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Charge-density wave with imperfect nesting and superconductivity
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We study the e8'ect of the existence of charge-density waves (CDW) on superconductivity within a
mean-field approximation. When the band is slightly deformed to introduce the imperfect-nesting
condition for the commensurate CDW, the metallic CDW states appear where a part of the Fermi
surface is ungapped. We examine the phase diagram of the imperfect-nesting CDW states and the
behavior of the superconducting critical temperature (T, ) on it. We find that the presence of the
CDW always drives the T, down.

I. INTRODUCTION

After the recent discovery of the 30-K superconductor
Ba, „K„Bi03 (Ba-K-Bi-O), ' bismuth-oxide-based su-

perconductors have attracted much interest, copper-
oxide-based superconductors have also. The copper-
oxide-based systems such as (La, „A„)2CuO~ (A=Sr,
Ba, Ca) and YBa2Cu306+„exhibit a similar phase dia-

gram and always have the insulating phase with magnetic
ordered states in the vicinity of the superconducting (SC)
phase. It could be considered that the existence of the
magnetic order plays an important role for high-T, ma-
terials. On the other hand, no magnetic order is observed
in Ba-K-Bi-0 and also in the parent compound BaBi03.
Since the discovery of Ba-K-Bi-0 is an extension of the
13-K superconductor BaPb, „Bi„03 (Ba-Pb-Bi-O), '
and Ba-Pb-Bi-0 has been extensively investigated from
both of experimental and theoretical sides, it is significant
to examine Ba-Pb-Bi-0 for studying the origin of high T,
in bismuth-oxide-based systems.

In Ba-Pb-Bi-0 a characteristic metal-insulator transi-
tion occurs at the Bi composition x =0.35 and supercon-
ductivity exists in the metallic phase. This system has the
maximum SC critical temperature T, at x =0.25. The
band-structure calculation for BaBi03 (x =1) indicates a
metallic half-filled band, but experiments exhibit an insu-
lating phase. In this case, due to the good nesting condi-
tion, the commensurate charge-density wave (CDW) is
expected to be induced accompanying the breathing
mode so that the system becomes insulating. Doping of
Pb in BaBi03 acts to deviate the electron filling from the
half-filled band condition. In the insulator region
(x +0.35), the optical reflectivity measurement shows a
clear optical gap induced by the CDW. The Bi substitu-
tion gives no change for this CDW gap (=2 eV) when
x ~0.7 and suppresses the gap value with decreasing x
when x 50.7. Special emphasis should be put on the re-
markable experiment that even in the metallic region
(x 80.35), the pseudogap, which indicates the presence of
a CDW, is observed in the reflectivity spectra measure-
ment. We expect that the existence of the CDW plays

an important role in the bismuth-oxide-based supercon-
ductors.

The purpose of this paper is to investigate the effect of
the existence of a CDW on the standard BCS-type
(Bardeen-Cooper-Schrieffer) superconductivity. The
basic idea is simple as shown in the following: When the
band is slightly deformed to introduce the imperfect-
nesting condition for a CDW, the metallic phases in the
CDW states can appear at a certain strength of electron-
phonon coupling constant, where a part of the Fermi sur-
face (FS) is ungapped. We are interested in the supercon-
ductivity which is expected to exist under this metallic
CDW state. Along the same framework, Machida and
Kato discussed the possibility of an enhancement of T,
due to the presence of a CDW and Machida' proceeded
to apply it to Ba-Pb-Bi-O. We will show, however, that
such a large enhancement of T, cannot be obtained when
we consider the stability of the imperfect-nesting CDW.
We examine the imperfect-nesting CDW states in detail
and obtain the CDW phase diagram in the chemical po-
tential and the CDW coupling-constant plane at the
ground state. Assuming the SC coupling constant is
much smaller than the CDW one, we study the behavior
of the SC critical temperature T, in the metallic CDW
states.

We give the model Hamiltonian which describes the
effect of the imperfect-nesting CDW on the superconduc-
tivity in Sec. II. In Sec. III we examine the CDW state
with the imperfect nesting and study the superconductivi-
ty under the CDW states in Sec. IV. The last section is
devoted to the conclusion.

II. FORMULATION

In order to consider the effect of the imperfect-nesting
CDW on the superconductivity, we utilize the Peierls
model for the CDW and the BCS model for superconduc-
tivity within a mean-field approximation introducing two
order parameters 8' and 6 for CDW and superconduc-
tivity, respectively. The total Hamiltonian is described as
the following:
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H =Ho +Hc~w +H~cs

Ho= g(sk p)cl ck
ko

(2.1)

ter the energy is normalized by to.
We first consider only the CDW state (b, =O) with the

imperfect nesting. After diagonalizing Eq. {1), we can
easily obtain the CDW gap equation from Eq. (3),

Hcow= —Wgck+g ck~,
ko.

HBCS 5 g (Ckfc ki+H. c. ) .
k

(2.2)

(2.3)

f{El ) f—(Ek')
1/u =

(
2 + gr2)1/2

Ek =fb —v+(l'k+ ~)'"

(6)

where

P ="/k+ ~k P

yk = —to(cosk„+cosk ),
5k = t 1 cosk cosk

Here it should be noted that t, acts as the imperfect-
nesting parameter and Q expresses the perfect-nesting
condition in the just half-filled case when t, =0. Hereaf-

The self-consistent conditions for the two order parame-
ters W and 6 are given by

W=u g (ck+& ck ), (3)
ko.

~=g g ~cktc It ~-
k

where u and g are the CDW and SC coupling constants,
respectively. In our model, the explicit Coulomb interac-
tion term does not exist in H. If the Coulomb repulsion
is properly included, it is necessary to discuss the symme-
try of the SC order parameter. " For the simplicity of
calculations we restrict ourselves to a two-dimensional
(2D) square lattice. The nesting vector is fixed as

Q =(n., m.), where the lattice constant is taken to be unit,
because we consider the nearly half-filling case. The
chemical potential p is varied within the nearly half-filled
band condition.

The model band structure ck in the 2D square lattice is
represented by a tight-binding band, where we introduce
the next-nearest-neighbor transfer t, as well as the
nearest-neighbor one to as the following:

where f (E) is the Fermi distribution function. In Eq. (6)
the sum over k goes over the first Brillouin zone {BZ)of
the CDW superlattice. Ek+ and Ek represent the upper
and lower band of quasiparticle energy spectra of the
imperfect-nesting CDW state, respectively. Equation (6)
determines a CDW gap W self-consistently for a given u.

Since various metallic phases are expected to appear
due to the imperfect nesting, as seen in the next section,
even when the CDW gap is open, we must compare the
total energies among these phases. The total energy
difference from the normal phase of this system is given
by

W
EE=QEk+f(Ek+)++Ek f (Ek )+

ko ko

where the third term expresses the energy of the lattice
distortion. The most stable state among the solutions of
Eq. (6) is determined by minimizing this total energy
difference. Here we note that d(AE)/d W =0 gives the
gap equation (6).

Next we consider the effect of the existence of the
imperfect-nesting CDW on the BCS-type superconduc-
tivity, because the superconductivity can appear in the
metallic CDW phase where the FS remains partially due
to the imperfect nesting. Since the CDW gap is order of
1 eV and the SC gap is order of 10 meV in Ba-pb-Bi-O,
we can regard the SC order parameter as much smaller
than the CDW one at T=O. When we assume that
6 && W, W is determined only by the CDW gap equation
(6) independent of the SC order parameter b, . The SC
gap equation is given by

1 [(E+)2+g2]1/2
1/g =

—,
' Y [{E+)2+F2]1/2 2T

tanh
[(E—)2+ g2]1/2

+ tanh
[(E )&+ g2]&/2 2T

(9)

1/g =
—,
' g

k

1 Ek+ Ek
tanh + tanh

(10)

We can determine the SC critical temperature T, by put-
ting b, ~0 in Eq. (9),

III. CDW STATE WITH THE IMPERFECT NESTING

In this section we discuss the CDW states with the im-
perfect nesting. In order to see the role of the imperfect-
nesting parameter t, , we show the dispersions Ek and
E„given by Eq. (7) in Fig. 1. Since the nesting vector Q
is fixed as (m, m), the CDW gap W opens on the nesting
line cosk +cosk =0, where the imperfect-nesting pa-
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FIG. 1. Dispersion curves of EI,
+ and Ez in the CDW state

(solid line), and ck and cI, +& in the normal state (dashed line)

along the symmetry lines (I XSI ) shown in the inset.

I

-2.0
ENERGY

2.0

FIG. 3. Density of states for the dispersion EI,
+ and Ek . The

properties of the van Hove singularities from A to 6 are sum-

marized in Table I.

rameter t, gives the dispersion. Thus, we expect that me-
tallic phases whose FS remains partially will appear for
some values of p while the CDW gap exists. We display
three possible metallic phases, Ml (p crosses only the
lower band Ek ), M2 (p crosses only the upper band Ez+),
and M3 (p crosses both the lower and upper bands), in
Figs. 2(a) —2(c). The upper figures show the relative posi-
tions of p and EI,

-+branches on the nesting line and the
bold lines indicate the Fermi levels. The lower figures
show the FS by the bold lines and the electron filling at
the ground state by the shaded parts. For convenience
the lower (upper) part from a diagonal line expresses the
E (E+) branch. The Ml and M2 phases have the par-
tial FS near the X and S points, respectively. In the M3
phase, FS appears near both the X and S points. The
density of states (DOS) corresponding to the dispersion in
Fig. 1 is shown in Fig. 3 and the various singularities of

DOS are summarized in Table I. We note that E+(F)
corresponds to the local maximum of the E+ band which
is located at X point in Fig. 1. When W ( t, /2, the DOS
of the E+ band overlaps with the DOS of the E band.

We show the CDW gap W as a function of u obtained
by the gap equation (6) in Fig. 4(a) when p=0.02 and Fig.
4(b) when p =0.07 at zero temperature in the case
t, =0.1. Three phases appear as the solutions of Eq. (6)
when p =0.02; that is, the regions 0 & W & 0.02,
0.02& W &0.08, and W)0.08 correspond to the M3,
Ml, and insulating (I) phase, respectively. We compare
the total energies given by Eq. (8) among them and show
the stable state by the bold lines. The system undergoes
the first-order phase transitions from the normal (N) to
the M1 phase and to the I phase as u increases, and the

(c}

X- X,

1)),
X

FIG. 2. Schematic indication of the three metallic CD% states: (a) M1 (p& W, —W&p&t, —W), (b) M2 (p) tl —W,
W &p & tl + W), and (c) M3 (W &p & t, —8, W & t, /2). The upper figures display the relative position between the Fermi level and
the CDW gap along the nesting line XSX, and the lower figures show the electron filling in BZ by the shaded part where the FS is ex-
pressed by the bold lines. The lower (upper) part from a diagonal line in the lower figures expresses the EI, (Ei,+) branch for conveni-
ence.
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TABLE I. The van Hove singularities in the DOS of the quasiparticle dispersions EI, and Ek . The
positions in energy and in BZ, the type and the analytic behavior of the singularities are listed in order.
Here x, =cos '[ —1+Wt, l(1 —t, )'~'] and 8 is a step function.

A: E (A)= —tl —(4+ W )'

B: E (B)=—W2

C: E (C)=tl —W

D: E+(D)= W
E: E+(E)=t, + W2+1 t, —
F: E+(F)=t, + W

6: E+(6)= —ti(4+ W )'

at I": step

at S: logarithmic

at X: step

at S: step
at (x„0): logarithmic

at X: step

at I: step

(4+ W2)1/2

2+t&(4+ W )
9(E—E ( A))

in~E —E-(a)
~—e{E (C)—E)l

t]
g W/t, (2 Wt—, )e(E —E+(D))
»IE —E+(E)l
—8(E+(F)—E)

(4+ W2)l/2(4+ W ) e(E+(6) E)
2 —t)(4+ W )'

M3 phase is unstable. In the case @=0.07 the system
changes from the N to M2 phase by the first-order transi-
tion and from the M2 to I phase by the second-order
transition as u increases.

%e show the phase diagram in the p-u plane at the
ground state in the case t, =0. 1 in Fig. 5(a) where the
dashed and solid lines indicate the first- and second-order
transitions, respectively. For comparison the phase dia-
gram for t& =0 is shown in Fig. 5(b) where we see only
the I and N phases with the first-order transition. This
result is the computational fact, namely the transition in
the case that t, =0 is found to be always first order as far
as we considered the region 0.001&u (1.5. When the
imperfect-nesting parameter t, exists, the two metallic
phases M1 and M2, which have the partial FS, appear in

addition to the N and I phases and the M3 phase does
not appear in the phase diagram. We note that the elec-
tron filling is always just half-filled in the I phase. It
should be mentioned that the transitions between the nor-
mal phase and other phases are of the first order except
the special two points in the phase diagram indicated by
the solid circles. At these two points the infinitesimal gap
can be formed stably because JM is tangent to c.k on the
nesting line XSXat the X point when p=t& or the S point
when @=0. In particular, when p=t, an infinitesimal

gap can open at an infinitesimal u, because in this case p
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FIG. 4. CD%' gap W as a function of u given by the gap
equation (6) when (a) p=0.02 and (b) p=0.07 in the case that
t, =0.1. The bold lines indicate the stable states.

FIG. 5. The CD% phase diagram in the p-u plane in the case
that (a) t, =0.1 and (b) t, =0. The solid and dashed lines indi-
cate the second- and first-order transitions, respectively. The
solid circles in (a) denote the two special points where the tran-
sition between X and metallic CDW states is of the second or-
der.
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locates at the logarithmic singularity of DOS in the ab-
sence of a CDW, as in the case of the second-order transi-
tion point in Fig. 5(b) when t, =0.

Finally we mention that the order of transition be-
tween the I phase and the two metallic phases changes
with varying t, . When we increase t„the transition be-
tween the M1 and I phases changes to the second order
and the transition between the M2 and I phases changes
to the first order corresponding to the variation of the
magnitude of the singularity in DOS at the C point and D
point, where the magnitude of the step of DOS decreases
as 1/t, and increases as Q W/t, (2 —Wt, ), respectively.

IV. EFFECT OF THE IMPERFECT-NESTING
CD%' ON THE SUPERCONDUCTIVITY

As seen in Sec. III, the metallic phases M1 and M2 ap-
pear in the CDW state with the imperfect nesting. Since

IJ =0.02

Tco = 0.0001

Tco =0.001

Tco = 0.0001

0.001

0.1

FIG. 6. Superconducting critical temperature T, normalized
by T,0 as a function of W when (a) @=0.02 and (b) @=0.11 in
the case t, =0.1. The bold lines represent the stable CDW
states. (a) The stable state changes from N to M1 and M1 to I
by the first-order transition as W increases. (b) The stable state
changes from N to M2 by the first-order transition, and from
M2 to I at W =0.11 by the second-order transition.

the BCS-type superconductivity can exist in these metal-
lic CDW phases, we study the behavior of the SC critical
temperature T, in these imperfect-nesting CDW states in
this section.

When we assume 5 (& 8', T, under the CDW gap 8'is
given by Eq. (10). We show the calculated T, as a func-
tion of W' in Fig. 6(a) when @=0.02 and t, =0.1, where
T, is normalized by T,o(p) which denotes the SC critical
temperature in the absence of CDW, i.e.,

As 8' increases, the CDW state changes from the N to
the M3, M1, and I phases in order. We see that T, has a
peak near the boundary between the M1 and I phases
and it tends to be enhanced at smaller T,o. The peak of
T„which is attributed to the magnitude of DOS at p, re-
sults from the singularity at the C point corresponding to
the band edge. This peak has been demonstrated already
in the case p=O by Machida and Kato. As mentioned
in Sec. III, however, we must consider the stability of the
imperfect-nesting CDW because the first-order transition
is an intrinsic feature in this system. The bold lines in
Fig. 6(a) indicate the stable CDW gap corresponding to
the solution in Fig. 4(a). We see that the CDW gap W;
which gives the peak of T„ is unstable. Next we show a
similar result when p =0.11 in Fig. 6(b). The bold lines in
the region W &0. 11 and 8' & 0. 11 indicate the M2 and I
phases, respectively. The system undergoes the first-
order transition from the N to M2 phase, and the
second-order transition from the M2 to I phase as in-
creasing 8'. This peak of T, which results from the loga-
rithmic singularity of the E point at the Fermi level can-
not exist in the stable state. We see that T, in the stable
CDW state does not exceed T,o at both values of p.

We examine the behavior of T, on the CDW phase dia-
gram when t, =0.1 and show T, as a function of p at
u =0.7 in Fig. 7(a). The bold and dashed lines indicate
T, ()u, )/T, o(@=t,) and T,o(p)/T, o(p=t, ), respectively
The T,o(p) has a maximum at p = t, because the logarith-
mic singularity in DOS is located at t, in the absence of
CDW. We show in Fig. 7(b) the CDW gap W as a func-
tion of p corresponding to Fig. 7(a). The bold and dashed
lines denote the stable and unstable CDW gaps, respec-
tively. When we decrease p from the I phase, the system
undergoes the first-order transition to the M1 phase
where T, is reduced to about a half of T,o, and to the N
phase further decreasing p. Here the calculated T, is in-
dicated only in the region of M1, M2, and I, because the
assumption 6 ((W is broken in the X phase (W=0)
when AWO. However, the transitions between N and oth-
er phases are always first order, so that the above as-
sumption is satisfied for the M1, M2, and I phases. In-
versely, increasing p from the I phase, the system under-
goes the second-order transition to the M2 phase at
8'=0.08. In the M2 phase near the I phase, T, is very
small and tends to enlarge rapidly as suppressing 8'.
This abrupt enhancement of T, is attributed to the loga-
rithmic singularity of DOS at the E point near the Fermi
level. The system, however, changes to the N phase be-
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fore T, exceeds T,o. We conclude that the superconduc-
tivity can exist in the imperfect-nesting CDW state and
that T, never exceeds T,o over the whole region of p and
Q.

U. CONCLUSION

We have studied the effect of the existence of the
imperfect-nesting CDW on the superconductivity in a 2D
square lattice within a mean-field approximation. If the
band is slightly deformed to introduce the imperfect-
nesting condition for the commensurate CDW, the metal-
lic CDW phases appear where a part of FS is ungapped.
We examine the imperfect-nesting CDW states in detail
in the p-u plane and investigate the behavior of the super-
conducting critical temperature T, in the metallic CDW

0.1

FIG. 7. (a) Superconducting critical temperature T, (p) (solid
line) in M1 and M2 phases and T,o(p) (dashed line) normalized
by T,o(p= t~) as a function of p when u =0.7. As increasing p,
the CDW stable state changes from N to M1, I, M2, and N in
order. The arrow indicates the transition point between I and
M2 phases. (b) The CDW gap Was a function of Iu given by Eq.
(6) when u =0.7. The solid and dashed lines indicate the stable
and unstable solutions, respectively.

phases M1 and M2 assuming that the CDW order pa-
rameter is much greater than the one of the superconduc-
tivity. Deviating the chemical potential p from the I
phase, the system undergoes the transition to the M1 and
M2 phases and finally to the N phase. The abrupt
enhancement of T, is found near the boundary between
the M2 and N phases due to the logarithmic singularity
of DOS which is characteristic in a 2D system.

Machida and Kato demonstrated that T, is enhanced
by the imperfect-nesting CDW along the same frame-
work when p=0. The CDW gap, which gives the huge
DOS at the Fermi level, however, cannot exist in the
stable state because the first-order transition is the intrin-
sic feature when we restrict ourselves to the commensu-
rate CDW. The SC critical temperature in the CDW
states never exceed the one in the absence of CDW over
the whole region of p and u. This reduction of T, in the
CDW states is qualitatively similar to the result of Bilbro
and McMillan, ' which discussed the superconductivity
and the martensitic transformation in 315 compounds.
Machida and Kato also argued the relationship between
the commensurate spin-density wave (SDW) with imper-
fect nesting and the superconductivity in various sym-
metries at finite temperatures. ' ' We note that their
phase diagram, obtained by assuming second-order tran-
sitions, will soon break down when we deviate from the
region they considered, that is, p =0 and the SDW order
parameter is much smaller than the imperfect-nesting pa-
rameter t,

Finally, let us try to briefly discuss the comparison be-
tween our results and the real system of Ba-Pb-Bi-O. In
the metallic state, we have two stable phases M1 and M2
where FS remains partially with the CDW gap 8'. When
the superconductivity appears, this CDW gap is con-
sidered to correspond to the pseudogap observed in
Ba-Pb-Bi-O. Our argument cannot apply directly to the
problem of Ba-Pb-Bi-O, however, because we treat the
system as the grand canonical ensemble with an infinite
reservoir and the insulating phase is always the half-filled
case. Then, in our treatment, the system soon exhibits
the transition to the metallic CDW phases when the elec-
tron filling deviates from the half-filling case. This is
different from the case for Ba-Pb-Bi-O. For the quantita-
tive comparison with the real system of Ba-Pb-Bi-O, it is
necessary to treat it as a canonical ensemble where the
chemical potential is determined self-consistently to fix
the particle number. Therefore, we suppose that the in-
commensurate CD%' plays an important role in the real
system. The investigation for the incommensurate CDW
will be reported in future.
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