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Simulations of the onset of diffusion in a flux-line lattice in a random potential
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%e simulate the finite-temperature dynamics of flux lines in a thin film. It is shown that a weak

random potential significantly reduces the temperature, TD, at which flux lines start to diffuse and

dissipation sets in. The diffusion starts to take place along grain boundaries in the flux-line lattice.
These findings are discussed in relation to the magnetic properties of the high-temperature super-

conductors.

It has now become apparent that the electrical proper-
ties of high-temperature superconductors in magnetic
fields are strongly influenced by the finite-temperature be-
havior of the Abrikosov flux-line system in these materi-
als. Many interesting features have been observed. The
resistive transition becomes very broad when a magnetic
field is applied. ' An irreversibility line is found in the
field-temperature phase diagram. ' Flux creep rates are
unusually high, and thermally assisted flux flow has been
proposed as an explanation for these high rates. Aging
and memory effects also seem to have been observed.
Although the experimental evidence for melting of the
flux-line lattice is not conclusive, theoretical considera-
tions suggest that melting might take place at low tem-
peratures compared to the superconducing transition
temperature.

All the above-mentioned phenomena are related to the
mobility of the flux lines. This problem is complicated by
the fact that due to inhomogeneities in the superconduct-
ing material, the flux lines always experience a random
potential background. The mobility is thus determined
by the combined effect of the random potential and
thermal fluctuations.

We have simulated the onset of diffusion in the flux-

line lattice in a thin-film superconductor. We prefer to
discuss our results in terms of mobility rather than in
terms of melting. The reason is that even a weak random

potential at zero temperature destroys the order of the
lattice, ' resulting an amorphous glass-liquid-like (static)
structure.

In this paper, the temperature TD at which vortices
start to become mobile is studied as function of applied
magnetic field and strength of the random pinning poten-
tial. We find that weak randomness reduces TD
significantly, and that the diffusion takes place in chan-
nels along grain boundaries in the flux-line lattice. The
random potential facilitates the creation of these grain
boundaries and thereby assists the thermal fluctuations in
making the vortices diffuse.

Details of the simulation method have been published
previously. " We consider a set of vortices with velocity
v determined by an over-damped diffusive equation of
motion

1v= —F+y,
7l

where rl is the friction (or viscosity) coefficient, and F is
the total force on a vortex due to the other vortices and
the random potential. The function y is a Gaussian
white-noise velocity that models the coupling to a heat
bath at a given temperature T. To make the simulation
computationally manageable we consider straight, paral-
lel flux lines, in which case the vortex-vortex force is
determined by the potential'

U,„(r;)= (0Eo)(1 —b)(l —t ) g [Ko[r, &(1—b)/A, ]—Ko[r,"&(2 2b)/(jI, — (2)

where the energy scale eo(0) =$0/[8' A, (0) ] [Pti is the
flux quantum and A.(0) is the zero-temperature penetra-
tion depth]. b =B/B, i(T) is the reduced inagnetic field

at the temperature T, t =T/T, is the reduced tempera-
ture ( T, is the superconducting transition temperature),

Ko is a modified Bessel function, and g the Ginzburg-
Landau coherence length. The random potential is
modeled by a set of randomly positioned pinning centers
of density n at position R . For concreteness we use a
Gaussian form of the individual pinning wells
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U, (r, ) = —
Az g exp

P

(3)

We have chosen the radius ( =g) of the Ilux-line core as
the range of the pinning centers (point pinning) and for
the amplitude we take a fraction o. of the condensation
energy stored per length in a cylinder of the size of the
Aux-line core'

g2
C~

A =0 (1 b)m—g (4)

ks T, d/s( o0)=7 X 10

and a.(0)=60. Although, the parameter set we consider
does not directly describe a specific material, we find it
useful as a model for the study of the effect of the random
potential on the mobility of the vortices.

We show in Fig. 1 the onset of diffusion for a Aux-line

where a.=k/(. It should be emphasized that the temper-
ature enters both through the stochastic term in Eq. (1}
and through the phenomenological temperature depen-
dence of all the superconducting parameters. "'

The important energy scales in the problem are the
vortex-vortex interaction energy and the superconducting
transition temperature kz T, (ks is Boltzmann's con-
stant). We consider a system with'5

ks T, /dao(0) =2.5 X 10

d being the thickness of the sample, and ~(0)=2. This
choice of parameters is dictated by numerical require-
ments: Small number of interacting neighbors, ' and
reasonable speed of the stochastic dynamics. " A typical
high-temperature superconducting sample with d =A.

should be described by

ks T, /d eo(0 ) =2 X 10

and ~(0)= 100. A conventional superconductor like
Niobium-Germanium has

lattice, consisting of 340 Aux tubes in the presence of 170
randomly placed pins, as a function of temperature and
strength of the random potential. The external magnetic
field is kept constant' at b (0)=8/8, (0)=0.1. The cri-

2

teria of the onset of difFusion are that the mean-square
displacement approaches the normal diffusive behavior
(Fig. 2); and that the correlated stringlike motion occurs
(Fig. 4).

One sees clearly that even a weak random potential has
a dramatic effect on the mobility of the vortices. The
Aux-line lattice is softened by the disorder. The same
effect has been observed at zero temperature, ' where nu-
merical measurements of the shear modulus of a model
system showed a linear decrease of the shear modulus as
the amplitude of the random potential was increased.
This decrease in the shear modulus reduces the barrier
for diffusion. The dilfusion onset temperature Tn(a) sat-
urates as the pinning strength o. exceeds about 0.4.

One might have expected that the strong random po-
tential, since it consists of attractive centers, would have
increased the diffusion temperature due to its pinning
effect. The saturation behavior of TD may be due to the
fact that the density of pins used in this particular simu-
lation is less that the density of the vortices. Since each
pinning center can trap only one vortex, the number of
mobile vortices approaches a constant value for strong
pinning potentials. These mobile vortices diffuse by over-
coming an energy barrier that is determined by the densi-
ty of the pinned vortices. Therefore for low pinning den-
sity and strong pinning strength, one expects that the
diffusion onset temperature TD is a function of the pin-
ning density only, and that TD(n } increases with increas-
ingn .

In Fig. 2 we show the mean-square displacement

R (~)=([r,(v+~0) r, (ro—)] )

as function of ~. The average is over the vortices and
over ro. The presence of a random potential cause R (r)
to behave as ~ with a-0.2 to 0.4 at times shorter than a
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FIG. 1. Diagram of the diffusive and nondiffusive regions for
a fixed external magnetic field b(0)=0.1. The bars indicate the
temperature TD at which the vortices start to diffuse for a given
value of the amplitude of the random potential. The dotted line
is a guide to the eye. The system consists of 340 vortices and
170 pinning centers. Periodic boundary conditions are used.

FIG. 2. The mean-square displacement as function of time
for three different values of temperatures (t=0.1, 0.3, and 0.7
from bottom to top) at a given amplitude of the random poten-
tial o.=0.3. The magnetic field is b(0) =0.1.
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AEb,„—-5X10 dao(0) .

The fluctuations in the pinning potential are easily es-
timated if one neglects the distortion of the lattice. The
result is

' 1/2

b,E = ~n

2
(1 b)cr

d (
—
)Eo (5)

crossover time ~„. For times longer than ~„normal
diffusive behavior is observed; i.e., R (r) ~ r. The cross-
over time v„ increases with increasing o. and decreases
with increasing temperature. The anomalous slow
diffusion at short times is probably due to the restricting
effect of the local minima in the random potential. ' At
longer times the vortices have experienced many thermal
fluctuations among which many are large compared to
the fluctuations in the random potential. Hence the effect
of the random potential is lost at long times.

The diffusion is exponentially activated as is seen from
Fig. 3. Here we plot the logarithm of the diffusion con-
stant D as a function of the inverse temperature. The
slope of the dashed line indicates that the temperature
dependence of D follows a form D =Doexp( bE—lktt T)
with an activation energy b E =2 10 d so(0). The ac-
tivation energy measured this way decreases for small o.

(0& tT &0.1). As o becomes larger than 0.1, b,E starts to
increase slowly. The crossover from decreasing to slowly
increasing b,E(cr ) presumably takes place when the fluc-
tuations

[( U2 ) ( U )2]1/2

in the pinning potential become equal to the vortex-
vortex energy barrier, bE&„, for a string of vortices to
move past the surrounding vortices. This barrier is con-
nected with the shear properties of the lattice and hence
is expected to decrease for small increasing 0. due to the
softening of the lattice. ' An upper bound of AEb„can
be estimated from the potential barrier (per vortex) for a
string of vortices to move in, say, the (10) direction in
the ideal lattice configuration. Using Eq. (2) we have (for
b= 0.1)

For b=0. 1 we have hE =AEb„at o.-0.4, this value

compares reasonably with the value in Fig. 1 at which the
crossover occurs.

That the onset of diffusion takes place in the form of
correlated string motion, as anticipated by the energy ar-
gument given before, can be seen from Fig. 4. Here we
show the trajectories of the vortices for o. =0.1 at temper-
ature t=0.3, i.e., just as diffusion has started. One notes
that the fluctuations in the commensurability between the
random potential and the flux-line lattice produce two
different types of regions. The pinning centers act more
efficiently in places where the random potential matches
the vortex lattice. The mobility of the vortices is there-
fore low in these regions. The less mobile areas are
separated by channels in which the vortices diffuse more
easily.

We do not observe any qualitative magnetic-field
dependence in the range accessible to us, b (0)=0.05-0.2.
For b (0)=0.1 and 0.2, the diffusion temperatures for the
pure system (0 =0) are

to —= TD/T, =0.625+0.025

and 0.675+0.025, respectively. For o. =0.1, we have

tD =0.25+0.025 and 0.525+0.025 respectively. This be-
havior is to be expected since the flux-line lattice becomes
more rigid as the induction is increased for small induc-
tions (see, e.g., Ref. 12).

Some comments about finite-size effects are appropri-
ate. Since the change from no observable diffusion to ob-
servable diffusion is difficult to pinpoint numerically, it is
difficult to test for finite-size effects. For strong random
potentials the correlation length of the vortex lattice is of
a few lattice spacings at any temperature. In this range
we do not expect our results to change with system size.

The situation is different for weak randomness. It was
argued earlier that the activation energy for diffusion in
the weak random potential, b.E(o «1), is connected
with the barrier for plastic shear flow in a random poten-
tial background. The latter we expect to be related to the
energy needed to produce topological defects in the vor-
tex lattice. In a previous zero-temperature study' we

7

l

2

&/t

FIG. 3. The diffusion constant as function of temperature.
The system is the same as in Fig. 1. The strength of the random
potential is o =0.1.

FIG. 4. Plot of the trajectories of the vortices for the same
system as in Fig. 1. The temperature is t=0.3, diffusion has just
started. The Geld and random potential is b(0) =O.l, o.=0.1.
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found that the amplitude of the random potential A ~„at
which the disorder is able to produce plastic deforma-
tions decreases logarithmically with the size of the sys-
tem. Hence, we also expect b,E(o « 1) to be logarith-
mically decreasing with the system size. We estimate
that the zero-temperature value of A „, for the system
described in Fig. 1 corresponds to 0. =0.1.

Markiewicz (see Ref. 9) has considered an analytical
model of two-dimensional flux lattice melting and the
influence of pinning potentials on the melting tempera-
ture. For the Kosterlitz-Thouless mechanism, the melt-
ing temperature is given by

2ao
k~T~=

4
C66d,

where

a =( ', )' Q4— /B

(6)

is the lattice spacing, and C« is the shear modulus of the
flux-line lattice. Using Brandt's ' expression for C« the
melting temperature predicted by Eq. (6) for the system
described in Fig. 1 at o =0 is found to be tM =0.92, while
the diffusion temperature determined in the simulation is
much lower, tL, =0.65. The reason for this discrepancy
could be that the onset of diffusion is connected with
correlated string motion as shown in Fig. 4, rather than
with unbinding of dislocations. As mentioned in Ref. 11,
it is not possible from the simulation to distinguish unam-
biguously between Kosterlitz-Thouless-like behavior or
an alternative mechanism. Markiewicz also points out
that —as observed in the present simulation —the effect of
a pinning potential can be to lower the diffusion tempera-
ture.

We want now to associate the preceding discussion
with the magnetic properties and resistive transition in

the high-temperature superconductors. It is well
known that the pinning energies in Bi-Sr-Ca-Cu-0 are
much smaller than those found in Y-Ba-Cu-O. Hence,
the bismuth compound is located in the low-o. regime of
the diagram in Fig. 1. The yttrium compound is, on the
other hand, in the upper part of the o —t diagram. Klei-
man, Gammel, Schneemeyer, Waszczak, and Bishop
have published Bitter patterns for both yttrium and
bismuth samples. The decoration of two samples was
performed simultaneously, and it was found that the flux
lines in the bismuth sample had diffused much more than
the flux lines in the yttrium sample. This observation is
compatible, for example, with o =0.1 for the bismuth
sample, and 0.2 & cr (0.4 for the Y-Ba-Cu-0 sample.

A much broader resistive transition is observed in the
bismuth compounds than found in the yttrium com-
pounds. This difference is also likely to be connected
with the different position of the two materials in an 0 —t
diagram. The weak pinning potential in Bi-Sr-Ca-Cu-0
can lower the diffusion temperature and hence makes
resistivity occur at a much lower temperature, whereas
the strong pinning potential in Y-Ba-Cu-0 helps to
prevent flux motion.

Finally, we mention that the onset of diffusion in the
form of chainlike shear motion might explain why
Tinkham s shear-limited phase slip model of the resistive
transition is so successful in spite of the fact that the
model ignores the pinning potential.
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