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We discuss predictions of the hole-pairing mechanism of superconductivity for various experi-
mentally measurable properties of the high-T, oxides. The model considered describes conduction
by holes through the oxygen anion network in the high-T, oxides, and pairing originates in a term
in the Hamiltonian describing an enhanced hopping amplitude for a hole in the presence of other
holes. The model includes on-site and nearest-neighbor Coulomb repulsions and different hopping
amplitudes within and between planes. %'e use information from experiments to determine suitable
ranges of parameters in the model and examine various properties of the superconducting state
within this model using BCS theory. Among the most notable predictions of the model for the
high-T, oxides are: (1) the superconducting state is nearly isotropic despite the anisotropic band
structure; (2) the pressure dependence of T, is very different for pressure applied perpendicular and
parallel to the planes; and (3) the upper critical field and effective mass decrease rapidly and mono-
tonically with hole doping, as a crossover occurs between strong- and weak-coupling regimes.

I. INTRODUCTION

Various experimental measurements' indicate that the
pairing formalism utilized by BCS theory is applicable to
the high-T, oxides, but there is still no consensus on the
issue of what the "glue" is that is causing the pairing.
One of us has proposed recently that holes are the key
component of superconductivity, and in particular that in
high-T, oxides superconductivity originates from con-
duction of holes through 0 anions. The reason that
holes conducting through closed-shell anions give rise to
high-temperature superconductivity can be understood in
two ways: (a) a hole causes a large disruption of its back-
ground, the filled-shell anion, which can be described by
coupling of the hole to a pseudospin degree of freedom
located at the anion site, and a second hole can take ad-
vantage of this distorted background, or (b) an off-
diagonal matrix element of the Coulomb interaction is at-
tractive when the single-particle wave function changes
sign between a site and its nearest neighbor, which occurs
for holes in a filled band. These two points of view are
equivalent and lead to an identical conclusion, a term in
the Hamiltonian describing an enhanced hopping rate for
a hole if other holes are in the nearby vicinity. This term
explicitly breaks electron-hole symmetry and, together
with an attractive interaction between holes, it causes
considerable effective-mass enhancement for nearly filled
electron bands.

Many of the consequences of such a Hamiltonian have
already been worked out in a BCS framework. In this
paper we focus on parameter regimes that may be
specifically applicable to high-T, oxides, and, in addition,
we include the following elements that were left out in
our previous discussion of the oxides. (a) We examine
the effect of a nearest neighbor Coulomb repulsion V in
addition to the on-site repulsion U. While this interac-
tion is probably small in the oxides, it is important to

determine how robust the superconducting state is to the
inclusion of such a term and what quantitative or qualita-
tive changes it can cause in observable properties. (b) We
consider a three-dimensional band structure, with hop-
ping in the z direction substantially smaller than in the xy
plane, as appropriate to the layered oxide materials. (c)
We include the effective-mass enhancement correction,
which becomes increasingly important as the number of
holes in the occupied band decreases. In addition, we
have computed various properties of the superconducting
state that were not discussed in Ref. 4: London penetra-
tion depth, thermodynamic critical field, Knight shift,
and Ginzburg-Landau parameters.

Because of the strong universal features of BCS theory,
many of the properties of the model discussed here show
little difference from what would be obtained from other
pairing mechanisms. Characteristic behavior, however,
arises when one considers the variation of these proper-
ties with hole concentration. While some properties of
the high-T, oxides have already been experimentally
studied as a function of doping, most notably the transi-
tion temperature, many others have not. We hope
that in the future these difficult systematic studies will be
pursued vigorously, as they offer a promising way to
differentiate between proposed alternative mechanisms.
In this respect the original 2-1-4 structures appear to
offer the most controlled environment as they do not
present complications such as charge transfer between
chains and planes that can occur in the 1-2-3 structures.

We wish to emphasize here that a complete description
of the properties of these materials would require in-
clusion of the Cu d 2 & orbitals into the problem. Forx —y
example, these orbitals certainly play an important role
in the insulating phase, and give rise to the observed anti-
ferromagnetism. A strong school of thought' has taken
the point of view that magnetic excitations associated
with the Cu orbitals persist into and indeed cause the su-
perconducting state to appear. There is, however, anoth-
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er growing point of view, which can be called convention-
al, that maintains the usual idea that magnetism and su-

perconductivity are at best unrelated and at worst anta-
gonistic to one another. The existence of "nonmagnetic"
30 K oxide superconductors, along with the growing con-
sensus that a Fermi-liquid description is appropriate for
a11 the doped materials, is strong supporting evidence for
the conventional viewpoint. In this work we have there-
fore focused on the minimal model that we feel captures
the essence of superconductivity in these materials. It is
expected that the qualitative results and trends in this
work will survive a more detailed model involving Cu
d 2, orbitals. A detailed comparison with experiments

x —y
will eventually decide between the various competing
models and points of view.

This paper is organized as follows: In Sec. II we re-
view the model and formalism, including the new in-
gredients discussed above, and discuss the choice of pa-
rameter values, specifically for the Y-Ba-Cu-0 material,
based on available experimental information. In Sec. III
we investigate the expected dependence of T, on pressure
within this model. T, is found to increase with pressure
applied in the plane, but can decrease with pressure ap-
plied uniaxially perpendicular to the planes for a range of
hole concentration. In Sec. IV we present results for
various superconducting properties. The specific-heat
jump and the gap ratio, 2ho/ks T„show systematic vari-
ation with doping, and become larger than the weak-
coupling BCS result at low hole density. Also shown is
the London penetration depth and Ginzburg-Landau
coherence length in the different directions. Their tem-
perature dependence is close to the universal weak-
coupling behavior but they also exhibit systematic trends
with doping. Results for the tunneling characteristic are
shown, including self-energy and band-structure effects,
and the effects of nearest-neighbor repulsion, V. The
latter in particular reduces the expected asymmetry de-
scribed previously, but for realistic parameters the
asymmetry is still unambiguously observable (and of
universal sign). The expected behavior of Knight shift
and NMR relaxation rate within our model is also briefly
discussed. In Sec. V we present calculations of the super-
conducting pair wave function and of the coherence
length, go, defined from the spatial extent of the wave
function. At low temperatures it is expected that this
coherence length be quite similar to the Ginzburg-
Landau coherence length, and we compare the results ob-
tained from both methods. The nature of the pairing in-
teraction together with the effective-mass enhancement
effect determine a characteristic behavior of the pair
wave function versus doping: For low hole doping the
system is in the strong-coupling regime and paired holes
are confined to be a single lattice spacing apart, and as
the hole doping increases the system gradually crosses
over to the weak-coupling regime with the coherence
length rapidly increasing. For an isotropic system this
crossover was discussed recently. " Finally, a summary
and discussion of the results are found in Sec. VI. Ap-
pendices A and B discuss the derivation of various results
used in the paper.

II. QUASI-TWO-DIMENSIONAL MODEL

We consider the single-band Hamiltonian '

H= —gt;~ (c.; cj +H c .)+. Ugn;&n;t
IJ 1

+g V;n;n —pgn,
1J lg

—g(b, t),)(c, c, +H. c. )(n, +n, ),
V

(la)

(bt),, =ctt,,
with a & 0. In our tight-binding model we take

(lb)

t~~~, i,j nearest neighbors in the plane

t,J
= ' —t j, i,j nearest neighbors out of plane

0, otherwise .

(2a)

Similarly, for the larger range repulsion, we use

V~~, i,j nearest neighbors in the plane

V; = V~, i,j nearest neighbors out of plane

0, otherwise .

(2b)

and we define

p=,"/ "„,

v = V~/V() .

(3a)

(3b)

The superscript h refers to the fact that these are the
values of hopping matrix elements at the bottom of the
hole band.

In the copper-oxygen planes of the high-T, oxide su-
perconductors, the Hamiltonian Eq. (1) describes conduc-
tion by direct hopping of oxygen holes between nearest-
neighbor oxygens, presumably in pm orbitals. The last
term in the Hamiltonian Eq. (la) is strongly attractive for
a few holes in such a band. Electrons or holes in oxygen
per orbitals and Cu orbitals are not considered, as we as-
sume they are not essential to superconductivity. We
also do not specify precisely which orbitals are involved
in conduction perpendicular to the planes, as this is not
essential. The assutnption [Eq. (1b)] that the hopping in-
teraction and the hopping are proportional with the same
proportionality constant in all directions is reasonable in
view of the fact that both terms are determined by the
same overlap matrix element of whichever electronic or-
bitals are involved. On the other hand, there is no
reason for p and v in Eq. (3) to be similar, and in particu-

where i,j are sites on a three dimensional lattice, c, is
the creation operator for a hole of spin 0. at site
i,n;:—n; &+n, &

is the number operator, U is the Hubbard
on-site repulsion, V; is the Coulomb repulsion between
two holes on sites I', and j, and p is the chemical potential.
The last term describes the enhanced hopping rate for
holes, and we assume
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2
II II

mrna J
2 (8)

Although it is not entirely obvious what the "effective"
spacing in the direction perpendicular to the layers is,
these experimental results suggest that within our
simplified model the ratio of hoppings in both directions
should certainly be taken somewhere in the range
t~/t~~-0. 01 —0. 1, and, fortunately, the properties of the
model are not extremely sensitive to this ratio, as will be
shown in the following. Hence, we will choose
t~/t~~ =0.025 and 0.1 as representative cases (the latter is
clearly an upper bound) in most of what follows. On the
other hand, the nearest-neighbor Coulomb repulsion is
expected to depend less strongly on the interatomic dis-
tances, and in addition screening will be larger for holes
in the plane. These considerations suggest that choosing
V~ =

VII, i.e., v =1, is a reasonable estimate.
Next we discuss the choice of in-plane hopping tII. Re-

call that the Hamiltonian Eq. (1) describes holes, and the
hopping for holes at the top of the band is related to the
hopping of electrons at the bottom of the band, t II, by

t" =t' —2at
II II II

(9)

with btll=trtll. Equation (9) suggests that
tlat

could be
very small. More generally, for n holes in the filled band
the hopping is renormalized due to the last term in Eq.
(1) to

(n)= t'„2ht+n At— (10)

and it becomes larger as holes are added to the filled
band. The resistivity in the oxides is found to decrease
rapidly as holes are added, * which we interpret to be
due to the effective-mass change caused by Eq. (10}. For
very low density of holes the resistivity turns upward at

pendix B. This suggests that the gap in our model will
not be very far from isotropic for any parameters, and in
particular that in the physically interesting regime for the
high-T, oxides, small p and not too large Vs the effects of
anisotropy due to c %0 will be very small. This will be il-
lustrated in the following.

We next discuss the range of parameters in our model
expected for the high-T, oxides in light of the experimen-
tal information available. Various measurements have
pointed towards appreciable anisotropy in the direction
perpendicular to the planes. Resistivity measurements'
exhibit anisotropies of the order of 40 to 1 for
YBa2Cu307 &, although they are quite sensitive to sam-
ple quality. Upper critical-field measurements on the
same material yield ratios H, 2 /H, "2 ranging from
5—10, ' which translates into the same ratio for the in-
verse coherence lengths and gives a ratio for the effective
masses, which is 25—100. Measurements of the magnetic
penetration depth' in single crystal YBa2Cu307 $ sug-
gest a ratio of effective masses m~ /m

~~

25. These esti-
mates all point towards the fact that the oxides are highly
two dimensional. For our purposes the ratio of hoppings
needed in the theory is related to the effective masses
through the lattice constants:

low temperatures indicating semiconducting behavior.
This suggests that the hopping at the top of the band t

II
is

close to zero. We will show results for three cases in
what follows: tII =0.001, 0.03, and 0.06 eV. It is not im-

possible that a negative value of t
II

would be applicable,
as considered in Ref. 11. However, the results do not
change qualitatively even in that case. In the following
we discuss additional justification for our choice.

Next we need to specify the values of the interatomic
parameters. We define

8' =zV,

K =2zht,
(1 la)

(1 lb)

with z =4 the number of nearest neighbors in the plane.
The constraint that the Coulomb interaction between
electrons in antibonding states in the plane be positive
translates into the condition '"

U+%K&
2

(12)

but there is nothing that precludes K from being arbi-
trarily close to this limit. Hence we will choose, for sim-
plicity,

U+ 8'
2

(13)

100

50

0
0.00 0.05 0.10

n
0.15

FIG. 3. T, vs hole concentration for U=5.0 eV, for three
values of the hopping amplitude, t

II
=0.060 eV {solid),

tII =0.030 eV (dotted), and tII =0.001 eV (dashed). We have
used p=0. 1 and U =1. The parameters are chosen such that
Jt = ( U + 8') /2. Actual values used are given in Table I.

assuming we are very close to this "optimal" situation.
Choosing somewhat smaller K would only change our re-
sults slightly. For given U, Eq. (13}and the maximum T,
desired determine then the values of K and 8'. It should
be noted that an additional constraint on the interactions
is E (28' (b, t ( V) (Ref. 11) which, as we will see, will
not convict with the values obtained from the other con-
ditions.

Figures 3—5 show the critical temperature versus hole
concentration for values of U =5, 6.5, and 8 eV, and the
three values of t II, with maximum T, =100 K in all cases.
As explained, the values of K and W are determined by
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FIG. 4. T, vs hole concentration for U =6.5. See Fig. 3 for
legend and Table I for parameter values.

FIG. 5. T, vs hole concentration for U=8.0. See Fig. 3 for
legend and Table I for parameter values.

II 2m e 2
II

(14)

Eq. (13) and the maximum T, . We have chosen a hop-
ping anisotropy p=0. 1. Table I gives the values of the
parameters used in all cases. It can be seen that the range
of hole concentration where T, is not zero is somewhat
less than 0.2 in all cases [note that (2n) gives the number
of holes per CuOz unit in the plane]. This range is com-
pletely determined by the nature of the model and the
constraints on the parameters. In our previous work the
range of nonzero T, was found to be higher because the
hopping renormalization Eq. (10) was neglected. Here,
the fact that the effective mass becomes smaller as holes
are added, together with the fact that the hopping in-
teraction becomes less attractive as holes are added,
cause T, to go to zero beyond this narrow range. For
larger U, a larger bt is required for a maximum T, =100
K. This causes T, to go to zero at a somewhat lower hole
concentration, since the effective hopping parameter
given by Eq. (10) increases more quickly.

Within our tight-binding model the hopping is related
to the effective mass by

which yields, for the high-T, oxides with planar oxygen
distances a -2.7 A the relation

tll
=0.52

II

(15)

with m, the free electron mass and tll in eV. Several ex-
periments have indicated a substantial mass enhancement
in the oxides. In particular, measurements of the
penetration depth' and optical experiments' have sug-
gested m '/m, —8 —10 in the 90 K materials. This yields,
through Eq. (15), an in-plane hopping amplitude
t

II

-0.05 —0.065 eV, and an in-plane bandwidth of
8tll-0. 4—0.5 eV. This is consistent with recent angle
resolved photoemission experiments' that indicate the
existence of a narrow-band crossing the Fermi level of
width approximately 0.5 eV. In our model the effective
hopping depends on the hole concentration through Eq.
(10); unfortunately, there are no systematic studies of
effective mass or effective bandwidth versus doping yet.
In Table I we list the values of the effective bandwidth in
the plane

TABLE I. Parameters used for the T, versus density curves in Figs. 3—5. The parameters V and b, t
were chosen to satisfy Eq. (13) and yield a maximum T, of 100 K. p=0. 1, U =1. D~~ denotes the
effective bandwidth Eq. (16).

(eV)

0.001
0.03
0.06

ht (eV)

0.463
0.429
0.399

V (eV)

0.603
0.467
0.346

DII (n =0.04) eV

U=5 eV
0.156
0.377
0.608

DII (n =0.08) eV

0.304
0.514
0.735

0.001
0.03
0.06

0.624
0.585
0.553

0.870
0.716
0.585

U=6. 5 eV
0.208
0.427
0.657

0.407
0.614
0.834

0.001
0.03
0.06

0.787
0.745
0.709

1.148
0.978
0.836

U=8 eV
0.260
0.478
0.706

0.512
0.717
0.934
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D,~(n) =8t~~(n) (16)
100

for two values of n where T, is close to the maximum,
n =0.04 and 0.08. [The total bandwidth is
D~~(n)(I+p/2). ] The effective-mass enhancement, from
Eq. (15), is

50
m

ll
(n) 4. 16 eV

m, D)((n)
(17)

b (p, n. )
—b (p, O) c'

'9=
h(p, m. )+5(p, O) c pl4tl— (18)

which measures the relative variation of the gap on the
Fermi surface. It can be seen that the anisotropy remains
remarkably small for a11 cases, for the reasons discussed
in the paragraph after Eq. (7). Our model leads to the
somewhat paradoxical result that as we move from a
highly anisotropic structure towards a more isotropic one
the superconducting state first becomes increasingly an-
isotropic before it again becomes isotropic as p~1.

It can be seen that our largest t~~ (0.06 eV) yields band
widths that are generally somewhat too large to be con-
sistent with the experiments already mentioned, while

t~~
=0.03 eV yields more consistent values. On the basis

of this data we will present some results mostly for the
values t~~

=0.03 eV and U =5 eV. As seen from the re-
sults in Table I, a negative value of t

~~

would yield too
narrow a band to be consistent with these experiments,
although it may be justifiable in a model where other
bands are included.

We now examine the effect of varying the hopping in
the third direction. Figure 6 shows T, versus n for p=0,
0.1, and 0.2. It can be seen that the results are very in-
sensitive to the degree of anisotropy. This remains true
for larger anisotropies, as shown in Fig. 7. In Figs. 8 and
9 we show the effect of hopping in the third direction on
the gap anisotropy, defined by

0
0.00 0.10 0.15

n

FIG. 7. T, vs hole concentration for U =5 eV, t
~~

=0.03 eV,
v = 1, for various values of hopping anisotropy: p =0 (solid),

p =0.2 (dotted), p =0.4 (short dashed)', and p = 1.0 (long
dashed). The value of At was fixed at 0.463 eV, and V~~ was ad-
justed so that the maximum T, =100 K.

0.05

It is worth emphasizing the remarkable simplicity of
the hole mechanism of superconductivity with regard to
anisotropy. Because the superconductivity is driven by
an attraction originating in a hopping process, the same
type of process that gives rise to the band energy, the su-
perconducting state is intrinsically isotropic, regardless of
the band structure. This does not preclude coherence
lengths and penetration depths from being very aniso-
tropic, but it forces the superconducting gap to be isotro-
pic, i.e., constant over the Fermi surface. As already
seen, some anisotropy in the gap can arise because of
repulsive interactions such as the nearest-neighbor repul-
sion considered here, which will not have the same an-
isotropy as the hopping, but the nature of the model re-
stricts the anisotropy to be small. For the regime ap-
propriate to the high-T, oxides the gap, as shown above
(Fig. 8), is very nearly isotropic, and so we will proceed
for the most part with a model where the interactions are
isotropic, given by

100 0.. 10 I I I I
(

I I I
I

I I 1

50

0.05-

0.0

/
/

/
/

/
/

/

/
/

/

/

/
/

/

0
000 0.05 0. 10

n
0.15

—0.05 --- —----

FIG. 6. T, vs hole concentration for U=5 eV and t~~
=0.03

eV, for three values of the interplanar hopping, t, =0 {solid),
EJ

=0. 1 t
~~

(dotted), and t, =0.2t
~~

(dashed). T, vs n is clearly in-
sensitive to small values of interplanar hopping. At and V were
chosen to satisfy K =(U+ 8')/2 such that the maximum
T, = 100 K. v = 1 was used.

—Q 1 Q ~ ~ . ~ ~ ) & & I I I I i t

0.100.00 0.05

FIG. 8. Gap anisotropy q (Eq. 18) vs hole concentration, for
p=0. 1 (dotted) and p=0.2 (dashed). The curves shown reAect
the gap anisotropy at T, . There is very little change at T=O.
Curves are for the parameters of Fig. 6.
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cy will be discussed during the course of this section.
We assume that the only effect of pressure is to change

the hopping matrix elements t~~
and t~, as well as the hop-

ping interaction parameters b, ti and b, ti (leaving the ra-
tio a fixed). This is a reasonable assumption, as the dom-
inant effect of pressure will be to change the distance be-
tween lattice sites and hence the overlap of the wave
functions. If a is the lattice spacing between oxygens in
the plane we have approximately

(20)

—0.10
0.00

I

0.05
I

0, 10
I

0.15
A differential increase in pressure dP in the plane induces
a corresponding change in a:

FIG. 9. Gap anisotropy vs hole concentration for larger
values of the hopping anisotropy. The curves plotted are for
p=0. 1 (solid), p=0. 2 (dotted), p=0.4 (short dashed), p=0. 6
(long dashed), p=0. 8 (dotted short dashed), and p=0. 9 (dotted
long dashed). For p=0 or p=1, there is no gap anisotropy.
Note that the magnitude of the gap anisotropy is greatest for in-

termediate values of hopping anisotropy, though still less than
10% for most of the range of concentrations. Curves were ob-
tained with U =5 eV, t

~~

=0.03 eV, and v =1. See Table I.

dp=— (21)

and the change in hopping is

(22}

We will calculate the fractional change in T, under a
fractional change of the hopping:

dlnT, 1 dlnT,

Py„dP (23)

4t
//

4t
//

4t
((

4t
//

(19)

where W=4V~~ and j'=8at~I. Within this model the
only momentum dependence in the interaction is in direc-
tions orthogonal to the constant energy surfaces, and in
particular orthogonal to the Fermi surface. We have,
however, retained hopping anisotropy, which is implicit
in the Ek's in Eq. (19), for example. Curves of T, versus n

for this model are indistinguishable from the ones shown
in Fig. 6. Before adopting this simplified model, howev-
er, it is necessary to keep the full momentum dependence
of the interaction, Eq. (5} to calculate the pressure depen-
dence of T, within our model, which is the subject of Sec.
III.

III. PRESSURE DEPENDENCE OF T,

As is well known, the early finding of a large positive
pressure derivative in the oxides was one of the most
striking features of the new materials, and led to the
discovery of superconductivity above liquid nitrogen tern-
peratures. ' Within our model a large positive pressure
derivative arises naturally because the attractive hopping
interaction is enhanced when the lattice spacing de-
creases. However, the behavior is different for pressure
applied in the plane and perpendicular to the planes and
has a characteristic density dependence which we will
discuss in detail here.

Some recent experimental reports on changes in T,
versus pressure exist, for both uniaxial and isotropic pres-
sure, ' and also for the density dependence of the pres-
sure derivative. Our predictions do not agree in detail
with these results, and possible reasons for the discrepan-

er
D "t/n (2—n )e (24a)

a =1+2k(1 n) —w(1 —3n + ', n—2)+(k2 ——wu)(1 n)2, —

(24b)

and an analogous relation exists with pressure applied
perpendicular to the planes. The parameters y~~

and y~
could easily be measured experimentally, but to our
knowledge this has not yet been done in systematic stud-
ies of T, versus pressure. They are surely a small fraction
of A per kbar, with

y~~ probably smaller than y~. The pa-
rameter P could be estimated accurately from quantum-
chemical calculations, and should be of order one inverse
A.

Figures 10 and 11 show dlnT, /dint~~ for various values
of the parameters. In all cases the pressure derivative is
large and positive, and increases rapidly with hole con-
centration. A smaller in-plane hopping increases the
pressure derivative, and so does an increasing on-site
repulsion U. The parameters were chosen according to
the prescription discussed in Sec. II so that the maximum
T, is 100 K.

Figures 12 and 13 show the same cases for pressure ap-
plied perpendicular to the planes. Note the different or-
dinate scales in these figures compared to Figs. 10 and 11.
The trends are the same as for in-plane pressure, but the
size of the effect is significantly smaller. In addition, the
pressure derivative here can become negative for small
values of n and not too small hopping.

We can understand these features in various limiting
cases. Consider the expressions for the transition temper-
ature for an isotropic model. In weak coupling we have
(assuming a constant density of states)
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FIG. 10. Plot of the dimensionless pressure derivative,
dlnT, /dint~~, for pressure applied in the plane, for t

~~

=0.06 eV
(solid), tII =0.03 eV (dotted), and t~~

=0.001 eV (dashed). We
have used U =5 eV, with p=0 and ht and V chosen such that
E =(U+8')/2 and the maximum T, =100 K, as before. We
find a substantial increase of the pressure derivative as a func-
tion of doping. For the case t)) =0.001 eV, we have used
At =0.46 eV and V~~

=0.59 eV. Note that the limiting value of
the pressure derivative as n~0 agrees very well with that ob-
tained from the strong-coupling limit, from Eqs. (27)
(din T, /dint~~ = 15.3).

FIG. 12. Plot of dimensionless pressure derivative,
din T, /dint„ for pressure applied in the direction normal to the
planes. W'e have used U = 5 eV, p =0.1, v = 1, and t

~~

=0.06 eV
(solid), 0.03 eV (dotted), and 0.001 (dashed). See Table I for pa-
rameters values. For the lowest value of the hopping parameter
(dashed curve), the curve remains positive and the strong-
coupling limit, Eq. (30), is achieved as n ~0. For higher values
of the interplanar hopping, the derivative is actually negative at
low hole concentrations. Note that the overall magnitude of the
pressure derivative is significantly smaller than for pressure ap-
plied in the planes (Figs. 10 and 11).

n 2

b =2k(1 n) ——w(l —n) —u +(k wu) 1 —n+—
2

(24c)

with k =K/D, u = U/D, w = W/D, and the bandwidth
D given by

with z the number of nearest neighbors. For a change in t
me have

dk
d lnt

dQ
Q

d lnt

D =2z (t "+n At) (25a) dint
W

and

K =2zht,
8'=zV,

(25b)

(25c)

Thus, the normalized on-site and nearest-neighbor repul-
sion decrease while the hopping interaction does not,
leading to an increase in T, driven by the change in the
exponent (the prefactor gives a contribution of the same
sign). The result is

100

80 0.4—
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0.00 0.05 0.10 0.15

FIG. 11. Same as Fig. 10 except t
~~

=0.03 eV and U =5 eV
(solid), 6.5 eV (dotted), and 8 eV (dashed). In all cases the pres-
sure derivative is positive and increases with doping.

FIG. 13. Same as Fig. 12 except t~~
=0.03 eV and U=5

(solid), 6.5 eV (dotted), and 8 eV (dashed).
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din T,' =1+
dint

P=u(l+kx) +ax (1+u) +w(1 —x )

X u+kx(l+2u)+ (1—x )
k +QW

x=1—n,

(26a)

(26b)

(26c)

with the limiting results in Figs. 10 and 12 for U=5,
tII =0.001, as n ~0. Note that the pressure derivative is
positive in the strong-coupling limit. The negative pres-
sure derivative in Fig. 12 corresponds to the largest tII,
where the strong-coupling limit is not reached as n ~0.

In weak coupling, the different behavior of the pressure
derivative in and perpendicular to the planes can also be
understood qualitatively. The lower band edge is given
by

(27a)

1 8'
U+

2 3

(27b)

so that

and it can be seen that it is always positive, and that in-
creasing u, e, and k make the pressure derivative larger,
as does an increase in n.

In strong coupling the critical temperature is given for
constant density of states by"

1 —n
k~T, = E

2 in(2/n —1)
2 1/2

1 W I( 8'U
b 4 3

c. = —4t —2tI II

and the position of the first Van Hove singularity by

II
+2t

(3 la)

(31b)

(see Fig. 2). The effect of increasing t~~ is to broaden the
band, lowering both c& and cvH by the same amount.
This causes the Fermi energy to shift to a lower value and
give a larger attractive interaction, from Eq. (19). On
the other hand, increasing t j shifts c, I down and cvH up
by the same amount. If sF lies to the right of evH it is
found to be left unchanged to lowest order in t, /tII, lead-
ing to no change in the attractive interaction at the Fermi

d lnT, 1

dint 3EI, Et, + —,'(U+ W/3)
(27c)

which also increases as K increases and E& decreases [as
occurs if U is increased and the parameters satisfy Eq.
(13)].

Comparison of these analytic results with results from
the numerical solution of the BCS equations is shown in
Fig. 14. At high densities the system is in the weak-
coupling regime and the results agree with those given by
Eq. (26). As the density is lowered the system approaches
the strong-coupling regime, and the pressure derivative
becomes larger than the weak-coupling result. For the
case shown in Fig. 14(b), t~~

=0.001, the strong-coupling
limit is achieved as n ~0 and the pressure derivative ap-
proaches the result Eq. (27c).

The different magnitude of the pressure derivative in
the direction parallel and perpendicular to the planes is
most easily seen in the strong-coupling limit. For our lat-
tice model Eq. (27a) still holds, while the binding energy,
as shown in Appendix B, is given by

100
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40—

0
0.00

100

80

005 010 0.15

(U+ W/4) E (1+p /2) —WU
b 4 4

1 WU+
2 4

(28)

60

40

20
(b)

so that we obtain

dink~ T, K
dint)( 4Es I Es+ [U+( W/4)]/2J

and

dink~ T, 1 2
dink~ T,

dint J

(29)

(30)

so that for p=0. 1 the ratio is,~. This is in agreement

0
0.00 0.05 0.10 0.15

FIG. 14. Pressure derivative for two-dimensional model with
constant density of states. The bandwidth is D =8(ti, +nht),
and U=5 eV. (a) t"=0.03 eV, V=0.56 eV, At=0. 45 eV; (b)
t"=0.001 eV, V=0.66 eV, ht =0.48 eV. The solid lines give
the results for numerical solution of the BCS equations, and the
dotted and dashed lines the weak- and strong-coupling limiting
forms Eqs. (26) and (27).
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surface. A small enhancement of the density of states at
cF occurs, leading to a small increase in T, . On the other
hand, if cF is below cvH two competing effects occur: cF
is shifted down as t~ increases but the density of states at
cF is reduced substantially. The net effect can be a nega-
tive pressure derivative for small hole density, as shown
in one of the cases in Fig. 12.

Unfortunately, various effects can occur when pressure
is applied to a high-T, oxide. It is not obvious what the
relative change in the various lattice constants is under
hydrostatic pressure, nor even under uniaxial pressure.
In addition, charge could be transferred between different
regions of the structure, leading to a change in the hole
concentration in the Cu-0 planes under pressure. Thus,
a comparison between our calculated changes and exist-
ing experiments is not straightforward. We hope that in
the future careful hydrostatic and uniaxial pressure ex-
periments as a function of hole concentration will be
made, and at the same time the change in lattice con-
stants and the behavior of the Hall coefficient with and
without pressure applied will be measured. At this point
our results disagree with at least two of the published ex-
perimental features: We find no upturn in the pressure
derivative at low hole concentration within our model, as
found in Ref. 7, and we find a marked difference in the
pressure dependence parallel and perpendicular to the
planes, in disagreement with the conclusion of Ref. 19
that isotropic pressure and uniaxial pressure in the z
direction have approximately the same effect.

the Cu-0 planes. ) An expression such as (32) assumes
that screening currents can be described by single-
particle hops. While the quasiparticle dressing
Ek =Ek(1+an) extends the validity of Eq. (32) to some
extent, it is clear that a breakdown occurs in the strong-
coupling limit (see the following), so that our results are
not valid in this case. Equation (32) becomes

8tre o/2 t)f (E)
deg, , e)

( fdic)~ —o/2 ' i3E

(33)

where

(1/X) g ~ Vkek ~„5(E—
e), )

g„(e)
g(e) (1/N) g 5(e —ek )

k

(34)

(35)

The single-particle density of states g(E), along with

is the average of the squared velocity in a direction v
(—:x, y, or z) on a momentum shell of constant energy, s.
D =8t

~~

+4tJ is the bandwidth. The penetration depth is
given by

IV. OTHER OBSERVABLES

In this section we will discuss several properties in the
superconducting state. We wish to explore the detailed
temperature dependence of these properties, as well as
the behavior as a function of filling. Differences from the
universal results of weak-coupling BCS theory will arise
for three reasons. First, this mechanism gives rise to an
energy dependence of the interaction which is asymrnetri-
cal with respect to the Fermi surface. Second, the fact
that the Fermi level in the normal state lies close to the
bottom of the (hole) band here has important conse-
quences. Finally, a related effect is that the model does
not necessarily lie in the weak-coupling limit. Indeed, as
discussed in Ref. 11, for a given set of parameters, we ex-
pect a continuous transition from weak coupling at the
maximum hole densities to the intermediate or strong-
coupling regime at low hole densities.

A. The penetration depth

0.5

0.3—

p =— 0.025

6.0

~() 8rre 1~ 2 f k

c}Ec k k

&f( „—p„)
BCk

(32)

and v =(1/fi)(Vkek)„. (Here v=j., or ~~, with respect to

The high-T, oxides are without a doubt in the London
limit; i.e., the penetration depth is much larger than the
coherence length. For definiteness we will adopt the
clean limit. The London kernel is given by
&„„(q=0)=6„+,(0), where

FIG. 15. Single-particle densities of states for nearest-
neighbor hopping and p=0.025. The single-particle density of
states is given by the solid curve. The dotted and dashed curves
are the Brillouin zone averages associated with the average ve-
locities, g, ( c ) and g

~~

(c.), respectively. The actual curves
plotted are 1/Ng~sin'k, 5(e —e„):g, (e)/4t', (dotted) and-
) /Ng„sin'k„6( e —

E& )—:g
~~

( e ) /4t
~~

(dashed). Note that the
effective-mass approximation, g&(c)/g~~(E) = 1/p, is only valid in
the very small region at the bottom (and top) of the band where
g&(c) is rising sharply.
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Ac

+8ng„(p„)
(36)

where p„ is the chemical potential in the normal state.
For an ellipsoidal Fermi surface, this reduces to the stan-
dard form:

' 1/2m*c

4mne
(37)

This latter result is within the effective-mass approxima-
tion. One then obtains the often quoted result,
A,t/A, 1=(mi /m f )', for example. It is clear, however,
frotn either Fig. 2 or Fig. 15, that expression (37) is only
applicable in the extremely low-density limit. The
correct expression is Eq. (36), and thus we obtain:

1/2
g(( (ttt„)

g&(p„)

' 1/2
& U1).s
(vt )Fs

(38)

g1(E) [—:g (e) or g~(E)] and gt(e) are illustrated in Fig.
15, for the case p=0.025. We will refer to these in the
following. In the zero-temperature limit, the penetration
depth becomes

T
DL

C

A.L (0)

At (T)
(39)

which emphasizes the deviations from the two-fluid-
model result,

At (T)=At (0)/[I —(T/T, ) ]'

conductivity, and (2) Equation (36) overestimates the
penetration depth because currents due to pair hopping
processes are not included (see Sec. V). The narrow
bandwidth we have chosen makes our model extreme
type II (A. )&gG„) for most of the filling range, so that a
quantitative comparison with experimental results is not
possible. However, we expect the trends as a function of
filling to remain, as these are predominantly due to the
band driving the superconductivity. In Fig. 17 we plot
A, i(T =0) normalized to its value at n =0.037 (the filling
corresponding to the maximum T, ) versus hole concen-
tration. The divergence as n~0 occurs slightly faster
than expected from the London formula since the
effective mass in our model increases as n ~0.

The temperature dependence of the penetration depth
is best exhibited by plotting the "deviation" function

where ( v „)„s is the Fermi surface average of the squared
velocity in the v direction. Inspection of Fig. 15 shows
clearly that at higher densities the anisotropy ratio can
exceed t1/t„whereas as n ~0,

A, /A, =(t s /t a )' =(m'/I')'
II II II ~ ~ Il

as in the effective-mass approximation. In order to com-
pute the effective-mass anisotropy for all densities, we
adopt the lattice spacings aII=2. 7 A and aj =5.9 A.
These values are representative of the oxygen-oxygen ion
separation in the Cu02 planes in the 1:2:3compound. '

In Fig. 16, we plot the ratio Az/A.
~~

at T=0 versus hole
concentration for p=0.025, 0.05, and 0.1 along with T,
versus n for the case p=0.025 (right-hand scale). For
p=0.05 and 0.1, T, versus n is barely distinguishable
from the curve plotted. As we will see in the following,
within Ginzburg-Landau (GL) theory, A, i/A,

1

=H,"2/H, 2=(I;„/goL, where H, 2 is the upper critical
field and goL is the Ginzburg-Landau coherence length.
Many estimates of the effective-mass anisotropy have
been made from measurements of either of the preceding
ratios. At a doping that gives rise to a maximum T„ the
ratio Ai/A.

1
has been estimated' to be between 5 and 10.

Hence the curve corresponding to p =0.025 in Fig. 16 ap-
pears to be most representative, and shows that as a func-
tion of doping a large and measurable change in the
"effective-mass" anisotropy [as determined by A, (0) or
H, 2] is expected as a function of filling. The actual values
of A, ( T =0) that we obtain are a factor of 3 or 4 too large.
This we attribute to two causes: (1) we have excluded
other bands from our description, whose charge carriers
will contribute to the Meissner effect but which in our
view are unessential to the mechanism that drives super-

In Fig. 18 we have plotted the result for the case

tII =0.03 eV, and U =5, with p=0.025. The curves plot-
ted are for n =0.037, which gives a maximum T, =100
K. Also included is the weak-coupling BCS result, which
exhibits a minimum at T/T, =0.75 of value —0.21.
Note that with field applied normal (parallel) to the
plane, the deviation function is smaller (larger) in magni-
tude at all temperatures. This trend is enhanced even
further at lower densities. For example, at n =0.002, the
minimum value for field applied parallel to the plane is

15.0 100

gQO

5.0

Tc(K)
50

0.00 0.05 0.10 0.15

FICx. 16. Plot of the ratio A~/A1(=H)~z/H, z=('gt/go„) vs
hole concentration for p=0.025 (solid), p=0.05 (dotted), and
p=0. 1 (dashed). We have used aII=2.7 A and a, =5.9 A, as
discussed in the text. The anisotropy ratio is expected to in-
crease as a function of doping, as indicated. Also shown is T, vs
n (right-hand scale) for the case p=0.025. We have used U =5
eV, At =0.428, V =0.461 eV, and t

II
=0.03 eV. T, vs n for the

other anisotropies is very similar. Similar results for parameters
giving a maximum T, =40 K are obtained, though the hole
range where T, is nonzero is smaller (maximum n =0.11).



F. MARSIGLIO AND J. E. HIRSCH 41

5.0

2.0—
X~~ (A)

) ))(.037)
i.0

0.05 0.10 0.15

FIG. 17. Plot of the normalized penetration depth
A, ~I(n)/X~I(n =0.037) vs hole concentration.

where 4O is the fiuxoid quantum (CO=2.07X10
Gcm ). Using (40) and (41), one can determine goL(T)
and hence H, 2( T) from microscopic calculations of A. ( T)
and H, (T). This connection is only exact near T, . For
example, using the London penetration depth to calculate
A, ( T), we obtain

H, z(0)/[T, IH,'z(T, )I]=0.66 and 0.88

in the clean and dirty limits, respectively, whereas the re-
sults from microscopic theory are 0.727 and 0.693, re-
spectively. We will proceed nonetheless with GL
analysis, since the discrepancy is small as T~O. For a
layered material, we obtain

DL = —0.02 whereas it is DL = —0.62 for field normal to
the plane. Conversely, as n increases (and T, decreases),
both curves eventually become indistinguishable from the
weak-coupling BC S result. These trends are further
enhanced as the bandwidth becomes smaller.

B. Ginzburg-Landau parameters

and

@o'"(T)=
2+2mH, (T)A,, „(T)

4p
H, 2(T)=

2m goL( T)

4p
H,",(T)

2n ggL( T)goL( T)

(42)

(43a)

(43b)

The fundamental parameter of Ginzburg-Landau (GL)
theory is ~, which can be defined in one of two ways:

g( T) 1 H, 2( T)

goL( T) &2 H, ( T)
(40)

H, 2(T) = 4p

2m/ oL( T)
(41)

Here goL(T) is the GL coherence length, H, 2(T) is the
upper critical field, and H, ( T) is the thermodynamic crit-
ical field. The value of x determines whether the material
is type I or type II, as the second relation explicitly indi-
cates. One also defines within GL theory:

The latter two relations are often used to extract coher-
ence lengths at T=0. This is done from measurements
of the upper critical field near T„ through an interpola-
tion formula, such as

H, 2(0)=0 69 T, I H, 2 ( T, ) I
~

Besides the slight numerical discrepancy already noted,
these values are in error because Pauli limiting has not
been considered. Nonetheless, we follow the same pro-
cedure here. In the next section we will compute and
compare the root-mean-square radius of the BCS pair
amplitude, (R ) ', which should provide a more accu-
rate estimate of the "coherence length. "

To calculate the GL coherence length, we need the
thermodynamic critical field, H, (T). It is related to the
free energy by

0.0

T/Tc

0.5

H, ( T) =& 8n b F ( T), —

where

b,F(T):F, ( T) F„(T)— —

(44)

DL(T/Tc)

-0.2—

is the free-energy di6'erence between superconducting and
normal states. The free energy is

F, =2& nk&k ——& [1—2f «k)]

+ & ([I f (Ek )]in[1 f (Ek )—1—2

k
FIG. 18. Temperature dependence of the penetration depth

for the parameters of Fig. 15, with p=0.025, and n =0.037
(maximum T, =100 K). We have plotted the deviation func-
tion, DL( T/T, ) =XL (0)/A~L(T) —[1—{T/T, ) ], which sub-
tracts off the two-fluid-model result. The deviation for A,,(A, I~) is
larger (smaller) in magnitude than the weak-coupling BCS re-
sult. At lower densities, this trend is even more pronounced.

+f (Ek )lnf (Ek ) ),
where

Pn„=— 1 — [1—2f (Ek )]
k

(45)

(46)



41 HOLE SUPERCONDUCTIVITY AND THE HIGH-T, OXIDES

C. Thermodynamics and tunneling

Several aspects of the thermodynamics and tunneling
have been discussed in Refs. 4 and 25 within this model.
In Fig. 20 we plot 2b o/kz T, and b C ( T, )/C&( T, ) versus
hole density for the parameters indicated in the figure

h

1.0

0.5

—20

-10

0.00 0.05 0.10 0.15

FIG. 19. Plot of h = T, (n)-dH, z/dT(T„n )/100-dH, z/
dT{T„0.037) (left-hand scale) and e~~=@z{0,n)/gz{0, 0.037)
vs n for the case tII=0.03 eV, p=0.025, U=5 eV, U =1, and ht
and VII determined so that K=(U+W')/2 and maximum

T, =100 K. The critical-field slopes and GL coherence lengths
have been normalized to their respective values at n =0.037,
which is where the maximum T, occurs. Within our model the
reduced ratio, H, z(0)/T, ~H,'z( T, ) ~

differs only slightly from the
WHH (Ref. 23) value of 0.7 over the entire density range, so
that the usual procedure for extracting coherence lengths from

upper critical-field data is justified for qualitative estimates.

is the "hole density" with wave vector k at finite temper-
ature. The second term in Eq. (45) is the energy lowering
due to the interaction and the third term is just the usual
entropy contribution. The free energy in the normal state
is given by Eqs. (45) and (46) with 6„~0 and p~p„,
where LM„ is the chemical potential the system would have
if it were in the normal state. We have computed H, (T)
from Eq. (44), and in particular the deviation function;

D( T/T, ) =H, ( T)/H, (Q) —[1—
( T/T, ) ]

which subtracts off the two-fluid-model result. For
t"=0.030 eV, the discrepancy with weak-coupling BCS
theory is very minor. Equations (42) and (43) determine
the Ginzburg-Landau values of the coherence length and
the upper critical magnetic field. As remarked earlier,
the anisotropy in these properties is the same as in the
penetration depth. Furthermore, the coherence lengths
are very short within the model used here, for the reasons
discussed earlier In . Fig. 19 we plot ~dH, z ( T)/1 Tl r
versus n, again normalized to the value at the density
with the maximum T„n,„=0.037, along with the ex-

tracted GL coherence length at T =0, again normalized
to the value at n,„. Note the monotonic behavior of
these quantities despite the nonmonotonic behavior of
T, . It is clear that at large hole concentrations the coher-
ence length is expected to diverge.

5.0

1.0
0.0

I

0.05
I

0.10 0.15

FIG. 20. Gap ratio 25O/k&T, (solid line) and normalized

specific-heat jump, hC(T, )/C&(T, ) (dashed line) vs hole con-

centration for t
II

=0.030 eV, p =0.025, U = 5 eV, and

K = ( U + 8') /2 with maximum T, = 100 K.

caption. At high densities the BCS weak-coupling results
are always obtained. At low frequencies large deviations
are obtained. As discussed in Ref. 11, large values of the
gap ratio, 2h /ok~T, are obtained for narrower band-
widths than are displayed in Fig. 20. In the case illustrat-
ed, t

II

=0.03 eV, so that large values of the gap ratio are
achieved only at very low densities. Moreover, the
specific-heat jump value increases substantially at low
densities; this is, however, predominantly a normal-state
effect, since C„(T, ) « yoT„where yo is the zero-
temperature Sommerfeld constant. This occurs because
T, ~Ez, which occurs within our model in the low-

density limit. Unfortunately, this property is also one of
the most difficult to measure experimentally, as it is gen-
erally not known how to separate the electronic contribu-
tion to the specific heat from the other contributions.

Tunneling has always been a very useful probe of su-
perconductivity in the past. In the high-T, oxides, tun-
neling studies have not been as successful. I-V charac-
teristics showing a very well-defined gap have been
presented, ' but these are often not reproducible. For the
most part, I-V characteristics always show states within
the "gap, " making the gap determination ambiguous.
The normal-state tunneling results appear to display a
linearly increasing background, as a function of energy.
These are, however, in an apparent conflict with the cor-
responding photoemission results, which ought to, in
principle at least, measure the same underlying density of
states. We bypass this last issue, and in Fig. 21 show the
normalized I- V characteristic in the superconducting
state. For simplicity we have used a constant normal
density of states, with U =5 eV, t"=0.03 eV, and ht and
V adjusted so that the relation I{.=(U+ 8')/2 is main-
tained, with a maximum T, =100 K. The asymmetry in
the density of states is clearly evident in Fig. 21. At tem-
peratures approaching T, there is an added component of
asymmetry (of the same sign) due to the fact that the
chemical potential is near the bottom of the band. The
overall percentage asymmetry expected here is somewhat
less than that reported in Ref. 4, because here we have
included a nearest-neighbor repulsion, V, which causes a
decrease in the slope of b,(e) versus E, making the solu-
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FIG. 21. dI/dV vs V for constant density-of-states model
with t"=0.030, U =5, and ht and V chosen so that
K =(U+ 8')/2 and maximum T, = 100 K. Plot is for n =0.07
(T, -93 K) and for temperatures T/T, =0 (solid), 0.1 (dotted),
0.3 (short dashed), 0.5 (long dashed), and 0.7 (dot dashed). Posi-
tive voltage indicates that holes are injected into the sample.

Q2
R = ~Egs E 1+

~
E 1

0
(49)

and it gives rise to a peak (Hebel-Slichter peak) in the re-
laxation rate below T, due to the divergence in the super-
conducting density of states g, (E) at the gap edge. In our
model such a peak in R is obtained below T, . Its effect
on the relaxation rate of Cu and 0 nuclei, however, wi.'.1

be modulated by form factors and hyperfine coupling con-
stants ' and it is conceivable that the effect is consider-

with JMO the Bohr magneton. Below T, it vanishes ex-
ponentially due to the existence of a gap over the entire
Fermi surface, closely following BCS behavior. This im-

p leslies that the contribution of the holes described by our
model Hamiltonian to measured Knight shifts should de-
crease exponentially as T goes to zero. In Fig. 23 we il-
lustrate the normalized Knight shift as a function of tem-
perature for three different hole concentrations. The de-
viation from the weak-coupling BCS result is largest at
small hole densities. Experimentally, a rapid decrease of

30Knight shifts is observed below T, in high T, oxides.
The nuclear-spin relaxation rate in isotropic supercon-

29ductors is usually assumed to be proportional to

tion more BCS like, i.e., symmetric. To illustrate this, we
have plotted in Fig. 22 the gap function versus energy for
various fillings for two sets of parameters, one with VAO
(dashed lines) and one with V =0 (solid lines). As expect-
ed, those with V=O have slopes of larger magnitude, thus
enhancing the asymmetry. The degree of asymmetry, X,
is given at T =0 by 28

20

X=2 1 (100%) .
D/2 I 1+[8 /(D/2)) j' (47)

20

E 0
—20

Xo Pop &Ek k

(48)

Actual values are given in the figure caption. We have
adjusted At so that the maximum T, remains 100 K. The
T versus n curves for the two cases are then very similar.

C

As the hole concentration is increased, the asymmetry is
further reduced in the case when VAO, since a larger b, t
is required and so the efFective bandwidth increases, caus-
ing X to decrease more rapidly as n increases. Another
important feature that is visible in Fig. 21 is that the
"gap, " as determined visually from the peaks in the I-V
characteristic, seems to be increasing as the temperature
increases towards T, . This is simply an artifact of the
convolution of the density of states with a Fermi function
derivative. In actual fact, the gap is decreasing as a func-
tion of temperature in a BCS-like manner. We have dis-
cussed elsewhere" cases where in fact the gap remains
fairly constant as a function of temperature right up to
T = T . However, thermal smearing makes it dif6cult toC'

differentiate between the two cases on the basis of curves
as in Fig. 21.

Several other properties in the superconducting state
have been calculated. The spin susceptibility in a uni-

29form field is given in our model by the usual expression

20

—20

—20

0.0
e/D

0.5

FIG. 22. Gap function, h(c, )=A (c —e/D/2) vs c, /D, for
various values of the hole concentration, n =0.02. 0.12
and 0.17. The dashed lines are for the parameters of Fig. 20,
i.e., with V nonzero. The solid lines were obtained from solu-

tions for the case V =0. In this case, ht =0.188 eV was chosen
to give a maximum T, =100 K. The T, vs n curves for the two

cases are very nearly the same. The slopes of the gap functions
in the Srst case ( VWO) are smaller in magnitude (more "BCS-
like" ) than when V =0, and so the expected asymmetry will be
smaller. The actual values of the resulting asymmetries at T =0
are 30% (21%) for n =0.02, 35% (18%) for n =0.07, 24%
(10%)for n =0.12, and 9% (3%) for n =0.17, for V =0 ( VWO).
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FIG. 23. Plot of normalized Knight shift, g(T)lg(T, ) as a
function of reduced temperature, T/T, . The solid line is for the
weak-coupling BCS result. The other curves have been calcu-
lated for ti~ =0.03 eV, U=5 eV, with p=0.025 and U =1. ht
and Vii have been adjusted for T, '"=100 K. The densities are
n =0.02 (dotted), n =0.08 (short dashed) and n =0.14 (long
dashed). The deviations are largest for small hole densities.
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ably suppressed. Conflicting experimental reports exist
on the question of the existence of a peak in the relaxa-
tion rate of ' 0 below T, .

V. PAIR WAVE FUNCTION
AND COHERENCE LENGTH

It is interesting to examine the shape of the pair wave
function in our model. It was shown in Ref. 4 that some
amplitude always exists in the pair wave function for
"on-site" pairs but that the largest amplitude is for
"nearest-neighbor" pairs, increasingly so for larger U.
Here we consider the effect of anisotropy as well as the
density dependence. Given the solution to the Eqs. (6),
one can calculate the pair wave function amplitude in

real space:

(50)

with

1 —2f (Ek)
(c~tcot )

k k

(51)

(52)

Equations (6) have been solved below T, through numeri-

cal computation of the momentum sums involved. In
Fig. 24(a) we plot f (R) versus R„, with R» =R, =0, and
in Fig. 24(b) we plot f(R) versus R„with R„=R =0 for
the parameters discussed in the figure caption. Compar-
ison of the two figures shows clearly that the wave func-
tion is far more extended in the plane than normal to the
plane. An effective measure of this extension is the
mean-square radius of a hole pair:

Xf*(R)R„f(R)
R

g f'(R)f(R)
R

FIG. 24. Plot of (a) f(R) vs R„and (b) f(R) vs R„ for three
values of the hole concentration, n =0.05 (~ ), n =0.10 (0),
and n =0.15 (X). We have used

t'ai
=0.03 eV, p=0. 1, and

U =5 eV (see Table I). The functions plotted are at T=0, and
correspond to values of T, of 98 K, 61 K, and 13 K for
n =0.05, 0.10, and 0.15, respectively. Note that the wave am-

plitude barely changes in the z direction for the three hole con-
centrations. The coherence lengths in units of lattice spacing
are (1=1.3 ((,=0.19) $1=3.1 ((,=0.42), and $1=19 (g, =2.3)
for n =0.05, 0.10, and 0.15, respectively.

We define the coherence length to be

(R2 ) I/2 (5&)

which differs by a factor of 2&2/n =0.9 from the BCS
definition. At T =0, Eqs. (50), (51), and (52) combine to
give

2=
V

(1/N) g ~VI, (hk/2Ei, )i„
k

(1/N) g (bk l2Ek )
k

(54)

Computations of g, are much siinpler within the "isotro-
pic" model defined by Eq. (19). In Fig. 25 we show a
curve giving this coherence length in the x direction as a
function of hole concentration for t~i

=0.03 eV, U =5 eV,
and p=0. 1, using the isotropic kernel, Eq. (19). ht and
Vi are determined from the constraints K =(U+ W)/2
and maximum T, =100 K. Also shown are a few points
illustrating the full solution incorporating the anisotropic
gap, Eq. (7), for the parameters given in Table I. As has
already been emphasized, the gap anisotropy has essen-
tially no effect on the result. Also shown is the
Ginzburg-Landau coherence length, as determined
through the GL equations along with microscopic calcu-
lations of the London penetration depth and the thermo-
dynamic critical field (see Sec. IV). It is clear that both
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FIG. 25. Plot of g„vs hole concentration for t l
=0.030 eV,

p=0. 1, U=5 eV, within the isotropic model (solid line). The
points marked with an "X"are values determined from the ful-

ly anisotropic calculation (see Table I for parameter values).
Also shown is the Ginzburg-Landau coherence length (dashed
line) as determined from the penetration depth and thermo-
dynamical critical field.
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are in qualitative agreement, though quantitative
differences up to factors of 2 can occur. As T~T„ the
Ginzburg-Landau coherence length diverges; the one
defined by Eq. (53) does not. This is so because the
Ginzburg-Landau coherence length takes into account
that the superconducting fraction approaches zero as
T~T, . On the other hand, the BCS coherence length
defined by Eq. (53) gives the coherence length for the su-
perconducting fraction. We have found that this latter
coherence length is nearly constant over the entire tem-
perature range up to T, .

In Fig. 26(a) we plot the anisotropy in the coherence
length for the case shown in Fig. 25. While there is a dis-
tinct quantitative difference between the anisotropy of the
BCS and GL coherence length at low fillings, the aniso-
tropy ratios become equal at high filling, where the
weak-coupling limit is achieved. In this limit Eq. (54)
gives

' 1/2

(55)

which is identical to that given by Eq. (38) along with
(42).

The strong-coupling limit is discussed in Appendix B.
In that case the pairing amplitudes are nonzero for on-
site and nearest-neighbor pairs only. The analysis in that
appendix yields g'~t/gj =p ' in the dilute limit. In Fig.
26(b), we plot g,, ~/g~ and goL/go„versus n for the case

t~~
=0.001 eV, U=5 eV, and p=0. 1. Again, we have

used the isotropic kernel and chosen ht and V~~ such that
K =(U+ 8')/2 and maximum T, =100 K. Clearly, the
weak-coupling limit is achieved at high densities once
again. At low densities, the two results differ consider-
ably; the BCS coherence length anisotropy approaches

FIG. 26. (a) Plot of BCS coherence lengths anisotropy ratio
(solid line) for same parameters as Fig. 25. Also shown is the
GL coherence length (dashed line). They agree in the weak-

coupling limit at high densities. In (b) the same ratios are plot-
ted for t~~

=0.001 eV, so that the strong-coupling limit is
achieved in the dilute limit (weak coupling is still achieved at
high densities). The discrepancy at low densities is significant.
[kI4' =p»d@L/(GL +p].

1/p as n ~0, as determined analytically, while the GL
anisotropy approaches I/&p, as for the case tI =0.03
eV. This latter result is simply the effective-mass approx-
imation, as remarked earlier. The reason for the
discrepancy is that the GL coherence length is calculated
from the penetration depth given by expression (32). As
remarked there, this expression is based on single-particle
hops, whereas in the strong-coupling limit pair hopping is
dominant. Thus, in Fig. 25, for example, at low filling
the BCS coherence length exceeds the GL coherence
length, so that using Eq. (42) we expect the actual
penetration depth (that is, one which includes pair hop-
ping processes in determining screening currents) to be
smaller than the one actually calculated from Eq. (36),
bringing the values in closer agreement with experiment.
Furthermore, as is clearly indicated by Fig. 26(b), the
monotonic increase in anisotropy as a function of filling
no longer holds in the strong-coupling regime.

VI. DISCUSSION

We have discussed here various properties of a model
for superconductivity where pairing is driven by the
enhancement of the hopping amplitude of a hole by the
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presence of another hole nearby. In particular, we have
examined new features that appear for a three-
dirnensional anisotropic band structure, as appropriate
for the layered oxide superconductors, and taken into ac-
count the effects associated with the single-particle hop-
ping renormalization that necessarily occurs with this
pairing interaction.

It is important to emphasize two features of our model.
First is its remarkable simplicity. Due to the particular
nature of the model, the BCS solution is not just a
mathematical exercise that may differ considerably from
its exact solution, as occurs with other models. Contrary
to some statements made in the conclusion of our previ-
ous study, we now believe that the BCS solution of this
model is close to being exact in the physical parameter
range. The reason is that the system is always dilute
when it is superconducting, and the strong-coupling re-

gime occurs only when it is extremely dilute so that BCS
theory remains applicable. "

The second feature we wish to emphasize is that within
our model the calculated superconducting properties are
fairly insensitive to the parameters used. As discussed in
the text, given the constraint Eq. (12) for the interactions
and reasonable band widths as inferred from experiments,
little room remains for changing the results by varying
parameters like the on-site U or the anisotropy. Unless a
major modification of the model is invoked, the results
shown in this paper should span the regime of behavior
that includes the high-T, oxides.

As a consequence of these two features, the predictions
of this model are definite. Should experiments convinc-
ingly demonstrate, for example, that comparable changes
in T, are obtained in changing either in-plane or inter-

plane atomic distances, or that the tunneling asymmetry
is of opposite sign as we predict, then the model is clearly
incorrect. Conversely, experimental verification of the
various trends discussed here, particularly as a function
of hole concentration, should provide strong support for
the model as well as further constrain the values of the
parameters that enter in the model Hamiltonian.

We conclude by summarizing the main features and
trends discussed in this paper and the experimental status
on each point to our knowledge.

(1) Gap anisotropy. As discussed, in this model the gap
is essentially constant over the Fermi surface except for
possible small deviations (less than 5%) that give a mea-
sure of the importance of extended Coulomb repulsion.
High-resolution photoemission experiments should be
able to address this question in the near future; to our
knowledge, the existing experimental information is con-
sistent with an isotropic gap. Within our model larger
gap anisotropies would only be obtained with an unphysi-
cally large va1ue of the nearest-neighbor Coulomb repul-
sion Vand/or unphysically large anisotropies in V, and a
magnitude of the interplane hopping that would be in-
consistent with a variety of other experiments.

(2) T, versus concentration dependence Although there.
is still some debate on the issue, several groups have
by now convincingly demonstrated that a maximum in

T, occurs as a function of hole concentration and that T,
goes to zero when the number of holes becomes too large,

while at the same time the system becomes increasingly
metallic. This behavior is the most characteristic feature
of the hole pairing mechanism. Our single-band model
appears to rule out superconductivity with the required
T, 's at hole concentrations larger than about 0.2 per
plane oxygen (0.4 per plane Cu).

(3) Pressure derivative of T, . We can only make
definite predictions about the change in T, with lattice
spacing. Thus, in experiments where the change in T,
with pressure is studied one should at the same time at-
tempt to determine whether charge transfer occurred un-
der pressure between different parts of the system, for ex-
ample, by Hall coeScient measurements. In addition, the
change in lattice constant in the plane and perpendicular
to the plane directions under pressure should be mea-
sured. Our model predicts a ratio of change in T, with
interplanar versus intraplanar atomic distance of about

p, with p the hopping anisotropy. There is also a definite
trend with hole concentration, with the pressure deriva-
tives increasing with the number of holes. These two pre-
dictions appear to be inconsistent with recently reported
experimental results. ' If a negative pressure derivative
in the z direction for low hole concentration is observed it
will constrain the allowed values of our hopping parame-
ter t~I~.

(4) Coherence length versus doping Our m.odel predicts
the coherence length to monotonically increase with dop-
ing, diverging at the density where T, ~0. This behavior
should be evident in critical-field measurements, but has
to our knowledge not yet been systematically studied.
The magnitude of the coherence length for small hole
concentrations should also provide information on the
size of our hopping parameter t ~~. A further consequence
of this behavior is that a crossover from type-II to type-I
superconductivity will occur at the highest hole concen-
tration as T, ~O. This is most likely to be achieved in

the La& „Sr„Cu04 system.
(5) Effective mass versus doping The sin. gle-particle

effective mass m' is inversely proportional to the hop-
ping amplitude and thus should decrease monotonically
with doping [Eq. (10)]. This should be manifest in vari-
ous normal-state properties. Indeed, the observed rapid
decrease in the measured resistivity with doping clearly
indicates this behavior. Optical experiments should also
be able to infer the dependence of effective mass on dop-
ing through the weight of the Drude peak in the low-
frequency conductivity o (co) Howeve. r, interpretation of
experiments up to now have been complicated by the
presence of non-Drude-like absorption. Below T, the
decrease in effective mass with doping should be observ-
able in measurements of the London penetration depth,
but presently available data do not seem to confirm this
behavior. The situation below T, is also complicated
by the fact that the hopping interaction ht will also con-
tribute to the effective mass. As discussed in Sec. IV, for
low hole densities At gives the dominant contribution to
the hole hopping amplitude, which was not taken into ac-
count in our calculation of A.. This is not the case above
T„as pairs dissociate and the contribution of ht to the
hole propagation is negligible. The rate of change of



F. MARSIGLIO AND J. E. HIRSCH 41

effective mass with doping should provide direct informa-
tion on the magnitude of the parameter b, t through Eq.
(10).

(6) Anisotropy in penetration depth and critical field
Both the anisotropy of the penetration depth and critical
field are determined by the hopping anisotropy p. In
weak coupling (large hole densities) they are given by the
usual Ginzburg-Landau expressions. For low hole densi-
ties (strong coupling) the anisotropy in the coherence
length should be somewhere between &p and p, depend-
ing on the value of the parameter t ~~.

%e have not calcu-
lated the penetration depth in strong coupling but expect
that it would follow the corresponding behavior.

(7) Tunneling asymmetry Th.e magnitude of the tun-
neling asymmetry should provide an upper bound for the
value of the nearest-neighbor repulsion V in our model.
The density dependence of the asymmetry should approx-
imately follow the density dependence of T„as discussed
elsewhere. The sign is universal, larger dI/dV corre-
sponding to a negatively biased sample.

(8) Gap ratio. The gap ratio should decrease with hole
doping, being larger than the BCS values at low hole den-
sities. Large values of the gap ratio suggest small values
of the parameter t~~, as seen from the results in Ref. 11.
For intermediate values of t) (e.g. , 0.03 eV) the gap ratio
is BCS like except at the very lowest hole densities (see
Fig. 20 ).

(9) Specific heat jum-p It s.hould decrease with hole
doping, being somewhat larger than the BCS value 1.43
at low hole densities. It is unlikely that this quantity
could be determined accurately enough to be useful in
further constraining the parameters in our model.

(10) Other properties The te.mperature dependence of
London penetration depth and thermodynamic critical
field follow closely the BCS behavior. The contribution
to the Knight shift due to the holes in our model should
decrease exponentially at low temperatures in the usual

way as the gap opens up. This is consistent with existing
experiments. Above T, no pairs exist in our model" so
that large Knight shifts are expected, as observed. The
question on the existence of a Hebel-Slichter peak in the

NMR relaxation rate below T, is unclear. If an on-site
coupling exists between the oxygen holes described by
our model and the oxygen nuclear spin, our model neces-
sarily implies such a peak in the ' 0 relaxation rate.
However, if the dominant hyperfine coupling of the ' 0
nuclear spin is to nearest-neighbor Cu spins ' the behav-
ior could be very different and lies outside the model dis-
cussed here. To our knowledge, experimentally the pres-
ence or absence of a peak in the ' 0 NMR relaxation rate
is still open.

As emphasized in the Introduction, we have not ad-
dressed in this paper the problem of the disappearance of
the antiferromagnetic order as the high-T, oxides are
doped, nor the role of the copper d 2 2 orbitals. Thesex —y
features are important for a complete understanding of
the physics of high-T, oxides and should be incorporated
in a model together with the physics described by the
Hamiltonian Eq. (1}. We do not believe, however, that
the main conclusions already discussed would be changed
by such a description. In the "electron-doped" oxides,
while we expect the physics of superconductivity to still
be dominated by induced oxygen holes described by the
Hamiltonian Eq. (1) the detailed behavior may be some-
what different due to the presence of a larger number of
electronlike carriers at the Fermi surface. These ques-
tions should be addressed in the future.
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APPENDIX A: SOLUTION OF THE BCS EQUATIONS

We outline here the method of solution to Eq. (6), us-
ing the ansatz (7). Equation (6a) is rewritten:

1 SC ~k
U+ (&k+st, }+IVpkk l 1 —2f (&k

—)u})
k'

(Al)

where

p„z.——,'(cosk„cosk„' +cosk cosk' + v cosk, cosk,') (A2)

and v = V~/V~~, E =8at~~, and IV=4V). The momenta k„' and k» are equivalent in Eq. (Al), so that Eq. (A2) can be
rewritten:

Pkk'
4t((

~k + +cosk,'
4tll 2

+cosk,
4 2

2

+ —" cosk,'
2 2

(A3)

With the ansatz (7), we obtain three equations to be solved simultaneously for T„c', and c:
T 2

c'=W +(cI +I —c'J }+ + +—(cJ +J c'I. ) . —U

1 2 1 0 1 0 (A4a)

—c = U(cIO+I, —c'Jo) —K(cI, +I2 —c'J, ), (A4b)
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1=K(cIO+I, —c'Jo) —W(cI, +I~ —c'J, )—
2

(cJO+J
&

—c'Lo ) . (A4c)

Here

ego—D/2 4t~~

'I
1 —2f (E—p}

2(e —p)
(Asa)

J, =—f dsg, (e)
I

c 1 —2f (E—p)
4tii 2(e —p)

(A5b}

and

L, =f degz(e)—D/2

e 1 —2f(e —p, )

4t
i

2(e —p)
(A5c)

where

g, (s)—:—g cos~k,'5(s —ek )
1

k'

f dx cosJ(nx)K 1—
2&t

((

—+cosnx
4t)i 2

2

e 1 — — c os'
4tll 2

(A7)

where K(x) is the complete elliptic integral of the first
kind. In practice, we eliminate c and c' through Eqs.
(A4a) and (A4b), and iterate the one equation (A4c) to
convergence:

1=/[ T, c ( T, ), c'( T, )], (A8)

where P is a complicated functional form that follows
simply from Eqs. (A4). We have also solved Eqs. (A4)
below T„where we have generalized Eqs. (A5) to tem-
peratures below T„and used three-dimensional k sums
to compute the resulting integrals.

As discussed in the text, when p=0, the anisotropy in
the gap vanishes, regardless of the values of v = Vj /V~~.
This is readily seen from Eq. (A4a), along with the fact
that g, (s)=—0, as follows trivially from Eq. (A7). When
cubic symmetry is present, or one invokes the isotropic
approximation mentioned in Sec. II, then the equations
simplify significantly. One obtains the T, equation:

n =2f deg(s)—D/2

and we define also an "e6'ective" number of holes:

(A12)

n = 1+p/(D/2), (A13)

which coincides with n for constant density of states. For
given chemical potential we write the density of states as

g (s) =g(p)[1+5„(e)]

so that the relation between n and n is

n =Dg (p)n —2g (p) f" ds5„(s) .—D/2

Defining the parameters:

(A14)

(A15)

constant density of states was discussed but a term was
omitted, so that we discuss here the solution for com-
pleteness. We assume an arbitrary density of states func-
tion g(e), with D/2 s D—/2. The number of holes
for given chemical potential is

1=2KI1 WI2 UIO+(K—
2 W—U)(IOI2 I

I
—), —

where

K =2zat~),

8'=zV

(A9)

(A10a)

(A lob)

k =Kg(p, ),
tv = IVg(p),

u =Ug(p),

(A16a)

(A16b)

(A16c)

the result for T, within BCS approximation [T, /
(nD) « 1] is

I, =f dEg(s)—D/2 D/2
1 2f (e p}— —

,

2(c—p)

e~
T, = D}/n(2 n)e— (A17)

Here, z is the number of nearest neighbors, g (e) is the
electron density of states, D =2zt~~ is the bandwidth, and
E= (leo+an) is the renormalized single-particle energy.
We have assumed t~=t~~ and V~= V~~ in Eqs. (A9)—(All).
The ansatz for the gap is b (E }= b, [c s/(D /2)]. —

In the weak-coupling limit, Eqs. (A9) and (Al 1) can be
solved analytically. ' In Ref. 3 the solution with non-

a =ao+5a,
b =bo+5b,

(A18a)

(A18b)

with

co= I+2k( I n) —w(1 ——3n+ ,'n )+(k —m—u)(1 —n }

(A19a)
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—2n
b =2k(l —n) —w(1 n—)

—u+(k —wu) 1 —n+0
5(E)=b, c—

D/2
(A29)

and

5a =2[k —w(1 n—)]5A, +w5A&

(A19b) and at T=O

D/2 E 1
I, = dEg(e)—Di2 D/2 2+(e —

}M) +Q (e)
+(k wu—)[2(1 n—)5A, +5A 1]—(bo+5b )5AO,

(A20a)

(A30)

5b =(k —wu)5A&

with

(A20b)
To lowest order in 5 /D the quasiparticle gap 60 is

given simply by b, (p). By expanding b, (E} in Eq. (30)
around b, (p) one obtains

I
on

5A, = de " (e —p, }' 'sgn(e —p) .
D —D&2 2

(A21)

[The last term in Eq. (A20a) was omitted in Ref. 3.] For
example, for the particular case of a linear density of
states;

b&=D}/n(2 n)e —' +O((b, /D) )

so that the gap ratio is

~o =3.53+0((b, /D) )
k~T,

as in the usual BCS case.

(A31)

(A32)

abcg(s)= —1+
D D/2

we have

5„(s)=b,

with

(A22)

(A23)

APPENDIX B: THE STRONG-COUPLING LIMIT

We discuss here the properties of our model in the lim-
it where the single-particle hopping amplitudes

t'ai
and t J

go to zero. The isotropic case is discussed in Ref. 11.
The wave function for a single pair is a linear combina-
tion of the wave functions:

a&

1+a i p/(D/2)

and Eq. (A21) yields

5Ao=b, (l n), —

(A24)

(A25a)
z

(Bla)

(B lb)

6A =b 1 —n+ n
1 1 (A25b) y is)„+y ~s)y ',

2N
(Blc)

5Az= —,'b, (1 n)[3+(1 n)—], —

and from Eq. (A15)

a&

2
n(2 —n),

(A25c)

(A26)

D/2 E,I, =f dEg(e)—D/2 D/2
1 2f(E(E))—

2E(s)
(A27)

which is simply solved for n(n). We have verified the
correctness of these equations by comparison of the ana-
lytic results with the numerical solution of the BCS equa-
tions.

The gap ratio in the weak-coupling limit is simply ob-
tained in the isotropic case. Equation (Al 1) below T, be-
comes

—K/2 —p
E

v'8

0H = —E/2 W/4
K—p 0

(B2}

where
~ 1 1), denotes a doubly occupied site and is)„a

singlet on a bond labeled by p. The sums in Eqs. (Blb)
and (Blc) are over all bonds in a given direction (x, y, or
z). For

t'ai
=ti =0, the Hamiltonian Eq. (1) has zero ma-

trix elements between a state in the subspace spanned by
the states in Eq. (Bl) and any other state in the Hilbert
space. We construct then the Hamiltonian matrix in that
subspace:

with

E(E)=[(e—p) +5 (e)]' (A28)

and the binding energy of the pair, Eb, is minus the
lowest eigenvalues of this matrix, Eo. It satisfies the cu-
bic equation
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(Eb+ U) Es+ =0, (83)

which for the particular case v = 1 considered in this pa-
per simplifies to a quadratic equation:

(Eb+ U) Eb+ E 2I+~ =0
4 2

with solution given in Eq. (28) of the text. The criterion
on the parameters to obtain binding in this limit is ob-
tained from Eq. (83) by setting Eb =0 as

K'), UR',
v+p /2

(85)

which reduces both for v = 1 and for p =0 to the criterion
for binding in the isotropic strong-coupling limit
K ) UW. (Note that for ~v =1 we should redefine our
couplings as E=—,'K and 8'= —,'8'to obtain the criterion
in the usual form. ) If there is no hopping in the third
direction the nearest-neighbor repulsion in the third
direction has no effect, as noted previously. Note also
that for v~0 binding occurs for arbitrarily small K, as
the pairs arrange themselves to lie predominantly on
bonds pointing in the z direction.

Alternatively, Eq. (83) can be derived from the BCS
Eqs. (A4). In the limit where the single-particle hopping
goes to zero we obtain for the quantities defined in Eq.
(A5):

k
—(C kick t &

—
2Ek

which obeys the Schrodinger-like equation:

2(ek P)4'k =(1 2nk ) X I kk ~k
1

k'

(810)

(811)

In the dilute limit, Ek =Eb =2IpI and it is simple to ob-
tain the pair wave function amplitude in real space

f (R —R')=( ciitc2i)& (812)

by Fourier transforming Eq. (810), using Eqs. (7) and (4)
for the gap and kinetic energies:

and substitution in Eq. (87a) leads directly to the equa-
tion for the binding energy (83) by using Eq. (88). The
gap in the dilute strong-coupling limit is simply Eb/2,
and thus isotropic. Note also that the gap function Ak

[Eq. (7)] becomes isotropic in the strong-coupling limit if
v =1 [Eq. (89b)].

The parameters c and c' are directly related to the am-
plitudes of the different components of the pair wave
function. Within BCS theory one defines the pair wave
function as

Ii =J0=0,
I 2

I = 1+
4 2

pIoJ ——
4

(86a)

(86b)

(86c)

f (R) ~ c5a o+ '(5„„+5„„+5~+5~ -)

c'++ (5 +5 )
1

2 2 Rz R, —z

The pair wave function is given by

Ig&= g f (R R')c2itcz i 10—&

RR'

(813)

(814)

0Lo=
2

and substitution in Eq. (A4) yields

and we obtain86d)

[c2+ 1 + 1 (ct +p/2)2]1/2
p Kp= —Uc +—1+ + c',

Io 4 2 4

1 8'

(87a)

(87b)

x cIq, &+-,'Iq„, &
—'

2
(815)

c' 8' , W

Io 4
c'v+ p(1 —v) .

In the dilute limit we have

1 1

21 pl Eb

and from Eqs. (87b) and (87c) we obtain

(87c)

(88)

The reader can easily verify that the eigenvalue equation
for H given in Eq. (82}gives rise to the same ground-state
wave function with c and c' given by Eq. (89) and

Eb — EO.
Equation (815) clearly displays the meaning of the pa-

rarneters c and c'. c gives the ratio of the doubly occu-
pied piece of the wave function to the singlet component
in the plane. In particular, as U increases c necessarily
goes to zero. This is most clearly seen from the expres-
sion for c obtained from Eq. (87a):

c = Eb + 8'/4
E

( W/8)p(1 —v)

Eb+ ( W/4)v

(89a) (k/4)(1+p /2)+(kp/4)c'
Eb+ U

(816)

(89b}
The parameter c' gives the deviation in the amplitude of
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the pair wave function involving pairs in the z direction
with respect to what would be obtained in the absence of
anisotropy in the nearest-neighbor repulsion. Starting
with a doubly occupied site, the hopping interaction will

give a singlet pair in the z direction or in the xy plane
with relative amplitudes given by the hopping anisotropy
p. However, if the interaction Vis anisotropic (v%1) the
pair amplitude in the z direction will be enhanced or
suppressed according to whether v (1 or v ) 1, as seen
from Eqs. (B9b) and (B15).

The coherence length in this limit

and perpendicular to the planes

P+2c'
&2[1+4c +—,

' (p+ 2c '
) ] '

Note that for v = 1 we obtain simply:

(B19)

(B20)

(B17)

1

&2[1+4c +—'(p+2c') ]' (B18)

follows immediately from the wave function amplitudes.
In the plane we obtain:

g2 +(2 +g2— (B21)

as expected.

which differs from the weak-coupling dilute limit behav-
ior g, /g„=&p. The coherence lengths Eqs. (B18) and
(B19)are smaller than one lattice spacing. In the limit of
large U, c~O and we obtain
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