nb
(Butler), Nb (Arnold), V&Si(1), V&Si (Kihl), Nb (Rowell),
Mo, Pbo 4Tlo 6, La, V&Ga, Nb&AI(2), Nb&Ge(2), Pbo &Tlo 4,
Pb, Nb&AI(3), Pbo sTlo z, Hg, Nb&Sn, Pbo 9Bio „Nb3A1(1),
Nb3Ge(1), Pbo. sBio.z, Pbo. 7Bio.3, and Pbo. 6sBio.3s For
more details of these spectra, including their origin, the

I

7((3)b, (To)
Il (T)=—

8(1+A, )(n.T)

from which we conclude that

(29)

For T near T„ the sum in (28) is sufficiently convergent
that we can replace Z(ice„) by its n =1 value which is
(1+A, ). This also holds for b (i ru„) and we get

T, Yl'(T, )

3N(0)e uF—1+1+k
2(m T, )

iE
(30)

where use was made of formula (22) and by definition
YI (T)—= A, L (T). A similar formula was derived by
Masharov using very different methods.

At zero temperature, we get, from Eq. (28) on convert-
ing the sums to integrals, the result

( )
des b, (co)

Z(co)[ro +b (co)]
(31}

Ignoring the implicit co dependence in both Z and 6 and
replacing them by their co=0 value leads to a known in-
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tegral and

(32)

The quantity Zs(0) is calculated, for our model solution
(15) and (16), in the Appendix. Equation (A28) with r0=0
gives

Zs(0)=1+A, +b o(T =0)J 2vdva F(v) 1 —ln
o v4 b,o(T =0) (33)

which can be worked out to read

Z, (0)=(1+A,) 1— 26O (AT, )

[a(T, ) b]—
1+k (34)

Using Eq. (30), (32), and (34), we get
T

Yt(0) (nT, )=0.50 1 —2 1+ a ( T, )
—1.57b

6
(35)

When a( T, ) and b, given by Eq. (A20) and (A21), respec-
tively, are finally substituted into (35), we get

Yi(0) T, co)„=0.50 1 —a2 ln
T, IY (~T, )

'
ro,„b,T,

(36)

where a 2 and b 2 are arbitrary constants to be fit to data

YL (0)

T, I Y (LT, )
=0.50 1 —2.0

for real materials obtained from the complete numerical
solutions of the Eliashberg equations (1) and (2) with ex-
act prescription (11)for A, L (T).

Results of exact numerical solutions for the many real
materials (solid dots) identified in the preceding section
are shown in Fig. 2. A reasonable fit can be obtained to
this data with a form (36) provided an additional linear
term is introduced phenomenologically as in Sec. III.
The solid line of Fig. 2 corresponds to the form

Tc

—11~ 0
2

Tc 1n
ln

Ni 4.5T
(37)

0.45—

0.40—CD Nb(g~g)

which is our final result for strong-coupling corrections.
If one is interested in deviations from Eq. (37) for a par-
ticular material, a full numerical solution is required.

Note Anally that the Pippard limit penetration depth
was not explicitly commented on in this section because
it is simple matter to prove that it does not lead to new
results. This is easily seen if we introduce Zp(T)

'(T). It follows that

0.35—
Nb~A I (2) Zp(0)

T, IZ'(T, )I

YI(0)

T, I
Y'(T, ) I

(38)

Hq

~ ~

a quantity we have already plotted in Fig. 1 in the
preceding section.

0.30—
V. ELECTROMAGNETIC COHERENCE LENGTH

I l l I

0.04 0-08 0-12 0.I6
Tc

1 l

0.20 0.24

FIG. 2. The ratio YI {0)/T, I
Y (T,L)I vs T, /co~„. See Sec. III

for identification of materials. The solid curve corresponds to

YL{0) Tq Tc M=0 5 1 —2 —11 ln
4.5T,

As pointed out in Sec. II [see Eq. (14) in particular],
the electromagnetic coherence length g(T) is related to
local and London limit penetration depth. So, no new
algebra is required to discuss g(T). Before giving results,
however, we wish to discuss the eC'ect of normal impurity
scattering on the gap and renormalization factor which in
turn enter the formulas for the electromagnetic proper-
ties.

So far, no impurities have been included explicitly in
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6( I CO„)
+

[ 2 +g2( )]1/2

and in Eq. (2)

(39a)

the Eliashberg equations (1) and (2). To include thetn re-
quires adding to the right hand side of Eq. (1) a terms of
the form

free path in this limit.
Results for the ratio ((0)lg( T, ) for real materials are

shown as solid dots in Fig. 3. These results were obtained
from exact numerical calculations based on Eq. (1) and
(2), without an explicit mt+ term added on, and the
prescription (13), so they apply to the clean limit case.
The solid curve represents the best visual fit that we
could achieve and is

1
+

[ 2+g2( )]1/2 =1.33 1 —0.83
((0)

C

C

with t+ =1/2n. ~z with ~z the impurity lifetime already
introduced. It can easily be seen, on substitution of the
modified Eq. (2) into Eq. (1), that for an isotropic super-
conductor the new impurity terms will cancel right out of
the combined equation for the Matsubara gaps. This
cancellation is in accordance with Anderson's theorem
which states that T, is unaffected by normal impurities in
an isotropic superconductor. Of course, when anisotropy
is included, the theorem no longer holds and the effect of
normal impurities is to wash out the anisotropy and in
the dirty limit we recover isotropy.

While the impurity contribution drops out of the gaps
h(ice„), it remains in Z(iso„) itself. Noting from Eq. (7)
that only the b(ice„) are required in At(T), we see that
adding t+ explicitly to our equations changes nothing.
This is not surprising since the local limit is derived un-
der the assumption that I &&g(0) and so the dirty limit is
already built into it. It is then only consistent that add-
ing an additional m.t+ term in the Eliashberg equations
themselves makes no difference. The situation is different
for the London limit. In this case, Eq. (11) applies and
we see that Z(i to„) enters explicitly so that the trt+ con-
tribution in a modified Eq. (2) will come in explicitly and
the London limit will depend on impurity scattering time
~„. In fact, in the dirty limit with mt+ ~ ao the new term
(39) in the Z channel will dominate, and it is appropriate
to replace Z (i co„) in Eq. (11)by

—0.75

'2
Tc COI~

40T,
(42)

YL(0) g(0) Yt(0)

T, l Y,'( T, )) P T, ) T, ~ Y,'( T, )
(43)

This was done to increase the accuracy of our fit. As a
consequence, we stress that Eq. (42), (37), and (26) violate
(43) in the first order correction.

L35

l.30

where the numerical coefticients in this form were fit to
the data of Fig. 3 and were not derived from our previous
fits to Y& and YL even though an exact relationship is

Z(iro„)= mt+ I[ oc„—+6 (ice„)]'

which gives

g (T), E(0)e
~i+

1.25—
~ Nb(Rewell)

~0

V&Si (KiN )

b (iso„)XTg
[ 2 +g2( )]1/2

(40)
1.20-

UF
g(T)= =uF~=l .

2m'+
{41)

The electromagnetic coherence length becomes the mean

The constant in the definition of A.t (T) is simply 4mo ~-

with o ~ given by (8) and so the London limit result in the
dirty limit reduces to the local limit result [Eq. (7)].

Since, as noted in Eq. {14), there is a relationship be-
tween coherence length and the ratio of local to London
penetration depth, g( T) will depend explicitly on the mt+.
factor in the modified Eliashberg equations. In fact, from
Eq. (13) in the dirty limit, we see immediately that

I.I 5
0

I I I I I I

004 0.08 O.I2 P.I6 0.20 0.24
Tc™i~

FIG. 3. The ratio g(0)I(( T)vs T, I ~„. roSee Sec. III for
identification of materials. The curve corresponds to

T.= 1.33 1 —0.83 —0.75 111
g( T, ) cui„cg,„40T,
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VI. CONCLUSIONS

We have calculated the local and London limit
penetration depth as well as the electromagnetic coher-
ence length for a large number of conventional materials.
The calculations involve the complete numerical solu-
tions of the Eliashberg equations based on known
electron-phonon spectral densities and Coulomb pseudo-
potential. These normal-state parameters, which deter-
mine the kernels in the gap equations, are known from
tunneling inversion. The data so generated are used to fit
parameters in semiphenomenological forms derived from
the exact expressions for the electromagnetic properties
through a series of approximations. In all cases, the final
forms obtained depend only on the single characteristic
strong-coupling parameter of the material T, /a2„where
co&„ is the characteristic phonon energy first defined by

I

Allen and Dynes. Deviations from the trend curves are
found in soigne cases. These can only be described
through full numerical calculations.
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APPENDIX: DERIVATION OF
STRONG-COUPLING CORRECTIONS TO THE GAP

In this Appendix, we outline the derivation of strong-
coupling corrections to the gap. Near T= T, we can ex-
pand Eqs. (1) and (2) in powers of the gap since it is small:

Zs( a2„)h(co„)=n T
N0

m= —N +10

Ao
~('ann ~m }

~

1 ~o 3 ~o
1 —— +-

co 8 Nm m

(A 1)

Z, (co„)=Z~(co„)+ J 2v dv a F(v)
co~ 0

0 sgnco

N0+1 V +(adam
—

COn )

1 dko 3 b'o+-
ct) 8 co

(A2)

Here the subscript S(N) means superconducting (normal). Also, No=tea!(2~T)+ ,' enumera—tes the Matsubara fre-

quencies in the sums. However, the convergence is sufficiently rapid that No can be replaced by infinity. The summa-
tions are folded to the domain (0, ~ ). In the Z channel [Eq. (A2)], this procedure results in sums like

QO

1 4~m ~n
~ ~ ~ (A3)

Noting that a2„=2rt(2n —1), and only small n is re-

quired, one sees that terms of 0(T, /v) have been
neglected, consistent with our assumption, T, &&v. The
required sums are

Here, a„—:v +co„, and i =1,2, 3, . . . . In accordance
with the remarks made above, only i = 1, 2 are required
in Eq. (A4) and all i can be neglected in Eq. (A5). These
are readily evaluated in terms of digamma functions:

and

1
U; =4+T g

-& a2
' (co +a„)

(A4)
1.13a„

7 g(3) 1

2 (AT}' a„

(A6)

(A7)

1 4~nm
V;=42rT g

=& co
' (a2 +a„)

(A5) g(3) is the Riemann zeta function [g(3)=1.202. . .]. It is
easy to show V, =0( T/v) . Equation (A2) becomes

Zs(co„}—Zz(a2„)= —b0(T}J 2vdva F(v) ln
0 ( v2+ ~2 )2

13( 2+ 2 )1/2

+ —'„'b0(T) f 2vdva (v)
2 2 2(nT) 0 ( 2+ 2 )2

(A8)

The n dependence in Eq. (A7) is dropped in the argument of the logarithm, to facilitate the calculation. An identical
expansion can be performed for Zz(n), with the result

Z~(co„)=1+A,——,'(mT) [(2n —1) —1]J 2vdva F(v)
0 v

(A9)
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For n = 1, there is no strong-coupling correction in (A9);
Z„=1+A., which is the A, result. For a higher value of
n, a strong-coupling correction results. We prefer to use
the former value, since it is exact for n =1. This is seen
most readily from the exact equation for ZN(co„):

93 g(5) 93 g(5) b

I+A, 128 (~T) 128 (~T) 1+A,

63 g(3) b
32 (~T)2 1+A,

(A17c)

7TT n —1

ZN(co„)=1+ A(0)+2 g A(m)
m=1

(A 10)
The T, equation is given by 1 =F ( T, ), with the result

T

Tc 1 13~1nexp
Similar remarks apply to the 5 channel. Equation (Al)

can be reduced to

Zs(n)ho=ho f 2vdva F(v)[Pi+Qi —
—,'bo(Pi+Q2)

(mT, )
X 1 — [a(T, )

4—b] (A18)

and

2~T 1
2i —1 2 2

m =1 m ~m +an

2mT "~n

+ ', 50(P3—+Q3 )], (Al 1)

(A12}

(A13)

This is not an accurate T, equation, but will prove useful
later. The gap parameter (near T, ) is obtained from Eq.
(A16):

F' 1 Fll Gl
6 (T)= — (T —T ) 1+0 G c 2F' G

F'J+ (T —T,), (A19)

These sums are

1.13a„
P, = ln

(m T)
6a„'

7 g(3} 1 1 1.13a„
4 (rrT}' a' a'
31 g(5) 1 7 ((3) 1

16 (~T) a„4 (nT) a„

CO n

4
an

1
Q2 Q3 0

(A14a)

(A14b)

(A14c)

(A14d)

(A14e)

a1 1.13'„
A, ln

1n B c
(A20}

The first equality follows for a given spectrum from the
mean value theorem of calculus; a1 can be chosen to
compensate for the averaging. The second equality fol-
lows from the definition of col„[Eq. (2.3)]. Similarly,

(A21)

where it is understood that the derivatives are with
respect to temperature, and the functions are all evalu-
ated at T, . To simplify the formulas (A17) for F, G, and
J, we write

a(T, )= f 2vdva F(v) ln
1 1.13v

~1n B c

a(T)= f 2vdva F(v)—ln
1 1.13v

0 V
(A15a)

We evaluate Eq. (Al 1) for small n (specifically, n = 1) and
define

At zero temperature the Eliashberg equations are
modified according to the prescription

2~TQ f(co„)~f dpi f(co) . (A22)

and

b(T)—= f 2vdva F(v)
0 V

The gap equation (Al 1) becomes [using Zs(n = 1)]

(A15b)

Zs( co) = 1+4f v d v a F( v }(A, + /1 2 ),
0

where

(A23)

The equation for Zs(co) is folded to the domain [0, 00 ],
with result that it can be written

1 =F ( T)+ h(~) G ( T)+A()J ( T),
where

(A16)
CO 1

A1 — dCO
0 ( i2+g2)1/2 ( i2+ 2 )2

(A24)

(Al ja) and

G(T)= A' 7 g(3) 3 a(T})+(7g(3) 1) b

1+A, 8 (~T}2 2 1+A. ' ' 1+A,

46) QP 1
dco

0 (
~ +g )

/2
( i2+ 2)4

(A25)

(A17b) Here again a 0 =—~2+ v . The results are




