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The results of a study of the superconducting transition in very-small-diameter In wires are
presented. Several different types of measurements have been performed. First, we have studied the
resistive transition in the limit of low applied currents, i.e., I &&I„where I, is the critical current.
Second, the transition to the dissipative state as a function of I has been examined. The results are
discussed initially in terms of the thermal-activation model, according to which the dissipation is

due to thermally activated motion of the Ginzburg-Landau order parameter over the free-energy
barrier which separates metastable states. For certain ranges of sample size, temperature, and

current, the thermal-activation theory is consistent with our results. However, for a wide range of
these parameters we find that this theory fails, as the observed transition rates are much larger, and

have a qualitatively different temperature dependence, than those predicted by the thermal-

activation model. We suggest that in addition to thermal activation, quantum-mechanical tunneling
of the order parameter through the free-energy barrier may also take place. We show that our re-

sults are consistent with this picture.

I. INTRODUCTION

The present understanding of dissipation in one dimen-
sional superconductors at temperatures T T, is based
largely on the work of Little, ' Langer and Ambegaokar
(LA), and McCumber and Halperin (MH). According
to this picture, a current-carrying state is metastable, and
dissipation occurs when the system passes, via thermal
activation, over the associated free-energy barrier to a
state of lower free energy. This process is known as
"phase slip, " since it involves the time evolution of the
phase of the superconducting order parameter. When
the current I is much less than the critical current I, and
T « T„ the rate of phase slippage, and hence the dissipa-
tion, is negligibly small. However, when one approaches
T, or I„ this rate grows, and it is possible to have
significant dissipation even when T & T, and I & I, . LA
and MH have developed a quantitative theory of thermal-
ly activated phase slippage, and this theory provides a
good account of a number of experiments.

In previous experimental work on this subject the sam-
ples were typically 0.5 pm in diameter; this was
sufficiently small so as to be one dimensional with regards
to superconductivity in the region of interest (i.e., near
T,). However, with these samples dissipation could be
observed (for low currents) only very near, typically
within 1 mK of, T, . With modern fabrication techniques
it is possible to make structures considerably smaller than
those employed in the previous experiments, and this has
motivated us to take a new look at this problem. We
have fabricated and studied In wires (i.e., very thin and

0
narrow strips) with diameters in the range 400—1000 A.
While the thermal-activation theory is consistent with
our results in certain ranges of I and T, our findings sug-
gest that there is another process by which phase slippage

can occur. Following a suggestion by Mooij and co-
workers, we consider the possibility of quantum tunnel-
ing ' through the free-energy barrier. While there is at
present no quantitative theory of phase slip via quantum
tunneling for this system, it is possible to work from anal-

ogy with the well-developed theory of macroscopic quan-
tum tunneling (MQT) in other systems to deduce the
form that such a theory might take. In this paper we
present our experimental results, give a qualitative dis-
cussion of the quantum-tunneling process in a one-
dimensional superconductor, and compare the predic-
tions of this model with our experiments. As we will see,
the experiments appear to be consistent with the
quantum-tunneling model. "

The organization of this paper is as follows. In Sec. II
we describe the sample fabrication and the experimental
setup. Section III contains a review of the thermal-
activation theory and a qualitative discussion of
quantum-tunneling effects, both in the low-current limit.
Results for the behavior with low measuring currents are
given in Sec. IV, and compared with the predictions of
Sec. III. The current dependent behavior is considered
experimentally and theoretically in Sec. V. Section VI
contains a summary, and a discussion of some open ques-
tions.

II. EXPERIMENTAL METHOD

The samples were very narrow In strips (i.e., wires),
which were fabricated using a lithographic method de-
scribed in detail elsewhere. ' ' First, ion milling is used
to produce a vertical step in a substrate; in the present
work the substrates were glass. Second, a metal film, in
this case In, is deposited so as to cover the step. The film
is then milled at an angle so that the metal on the "verti-
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cal" edge of the step is in the shadow of the milling beam.
The In films were produced by thermal evaporation with
the substrates held at 77 K. Cooled substrates were em-

ployed to reduce the grain size of the films. In addition,
the films were also exposed to a low partial pressure of 02
while they were warmed to room temperature, as this has
been found to reduce agglomeration. ' The films varied in
thickness from 300—1000 A. Examination with a scan-
ning electron microscope (SEM) indicated a grain size of
&100 A. The normal-state resistivity varied systemati-
cally with film thickness, and was 4 pQ cm for the thick-
est films and 12 pQ cm for the thinnest ones. The wires
had approximately the same residual resistance ratios
(i.e., ratio of the room-temperature and low-temperature
normal-state resistances) as codeposited films, indicating
that they had similar resistivities. The larger resistivity
found in the thinnest samples is probably due to the in-
creased importance of boundary scattering. The wires
had diameters in the range 400-1000 A, with the thin-
nest wires being made from the thinnest films. The sam-
ple cross sections were approximately right triangular,
and the diameters we quote correspond to &o, where o.

is the cross-sectional area. Selected samples were exam-
ined with an SEM, and were found to be very similar in
appearance to Au-Pd wires which have been described in
great detail in Refs. 14 and 15. The wire diameters ap-
peared to be uniform to within typically 100 A or better,
which was near the resolution limit of the SEM.

The measurements were performed in a He cryostat of
standard design, in which the sample was mounted on a
thermally isolated copper block which was enclosed in a
vacuum can. The cryostat was enclosed in a p-metal
shield to reduce the ambient magnetic field, although this
was found to not affect the results.

Essentially two different types of measurements were
performed. The first was a simple measurement of the
resistance as a function of temperature. A battery-
powered current supply was employed, and the sample
voltage was measured with a digital voltmeter, ' which
was in turn monitored by a microcomputer. Since effects
due to outside noise can be a major problem in experi-
rnents of this kind, the following precautions were em-
ployed. All four sample leads passed through rf filters lo-
cated at room temperature at the top of the cryostat.
Large (10 0) metal-film resistors located in the vacuum
can and at the sample temperature, were placed in series
with the samples to provide filtering at low frequencies.
In some experiments, room-temperature low-pass filters
were also installed, but these were found to have no
significant effect. On occasion a low-noise battery operat-
ed preamplifier' was used to provide additional isolation
from the digital voltmeter, and the results were the same
as with the arrangement described above. The currents
used in these measurements of the resistance as a func-
tion of T were always much less than the critical current,
and it was possible to employ currents sufficiently small
that the resistance was independent of the measuring
current. We also performed several types of measure-
ments as a function of current. These include standard
voltage-current measurements, and also measurements
(which will be discussed in more detail below) in which

A. Phase slip by thermal activation

The basis for essentially all of the theoretical discus-
sions in this paper is Ginzburg-Landau (GL) theory. In
one dimension the GL free energy can, in situations in
which the state of the system is not changing with time,
be written in the form' ' '

oH
J —

I
el'+-'l@l' dz,

az
(3.1)

where H, is the critical field, and g is the coherence
length. The GL order parameter can be written as
P=f exp(iP) Ne.ar T„H, and g vary as H,
=H,o(AT/T, )'~, and (=(0(b T/T, ) ', where
b, T—:( T, —T). Note that in (3.1) the distance along the
system z is measured in units of the coherence length, and
we have also assumed that the vector potential is zero,
which is justified because of the small diameters of the

systems we will consider. The stable and metastable
states of the system are those for which F is a local
minimum. From (3.1), this implies that P obeys the rela-
tion

82~ +(1—y~')q=o
az2

If we impose a constant current, (3.2) has a solution

g=f exp(izz),

(3.2)

(3.3)

where f =(1—a )'~, and a is a parameter which depends
on the current density J through

J=v(1 v)cH, (/+0, — (3.4)

where Co=bc/2e is the flux quantum.
From (3.3) it can be seen that in the presence of a

current, this solution for g can be viewed as a helix cen-
tered on the z axis, with the real and imaginary parts of P
being the transverse "directions" of the helix. ' This
helix becomes wound more tightly as J is increased. Fol-
lowing LA and MH we impose periodic boundary condi-
tions on f, which restrict ~ to discrete values 2m.n /L,
where n is an integer, and L is the length of the system.
Hence n is the number of loops in the helix. From (3.3)
and (3.1) one can show that the GL free energies of these
states are

oPHc (1—a )

4m 2
(3.5)

the response of the sample to a time-dependent current
was measured. In these cases, the sample current was
controlled by the computer, and the voltage was mea-
sured using the preamplifier in conjunction with the mi-
crocomputer. The same shielding and filtering as de-
scribed above was employed (but without the room tem-
perature low pass filters).

While great care was taken to isolate the samples from
room-temperature noise, this does not guarantee that the
effect of this noise was negligible. Possible effects of such
noise will be discussed further below.

III. THEORY: BEHAVIOR AT LOW CURRENTS
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bFu =&2H, (tr/3n, (3.6)

which apart from a numerical factor is the same as
Little's result.

It is also important to consider the effect of J on the
free-energy barrier. In the presence of a dc current there
is a J-dependent shift of the free energies of the current-
carrying states, (3.5). This causes a "tilt" in the free-
energy diagram, resulting in the well-known washboard
potential, shown in Fig. 1. The free-energy difference
between two adjacent minima in F, i.e., minima that de-
scribe states g which are separated by hn =+1, is given
by

b,FI =+@ocrJ/c . (3.7)

The free-energy barrier that must be surmounted for a
variation of 1( which reduces the current is KFD b,FI/2, —
while for a variation that increases J one has a barrier
b,FO +b FI /2.

With this picture of the free-energy landscape in mind,
the thermal activation model of phase slippage can be ex-
pressed as follows. For a constant current, the system is
described by a helix with a certain number of phase
loops. Continuous variations of tP that add or remove a

LA showed that for each of the states (3.3) the free en-

ergy is a local minimum in g space, and thus if one is to
pass continuously from one of these minima to an adja-
cent one, it is necessary to pass over a free-energy barrier.
This process corresponds to addition or removal of a sin-
gle phase loop from the P helix, and is referred to as
phase slip, since it changes the phase of 1(. Little' es-
timated the height of this barrier qualitatively from the
following argument. If one assumes that t}'j must vary
continuously, the only way one can change the value of n,
i.e., add or remove a phase loop, is to have the magnitude
of g go to zero. Little argued that this would occur in a
localized region of space, and since P cannot vary appre-
ciably over distances less than g, the lowest energy fluc-
tuation of this type is one in which ~1( ~

vanishes, i.e., the
system becomes "normal, " over a length of order g.
Since the condensation-energy density is of order H„and
ger is the volume of the fluctuation region, the energy
cost for such a fluctuation to the normal state is H, go.
LA considered this process in more detail, and found that
in the limit J~0 the free-energy barrier is given by

loop involve passing over the free-energy barriers already
described. From the Josephson relation, these variations
yield a voltage

GAP

2e Bt
(3.8)

where b,P is the phase difference across the system and
6 V is the voltage difference. If the system starts in one of
the minima of Fig. 1, then one would expect that thermal
activation will result in transitions out of this state at a
rate

I rA=Q exp[ (KFu+—EFI/2)/kz T], (3.9)

Bg 4m 5F
aH, gr 5f

(3.10)

where we again assume that the vector potential is zero.
Equation (3.10) describes the time-dependent behavior for
small changes of F near a minimum. This behavior is
seen to be purely diffusive, with a relaxation time'

kiri

8k'(T, —T)
(3.11)

%'hile the time independent GL equation has a firm
theoretical foundation and is widely applicable, the time-
dependent theory has, as noted by MH and by many oth-
er workers, a number of limitations. ' It is not at all clear
that this equation describes, even qualitatively, the dy-
namics below T, of a superconductor with a nonzero en-

ergy gap such as In. Nevertheless, we will employ (3.10)
in nearly all of our discussions, although we will also
point out places where limitations of (3.10) appear to be
most serious.

Using (3.10), MH calculated the attempt frequency 0
which enters the thermal-activation rate. In the limit of
low current they find

EFO0= (3.12)

where 0 is an attempt frequency, and the + signs corre-
spond to transitions that increase and decrease the
current, respectively. These transition rates can be con-
verted into a voltage across the system, and hence to an
effective resistance, using (3.8), since each transition
changes P by an amount 2n

It remains to estimate the attempt frequency 0 in (3.9).
The discussion to this point has involved only static prop-
erties, and hence the time-independent GL equation has
been suScient. However, a calculation of the attempt
frequency requires some knowledge of the dynamics.
This problem has been considered by MH, who employed
the time-dependent GL equation, which can be written in
the form '

FIG. 1. Schematic of the "washboard" potential. The bar-
rier height b F and the distance under the barrier 6P are indicat-
ed.

As discussed by MH, this result has a fairly simple inter-
pretation. ~ is the only time scale in the problem, so it is
natural that 0-~ '. A phase slip can occur anywhere
along the system, and since it involves a length of order g,
there are roughly L /g different places where a phase slip
can occur, hence one expects Q-L/(gr '), as found in
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(3.12). The last factor in (3.12) is not as obvious, but is

typically of order unity, so it does not have a large afFect

on the magnitude of Q.
Combining (3.9) and (3.12), the resistance below T,

can, in the low-current limit, be written as ' ' '

+pQ
R z~ = exp( UFO—/kz T),TA (3.13)

where Ii =ksT/40. Near T„UFO goes to zero as

(AT) ~, and since this factor enters in the exponent in

(3.13), it dominates the temperature dependence of RrA.
It is important to note that the result (3.9) and hence
(3.13) is only applicable when b,FO)&ka T, due to limita-
tions involved in deriving the basic thermal-activation re-
sult (3.9). Since UFO vanishes at T„ this means that
(3.13) will not apply very near T, . We should also em-

phasize that these results for the thermal-activation rate
(3.9) and the associated resistance (3.13) apply only for
small currents. The case of currents that are not small
will be considered in Sec. V.

The prediction (3.13) of the thermal activation model
has been tested in several experiments. Most of these
experiments have involved samples with diameters in the
neighborhood of 5000 A, and the results are generally in

good agreement with the thermal activation theory.

B.Phase slip by quantum tunneling

av
m j+qj+ =F,„, , (3.14)

where q is the spatial coordinate of the particle, m is its
mass, V is the potential energy, F,„, is the force acting on
the particle, and g is a damping parameter that arises

As we will see in Sec. IV, our results indicate that the
thermal activation model does not provide a complete
picture of the observed behavior, and that some other
mechanism for phase slippage dominates at temperatures
more than a few tenths of a degree below T, . Mooij and
co-workers have suggested that phase slippage could
occur via quantum tunneling. This process would be
analogous to the macroscopic quantum tunneling (MQT),
which has been studied a great deal in recent years in
connection with tunnel junctions, superconducting
quantum-interference devices, and other systems. We
will therefore refer to this mechanism for phase slippage
in our system as MQT. To the best of our knowledge, the
only theoretical treatment of MQT in a one-dimensional
superconductor is that of Saito and Murayama. Howev-
er, that theory considers only the behavior for T=0, and
is therefore not applicable to our experiments. While
there is no detailed theory of phase slip by MQT in a
one-dimensional superconductor in the regime relevant
for our work, one can to some extent work from analogy
with the situation in tunnel junctions to construct semi-
quantitative predictions for this case.

The behavior of a tunnel junction is analogous ' '

to the motion of a damped particle moving in a potential
like that shown in Fig. 1. In this case the equation of
motion is

from the interaction of the particle with its environment.
The behavior of a particle described by (3.14) has attract-
ed a great deal of theoretical attention recently, and the
rate for tunneling from one metastable minimum to an
adjacent one has been shown to in general be a complicat-
ed function of the damping, temperature, etc. ' For
simplicity we will consider only the lowest-order results
for the tunneling rate in two limits, underdamped and
overdamped. In both cases, the tunneling rate can be
written in the form ' '

I M()~= Ae
—B (3.15)

where A and 8 are parameters that we now discuss. It
has been shown that in the limit of weak damping '

1/2
' 1/2

Vp cop 8= 7.2Vp

i6COp
(3.16)

where Vp is the barrier height, and mp is the frequency for
small oscillations of the particle about the free-energy
minimum. If the damping is strong, one has instead

1/2

~=S&6~ '" ' a=
%cop

'
9A

(3.17)

where r) is the viscosity [see (3.14)], a=7)/2m~0, and 5q
is the distance that the particle must tunnel under the
barrier.

Let us now return to our equation of motion, the time
dependent GL equation (3.10), in order to identify quanti-
ties such as g, etc. One immediately sees that it is not
possible to make a strict analogy between our problem
and that of a particle moving in a potential according to
(3.14). The difficulty is that the equation of motion (3.10)
is purely difFusive, and thus has no mass term. Hence, it
is not possible to use (3.10) to deterinine quantities analo-
gous to m and cop, which play a key role in the predic-
tions for the tunneling rate, (3.16) and (3.17). We must
therefore proceed phenomenologically, but before we do,
it is important to note that the shortcomings of (3.10)
with respect to this problem do not necessarily imply any
fundamental difficulty with the analogy. That is, there
may still exist a close analogy between a one-dimensional
superconductor and a particle moving in a washboard po-
tential. There have in recent years been a number of
theoretical treatments of the dynamical, i.e., nonequilibri-
um, properties of superconductors, and the existence of a
variety of propagating modes has been amply demonstrat-
ed, ' ' both theoretically and experimentally. This sug-
gests that an equation of motion with a mass term, as in
(3.14), could well be appropriate for our problem. Hope-
fully this question will attract theoretical attention in the
near future.

Returning to the problem of making a qualitative esti-
mate of A and B, we first consider the underdamped case.
It is clear that we must identify AFp with Vp, the prob-
lem is how to choose cop. Since ~ is the only time scale in
time-dependent GL theory, a natural choice is to identify

' with cop. We emphasize that there is no fundamental
justification for this choice [although a similar result was
found for 0 in (3.12)]; theoretical guidance here would be
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most welcome. In any case, with these choices for Vp

and cop one finds

1/2
' 1/2

A =12 2' fi~

7.26Fp~B= (3.18)

1 8 V
COp-

m ()q2
(3.19)

When the washboard is tilted such that the barrier in Fig.
1 is small, the potential is well approximated by a cubic
form, '

3

Let us next consider the situation for strong damping.
Here we again identify EFp with Vo, and ~ with cop.

We must now also deal with 5q, g, and m. The distance
under the barrier is, from (3.10), analogous with 5$, since
this is the "distance" that our system tunnels. The dis-
tance between metastable minima in Fig. 1 is hP-2n, so
we estimate 5$-1. Comparing the time dependent GL
equation with (3.14), we see that oH, (r/4m plays the
role of rI, so we have r1=35For/4+2. Estimating m is
again a problem. However, given that we have already
identified ~ ' with coo, we can use the fact that the fre-
quency for small oscillations in Fig. 1 can be written as

' 1/2

Putting all of these results together, our arguments
suggest that quantum tunneling should proceed at a rate

1 /2
AFo AFp

MQT Pi
&

exp —
Pz &, (3.23}

A~
I

where the factor L/g has been inserted since it is the
number of independent locations along the system at
which a phase-slip event can occur [the same factor is
present in (3.12)]. The factors p, and pz in (3.23) are con-
stants that can be obtained from either (3.16) or (3.22),
depending on whether the system is underdamped or
overdamped. In analogy with the case for thermal ac-
tivation, (3.23) leads to an effective resistance at low
currents which is given by

' 1/2
@oPiP2r L EFo EFo~

exp —
P2 . (3.24)

In general, we would expect that both thermal activation
and quantum tunneling could take place. Assuming that
they occur in parallel, the total resistance would then be
the sum of (3.13) and (3.24).

IV. TEMPERATURE DEPENDENCE
OF THE RESISTANCE

V= —", Vp
q

qp qp
(3.20)

A. Results

27 Vo 276 For

2cop 2
(3.21)

where we have also used our earlier results for Vp and ~p.
From (3.21) we find a= 1/36&2, independent of temper-
ature, and this leads to

1/2

A= 8&2 ~Fo ~ ~Fo&B=
(36% 2) /z biz 6v'2

(3.22)

In our earlier work, ' we derived A and B in the over-
damped limit with the assumption that a was a constant.
We see now that this assumption is equivalent to the
identification of ~ with cop. Hence, the approach used
here is equivalent to the one used in our previous
analysis.

It is interesting to compare the results for the tunneling
rate in the underdamped and overdamped limits. We see
from (3.18} and (3.22) that aside from some numerical
factors, the parameter A is the same in the two cases.
Most importantly, the temperature dependence of A is
precisely the same in the two limits. In addition, apart
from a numerical factor of order unity, B is the same in
the two limits. That this would turn out to be the case
was not at all obvious from our initial assumptions. It
also leads one to hope that the conclusions drawn from
the analysis below may be largely independent of any as-
sumptions concerning the strength of the damping.

where we have assumed that there is a minimum at q =0,
and that the distance under the barrier is qp. Assuming
qo= 1, as above, this leads to 8 V/Bq =27Vo/2. Using
this with (3.19) we find

Pg 'ol
~ p ~&+I'

Isoo

- Iooo

2000— — 500

4.0
I

4. I

I

4.2

0

FIG. 2. Resistance as a function of temperature for a 410 A
wire (points, left hand scale) and a co-deposited film (solid line,
right hand scale). Note that the transition is much sharper in
the film.

As discussed in Sec. II, the samples were fabricated
from thin films; a few films from each evaporation batch
were always kept aside so that their properties could be
compared with those of the wires. A noteworthy proper-
ty of the films was that their critical temperatures were
all well above the standard value for bulk In, which is
=3.4 K. This can be seen from Fig. 2, which shows typi-
cal results for a 410 A wire, and a codeposited film which
was approximately 300 A thick. Previous workers have
also reported critical temperatures for In films that were
well above bulk values. As in our experiments, that
work involved In films evaporated onto cooled substrates.
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The increase of T, in the films has been attributed to
changes in the electron-phonon coupling. Whatever the
cause, this behavior does not appear to be important for
the present discussion. We also note from Fig. 2 that
the transition width of the film is much smaller than that
of the wire, indicating that the effects of inhomogeneities
in the films are negligible on the scale of interest to us
here.

Figure 3 shows some typical results for the resistance
as a function of temperature for two wire samples. To
within the experimental uncertainties, these results are
independent of measuring current, for the currents ern-

ployed (typically -10 A). The larger wire is seen to
have a somewhat narrower transition, and its resistance
vanishes more rapidly below T, than does that of the
smaller wire, whose resistance approaches zero very slow-
ly as the temperature is reduced. It is useful to consider
this behavior on logarithmic scales, as shown in Fig. 4.
Here it is seen that the low-temperature behavior of the
two samples is indeed quite different. In particular, the
behavior of the small sample exhibits an abrupt crossover
at T, —T=0.2 K. Such a crossover is not seen for the
larger wire, although we will argue below that this behav-
ior would be seen if the measurements could be extended
to lower temperatures. Unfortunately, the resistance of
the larger wire at T, —T &0.2 K is below our sensitivity.
We will see later how one can probe the low temperature
region with a different type of measurement.

Returning to Fig. 4, let us now compare these results
with the theory discussed in the preceding section. Con-
sidering first the 745 A sample, the solid line in Fig. 4 is
the prediction of thermal activation theory (3.13), and
was obtained as follows. The theory depends sensitively
on a number of parameters, hence one approach would be
to simply perform a least-squares fit to the experimental
data. However, performing such a fit is complicated by
the fact that the theory is expected to break down when
the transition rate becomes large, i.e., near T„and it is
diScult to know precisely how close to T, one should ex-
pect the theory to be accurate. This and other complica-

I.O

0.6—
X

K

K

O.l-
c

LL

lK

O.ol-

~O
~0

~'

pO

0.00l
-0.8

I

-0.6
I

-04
T-T, (K)

-0.2

FIG. 4. Same data as in Fig. 3, but with a logarithmic verti-
cal axis. The lines are the theory, and are discussed in the text.

tions were encountered in previous comparisons of the
thermal activation theory with data on much larger sam-
ples. " In those comparisons it was found that the quali-
ty of such a fit was relatively insensitive to rather large
variations of the prefactor 0, (3.12), and great care was
necessary in order to make meaningful comparisons with
the theory. In view of all this, and also the fact that our
expression for the quantum-tunneling rate is at best only
qualitative, we will in the following emphasize the quali-
tative features of the data, and attempt to draw con-
clusions which are as model independent as possible. We
have therefore not performed detailed least squares fits,
but rather have chosen to hold many of the relevant pa-
rameters fixed, using estimates based on independent ex-
periments or theory, and have incorporated only a few
adjustable parameters which we now discuss.

In comparing the data in Fig. 4 with thermal activa-
tion theory (3.13) there are two key parameters, 0 and
AFo. These in turn depend on H„g, cr, L, and r. The
cross-sectional area cr and length L can be accurately es-
timated, ' and so are not a problem. We use the standard
expressions for H, and ( [see the discussion in connec-
tion with (3.1)], with the previously measured values of
H, (T =0) and g( T =0), take r from (3.11), and obtain T,
from the measurements on codeposited films (Fig. 2). To
allow for uncertainties in these values and in the theory,
we employ two adjustable factors associated with 0 and
EFo, respectively. In evaluating the theory (3.13) we

multiply 0 from (3.12) by a factor y&, and b,Fo from (3.6)
by a factor y2, so that the prediction then reads

0.2—
400

~'fA 1 1 I exp( 724FO /kg T)—
1

(4.1)

0.0
0.3 0.2

T, —T(K)
O.l

FIG. 3. Resistance, normalized by the normal state value, as
0 0

a function of temperature for a 410 A wire and a 745 A wire.
The smooth curves are simply guides to the eye.

RTA is most sensitive to the value of the exponent, and
this value largely determines the slope seen in Fig. 4.
Changes in the prefactor in (4.1) (i.e., in y, ) shift the
curve in Fig. 4 vertically, but do not change its shape.
The theoretical curve for the large wire in Fig. 4 was ob-
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tained with y, =0.01, and y2=0. 05. These values are
discussed in detail in the Appendix. Here we note that
this result for y2 suggests that the values employed for
quantities such as H, o or go, may be incorrect. This
would not be surprising, given that T, is different from
the bulk value. There is also the possibility that the
values of y& and y2 are affected by the presence of exter-
nal noise, and this will be discussed in Sec. VA. Yet
another possibility is that our choice of T, is not
correct. In fact, a small downward shift of T, would in-
crease the value of yz, by a factor of 2 or more. In any
case, the values of y& and y2 we find are not out of line
with the values of similar parameters which were found
in previous comparisons with thermal activation theory.
One also sees from Fig. 4 that the thermal activation
theory breaks down dramatically near T, . As noted
above, this is expected, and has been observed in previous
work. Changing y, , y2, etc. , does not appreciably affect
the manner in which the theory fails near T, . In spite of
all of these potential complications, we believe that the
important point to note from Fig. 4 is that the results for
the large sample are consistent with the form predicted
by the thermal activation theory.

Figure 4 also shows a comparison with thermal activa-
tion theory for the 410 A sample. We see that thermal
activation theory is consistent with the form found near
T, (although we again see a breakdown of the theory very
near T, ). The values of y, and y2 used in evaluating
thermal activation theory for the small sample were 1

and 0.3, respectively, so the quantitative agreement with
(3.13) is again satisfactory (and in fact better than for the
larger wire, since y, and yz are closer to unity). Return-
ing to Fig. 4, we see that for the small sample when

T, —T=0.2 K the results deviate qualitatiuely from the
prediction of thermal activation theory. We emphasize
that the thermal activation expression (3.13) is not cap-
able of exhibiting the change in slope seen at T, —T=0.2
K in Fig. 4. These results therefore indicate that there is
some other mechanism for phase slippage in this region,
and we now consider if the quantum-tunneling prediction
(3.24} can explain this behavior. The dashed line in Fig. 4
shows the prediction of a sum of the resistances (which is
simply proportional to a sum of the phase-slip rates) due
to thermal activation and quantum tunneling. The idea
here is that thermal activation dominates near T„while
quantum tunneling is important at lower temperatures.
In comparing with the quantum-tunneling expression
(3.24}, we have treated the parameters p, and p2 as ad-
justable. The values of these parameters needed to obtain
the dashed curve in Fig. 4 are given in Table I, and will
be discussed below. The point we wish to emphasize
here is that the overall qualitatiue behavior seen for the
small sample in Fig. 4 is in good agreement with the form
predicted by a theory which includes both quantum tun-
neling and thermal activation. The crossover seen at
T, —T=0.2 K is thus due to a change in the dominant
phase-slip mechanism, ' thermal activation at higher tem-
peratures and quantum tunneling at lower temperatures.

The behavior found in Fig. 4 has been observed in a
number of different samples. Results for several addition-

ap2T
T —T-

e (4.2)

Hence we would expect to observe a crossover from
thermal activation near T, to quantum tunneling far
from T„at a temperature given by (4.2), and this is
indeed seen in Figs. 4 and 5. In addition, (4.2) shows that
the crossover from thermal activation to quantum tunnel-
ing should occur at a temperature which is independent
of the size of the sample. Hence, we would expect to find
this crossover in all samples, including the large one in
Fig. 4, and also the much larger samples studied in previ-
ous work. The reason this crossover is not seen in the
large wire in Fig. 4 is that the resistance at the crossover
temperature is extremely small, well below our sensitivi-
ty. Thus while we expect that quantum tunneling should
also take place in very large samples, a simple resistance
measurement is not always the easiest way to observe it.
We will return to this point below.

This consideration of the exponential factors that dom-
inate the transition rates also shows clearly why the rates
of thermal activation and quantum tunneling have
different temperature dependences. The temperature
dependence of the thermal rate is essentially just
exp( b,Folks T), wh—ile that of the quantum tunneling
rate is exp( EFo/R~ ').—Since b,FO-(b, T) ~ and
~-(AT) ', it is clear that quantum tunneling will have a
weaker temperature dependence than thermal activation.
This is the reason for the crossover seen in Figs. 4 and 5.

B. Potential experimental problems

We have shown that the results of our resistance mea-
surements are consistent with the mechanism of quantum
tunneling already outlined. At this point it is worthwhile
to consider several potential experimental complications,
which one might imagine could lead to similar results.

First, one must consider the effects of external noise.
Even though great care was taken in filtering the sample
leads, it is very difficult to know if one has really elirn-

inated all effects of outside noise. This is an especially

al samples are given in Fig. 5, and Table I lists the corre-
sponding values of the parameters y„yz, p„and p2,
which were found to yield good agreement with the
theory (e.g. , the solid curves in Fig. 5). It is seen from
Table I that the barrier-height parameter y2 seems to be-
come smaller as the wire diameter is increased. The
reason for this trend is not completely clear, but it could
easily be due to small systematic errors in our choice of
parameters such as T, .

Let us now consider the crossover from thermal activa-
tion to quantum tunneling. Comparing the thermal and
quantum-tunneling transition rates, (3.9) and (3.23),
we see that the former is proportional to
exp( y2b, Fo—lk&T), while the latter is proportional to39

exp( yg25—Folfi7 '). The prefactors are also similar
(though not identical), but since the exponential factors
dominate, we will only consider them here. With this ap-
proximation the transition rates are equal when k~ T is of
order fi~ . Using (3.11) this condition can be written as
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FIG. 5. Resistance, normalized by the normal state value, as a function of temperature for several samples. (a) 420 A sample; (b)

4S5 A sample; (c) 1010 A sample. The lines are the theory, taking into account both thermal activation and quantum tunneling, as

discussed in the text.

severe problem in experimental studies of thermal activa-
tion and macroscopic quantum tunneling in tunnel junc-
tions and similar systems. However, one would not
expect external noise to inAuence the qualitative behavior
seen in Figs. 4 and 5 for the following reason. The energy
barrier EFO becomes larger as T, —T increases. The
external noise level (if indeed any is present) should be
roughly independent of temperature (over the relatively
narrow range of interest to us here), hence the effects of
such noise should be largest near T, . This is the regime
where thermal activation dominates, and the thermal ac-
tivation form describes the experiments fairly well, sug-
gesting that external noise is not a major problem. At
low temperatures where quantum tunneling is important,
the energy barrier is much larger, and thus the relative
size (and efFect) of any external noise would be much
smaller. It therefore appears that spurious noise is not re-
sponsible for the low temperature behavior, which we
have attributed to quantum tunneling. Note that argu-
ments of this kind cannot be used in analyzing the effect
of noise on tunne1 junctions, since in that case the barrier

height is constant (in the range of interest), and quantum
tunneling becomes important only at very low absolute
temperatures. The effects of external noise will be dis-
cussed further in Sec. V A.

Another concern is sample homogeneity. As we have
noted in Sec. II, electron microscopy indicates that the
degree of homogeneity is similar to that of Au-Pd wires
made with the same technique, which have been em-
ployed extensively in studies of localization and electron-
electron interactions. ' ' Sample inhomogeneity does
not appear to have been a problem in those experiments.
Nevertheless, it is worth considering what effect inhomo-
geneities in the cross-sectional area would have in the
present work. There will always be places along a sample
at which the cross-sectional area is smaller than the aver-
age value. The energy barrier AFo will be smaller at
these locations, since it is proportional to o.. The rate of
phase slippage, due to either thermal activation or quan-
tum tunneling, depends exponentially on EFo, so the
phase slips will occur preferentially at these 1ocations.
Such behavior is unavoidable, but it will not affect the
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qualitative form of the resistance. Assuming that the in-

homogeneity is not too large, the barrier height will be
approximately the same as that calculated from (3.6) us-

ing the average cross-sectional area. However, the at-
tempt frequency (3.12) and also the prefactor for the
quantum tunneling rate (3.23) will in this case not be pro-
portional to the length of the sample, but rather will scale
as the number of sites at which phase slippage occurs.
Hence, the factors of L /g in (3.13) and (3.24) will be re-
placed by temperature independent constants of order
unity. Since the temperature dependences of the transi-
tion rates are dominated by the exponential factors, this
change will have very little e6'ect on the theoretical
curves in Figs. 4 and 5, although it will lead to values of
y, and P, that are less than unity.

From this discussion we conclude that these potential
experimental complications are not capable of accounting
for the behavior we have attributed to quantum tunnel-
ing.

V. BEHAVIOR AS A FUNCTION OF CURRENT

A. Overall behavior

Figure 6 shows some results for the voltage V as a
function of current for a 720 A wire. In these measure-
ments the current was increased continuously starting
from zero, and the sample is seen to switch abruptly into
the finite-voltage state. It has been shown ' ' that mea-
surements of the current at which this switching occurs
can be used to determine the transition rate of the system
out of the free-energy minima in Fig. 1. The basic idea
can be understood by considering again the washboard
potential (Fig. 1). An applied current acts to tilt the
washboard, and hence reduces the energy barrier for
transitions to states corresponding to smaller currents. If
the current is gradually increased, the system becomes
absolutely unstable to phase slip at the critical current,
I„' at this point the minima in Fig. 1 become inflections
in the free-energy curve. However, for currents just

below I„the energy barrier is very small, and before one
reaches I, it is possible for a thermal fluctuation, or a
quantum-tunneling event, to carry the system over, or
through, the reduced energy barrier. Hence this first
phase-slip event will occur before I, is reached. If the
system is su%ciently underdamped, it will maintain
enough "kinetic" energy to pass over succeeding barriers.
It will thus move continuously down the washboard,
which corresponds to being in the finite voltage state. A
thermal fluctuation, or quantum tunneling, event will be
a stochastic process, so the value of I at which the first
phase slip occurs will be distributed over some range. By
measuring this probability distribution, P (I), one can use
the known dependence of the potential on I to obtain the
transition rate as a function of I.

The discussion in Sec. III was concerned only with the
case I~O; the results quoted there do not yield any in-
formation concerning quantities such as the energy bar-
rier and attempt frequency for currents near I, . This
case was considered by LA and MH, and their results
will be discussed below. However, we will first consider
the experimental results for P (I).

Measurements of the distribution P (I) are straightfor-
ward, and were performed as follows. ' ' Starting from
zero, the current was increased at a constant rate, and the
sample voltage was monitored continuously. When V ex-
ceeded a certain trigger level (typically 1 mV), the value
of I was recorded. The current was then reset to zero,
and the process repeated many times. In previous mea-
surements of this kind for tunnel junctions, ' typically
10 or more switching events were recorded, a process
taking anywhere from a few minutes to the order of an
hour or more. However, in our experiments it was found
that there was a small but non-negligible amount of Joule
heating when the sample switched into the finite voltage
state, and it was necessary to wait for a period of time

80
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FIG. 6. V-I measurement for a 720 A wire.

l5 0

FIG. 7. Distribution of I, as a function of I for a 720 A sam-

ple at T=3.502 K (T, =3.733 K for this sample), for three
different sweep rates as given in the figure. The lines are guides
to the eye.
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for dI/dt -I as a function of I„at several temperatures,
for three different samples. Figures 8(a) and (c) corre-
spond to fairly large samples that did not exhibit quan-
tum tunneling in measurements of the resistance as a
function of temperature (Figs. 4 and 5), while Fig. 8(b) is
a fairly small sample that did display the signature of
quantum tunneling in the resistance measurements. For
the measurements in Fig. 8 the trigger level was 1 mV
(compare with the V Icu-rves in Fig. 6), but the results
were essentially independent of the trigger level, for any
reasonable choice. It is seen for all of the samples that at
the highest temperatures (i.e., near T, ) I, is fairly insensi-
tive to the sweep speed, as would generally be found for a
system with a "well-defined" critical current. However,
for the large samples at the lowest temperatures one sees
that I, is a strong function of sweep speed. That is, I is a
relatively slow function of I.

To check that the results in Fig. 8 were not due to
some experimental artifact, the effects of shielding and
isolation were again investigated, and did not appear to
be a problem. Measurements of this kind were also per-
formed with thin In films, such as the one considered in
Fig. 2, and in that case I, was essentially independent of
sweep speed; i.e., the curves were almost exactly vertical
in plots like those in Fig. 8. This all suggests that the be-
havior seen in Fig. 8 is not due to an experimental prob-
lem, such as extraneous noise. Indeed, the magnitude of
outside noise would not change appreciably with temper-
ature, and since the energy barrier is smallest near T„we
would expect noise to have a much larger effect near T„
and hence not lead to an appreciable variation far from
T, as found in Fig. 8. It seems safe to conclude that these
results are not an experimental artifact. Further discus-
sion of these results will be deferred to the next section,
where we consider the theoretical predictions for the
transition rates when I & I, .

An important parameter in characterizing our system
is the critical current. Since thermal activation and
quantum tunneling both cause the system to switch to the
normal state at currents below I„ it is not possible to
infer I, simply from the V—I measurements. However,
in the limit of high sweep rates we expect that I,~I, .
Since the data in Fig. 8 indicate that I, saturates in the
limit of large dI/dt, these measurements can be used to
determine I, . Some typical results for I, are shown in
Fig. 9; these values were obtained by estimating the limit-
ing value of I, for large dI/dt from Fig. 8(a). GL theory
predicts that I, is related to the condensation energy, and
hence the energy barrier according to

1/2

I, =~ — -AT,2 0 3/2 (5.1)
3 4O/c

Measurements of I, thus provide an independent check
on the value of bFo. From (5.1), the theory predicts
I, —(T T,), so in Fig. —9 we have plotted I, as a
function of T. The results for I, are seen to be in good
agreement with the predicted temperature dependence
over essentially the entire range studied. This is con-
sistent with previous studies of the range of validity of
GL theory, ' and indicates that the GL temperature

IO

CV

'3.3 3,6 3.7
T(K)

0
FIG. 9. Effective critical current, for a 640 A sample, as a

function of temperature. These results were derived from the
data in Fig. 8(a), as described in the text. The straight line is a
guide to the eye.

3.4 3.5 3.8

dependences for H„g, and the other quantities discussed
in this paper are accurate approximations over the range
of temperature relevant here. The straight line through
the data in Fig. 9 can be extrapolated to obtain an esti-
mate of T, . From Fig. 9 we find T, =3.743+0.010 K,
which compares favorably with the value
T, =3.733+0.005 K found for the codeposited film (and
which was used to obtain the values in Table I).

The results for I, can be used to estimate the magni-
tude of EI'o, and thus provide a check on the value of y2
obtained in the analysis of the resistance for I—+0. When
the results from Fig. 9 are expressed in terms of the di-
mensionless parameter yz, (4.1), we find y2=0. 6 for this
sample. This is about a factor of 8 larger than the value
found for this particular wire from the comparison of
thermal activation theory with the resistance at low
currents (sample 4 in Table I). The results for other sam-
ples sho~ed some~hat closer agreement, with the
difference being typically a factor of 2 —4. The reason for
this discrepancy is not entirely clear. It does not appear
to be due to theoretical approximations. In particular,
previous work ' has demonstrated that the absolute
magnitude predicted by the GL expression for I„(5.1), is
accurate for samples of this size, and in this temperature
range. The fact that the results for I, indicate that
yz=0. 5 for nearly all of our samples implies that the
theory (5.1) works fairly well in this case, especially when
we allow for uncertainties in H„g, etc. As noted above,
the value inferred for y2 from the resistance measure-
ments depends somewhat on the assumed value of T„
and a relatively small reduction of T, could easily in-
crease y2 by a factor of 2 or more, which would eliminate
the discrepancy for most samples. Another possible
reason for this discrepancy is the following. If a small
amount of noise from higher temperatures reaches the
samples, this would be manifest as an increased effective
(i.e., noise) temperature, which would enter the denomi-
nator of the exponent of the thermal activation expres-
sion (4.1). This would lead to an erroneously small value
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of y2. The noise temperature would have to be =15 K,
and it is hard to rule out such an effect. Indeed, such be-
havior has been observed in previous work on tunnel
junctions. ' This would provide a natural explanation for
the lower than expected values of yz in Table I. We
should emphasize that the presence of this noise (if
indeed this is the correct explanation of these observa-
tions) would not affect our conclusions concerning the im-
portance of quantum tunneling, although it would, of
course, affect the values of the parameters in Table I.
Since we have concentrated on the quaIitative behavior of
the resistance (i.e., in Fig. 4}, none of our conclusions
concerning the interplay of thermal activation and quan-
tum tunneling would be altered.

B. Theory

( 1 3K2) l/2—8v(1 —x )tan
&2x.

. (5.2)

The parameter a was defined in (3.4), and is a function of
I. When I~I„ir~ 1/&3. The corresponding attempt
frequency is

Q = (1—v'3g)' (1+v /4)(bFc/ks T)2~'"gr

(5.3)

which yields the thermal activation rate

I T~=Q exp( b,F Ik&T) . — (5.4)

Note that in the actual comparisons of the theory with
our results we have inserted the parameters y &

and y2 in
(5.4), in analogy with (4.1).

An analysis of the results for I~I, requires a con-
sideration of how the thermal and quantum tunneling
rates vary with I. The behavior of I T„was worked out
in detail by LA and MH. When the current is large, one
need only consider transitions to states that lower AP.
This is in contrast to the situation for low currents [i.e.,
(3.9)] in which one must consider fluctuations that in-
crease and decrease hP. For transitions to the state of
lower free energy one finds '

aH E
QF — ~

( 1 3 2)1/2
8m. 3

ig )i= & I[(1+g ) +3(1—3~ ) ] / —(I+g~)I (5.5)

The height of this barrier is b,F, which vanishes as
I~I, . In this hmit we would expect the shape of the po-
tential to approach the form (3.20), and with this assump-
tion the distance under the barrier is

b,F
(5$)c v 2ig, ti'/~ bF0

' 1/2

(5.6)

where (5$)0 is the thickness of the barrier in the limit
I~0. The factor &2 in the denominator of (5.6) is need-
ed for normalization, since ie„i~—,

' as I~O. The other
parameter that enters B, (3.17), is ri. This quantity fol-
lows directly from the equation of motion, (3.10); it does
not depend on the shape of the potential, and hence
should be independent of I.

We next consider the parameter A, (3.17). The argu-
ments given in Sec. III implied that a is a constant, and
since it is a ratio of parameters that derive from the equa-
tion of motion, we expect it to remain unchanged. The
barrier height that enters (3.17) is already known from
b,F, (5.2}. It then remains to estimate the frequency for
small oscillations about the minima of the potential, cop.
For a potential of the form (3.20), the magnitude of the
curvature at the bottom of the well is the same as that at
the top of the barrier [e.g., (3.20)], which yields

COp V E i (5.7)

To obtain the quantum tunneling rate at finite currents
it is necessary to generalize our previous results for the
parameters A and B in (3.16) or the essentially equivalent
(3.22). Given that our previous results for these parame-
ters were only qualitative at best, we are now proceeding
in a doubly qualitative manner. In the following we will
use the language and results appropriate for the over-
damped case, namely (3.17) and (3.19)—(3.22), although
assuming that the system is underdamped would not
yield any qualitative differences. [Note that MH theory
(5.3) corresponds to thermal activation in the over-
damped limit. ] If we first consider B, (3.17), it is neces-
sary to consider how the distance under the barrier 5$
varies as a function of I. Using the results of MH, the
magnitude of the curvature at the top of the barrier is
proportional to

i e,|i
'/, where their parameter e, &

is
given by

TABLE I. Results for the parameters y, , y&, P&, and P2, obtained from comparisons with the theory,
as in Figs. 4 and 5. Note that when P|=0 the results are independent of P,, hence no value for P2 is list-
ed in those cases.

Sample 0' (A)

410
420
485
640
745

1010

1

1

3
0.03
0.03
0.02

r2

0.22
0.43
0.18
0.07
0.035
0.05

0.003
0.006
0.003
0
0
0

0.055
0.035
0.05
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Collecting these results the quantum tunneling rate is

given by (3.15}with

(5.8)

where Ao and 80 are the values of A and B in the limit
I~0, from (3.22). When comparing this prediction with
the experiments we will again insert the parameters p,
and Pz, as in (3.23).

C. Comparison of theory and experiment
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FIG. 10. Calculated transition rates for thermal activation
(solid lines) and quantum tunneling {dashed lines). The parame-

0
ters were appropriate for the 640 A sample considered in Fig.
8(a), and are given in the text.

The next step is to compare the transition rates (5.4)
and (5.8} with the results in Fig. 8. Given the highly
qualitative nature of the model developed in the preced-
ing section, we will consider if the qualitatiue features of
the results can be accounted for by the model. With this
in mind, we plot as the solid curves in Fig. 10 the predic-
tion (5.4) for the thermal activation rate, while the dashed
curves are the quantum tunneling theory, (5.8). The pa-
rameters cr, etc. , are appropriate for the 640 A sample
considered in Fig. 8(a}, and we have used the parameters
y, = 1, y2=0. 6, P, =0.003, and Pz=0.05. This value of
y, amounts to using the theoretical prediction for Q
The value of y2 was chosen to obtain agreement with the
results for I, (Fig. 9), while for P, and P2 we have used
the values obtained from the fits to the resistance, Table
I.

From Fig. 10 we see that the transition rate predicted
by the thermal activation model, I TA, is a very strong
function of I. It changes several decades for only a few
percent change of I. We showed above that the results in
Fig. 8 can be viewed as yielding the total transition rate I
as a function of I, and hence the results in Fig. 10 can be
compared directly with Fig. 8(a). We see that the varia-
tion of I TA with I predicted by the thermal activation
model is much faster than found in Fig. 8(a). For exam-
ple, at T=3.438 K, the experiments show that for a 3
orders of magnitude change of I, I changes by about

30%, while in Fig. 10 the change in I is much less. For
no choice of parameters does the thermal activation pre-
diction yield behavior even qualitatively similar to that
seen experimentally.

From Fig. 10 we also see that the transition rate pre-
dicted by the quantum tunneling model I M&I varies
much more slowly with I than does I TA. As discussed in

Sec. V A, experimentally we have I =(dI/dt ) l5I, in Fig.
8. Since 5I, -0.01I, (see Fig. 7), the range of I probed
in Fig. 8 corresponds to I -1—10, which corresponds at
least qualitatively with the calculated values. In this vi-

cinity in Fig. 10 our model predicts a crossover from
quantum tunneling at low currents to thermal activation
at high currents. As with the behavior of the resistance
in the limit I~0 (Sec. IV), this cross-over can be traced
to the different forms of the exponential factors in I TA,
and I M&T. From Fig. 8 we see that this crossover is
clearly observed in the experiments. At the lowest tem-
peratures in Figs. 8(a) and (c) the slope of I -dIldt is
relatively small for low values of I, and becomes larger
as I' increases; this behavior is especially pronounced in
the data at 3.438 and 3.359 K in Fig. 8(a). Hence we
have a crossover from quantum tunneling to thermal ac-
tivation as I increases. This crossover is predicted by the
quantum tunneling model, Fig. 10, and the predictions
are qualitatively consistent with the behavior seen experi-
mentally.

The level of agreement between theory and experiment
for I is much lower than was found in our analysis of the
resistance at low currents. We have not attempted to ad-
just the parameters that enter I so as to obtain any kind
of "best fit." Rather, we have chosen to emphasize the
qualitative behavior of I . We have found that for any
reasonable value of the parameters, the thermal activa-
tion transition rate, I TA, is always a very strong function
of I, and never shows the type of crossover behavior that
is evident in the experimental results. For nearly all plau-
sible parameter values the calculated transition rates
show a crossover from quantum tunneling to thermal ac-
tivation that is qualitatively very similar to that seen ex-
perimentally. We also note that according to the theory,
for the smallest samples this crossover is predicted to
occur at relatively small values of I, which is consistent
with Fig. 8(b) where no crossover is seen in the experi-
mentally accessible range.

While we have not performed any detailed fits, it seems
likely that for some careful parameter choice(s) the model
predictions for I could be made to agree quantitatively
with the experiments. We have found that the value of I
at which the crossover from thermal activation to quan-
tum tunneling occurs can be varied by several orders of
magnitude if the parameters yz and p2 are varied by
reasonable amounts. However, such an exercise does not
seem warranted, since the quantum tunneling model is at
best only qualitative. The point we wish to emphasize
again is that the thermal activation model alone cannot
explain the experimental results. It is necessary to as-
sume that there is some other mechanism for phase slip,
and the quantum tunneling model is qualitatively con-
sistent with the experimental observations.

It is useful to consider how the results for I'(I) in Fig.
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7, and those for I -dI/dt in Fig. 8 compare. We follow
the recent discussion of Iansiti et al. and assume for
simplicity that the transition rate is dominated by a single
exponential factor,

I'(I, ) =ve (5.9)

where v is the attempt frequency, and 6(I) is the ap-
propriate normalized barrier height [for thermal activa-
tion b, (I) is the energy barrier normalized by ks T]. As
discussed in Sec. V A, switching will occur when

PI, )5I, /(dI/dt ) -1,which yields
1/a '

v5I,
b,o dI /dt

(5.10)I =I 1—

where h(I) =b.o(1 I/I, )—. It can also be shown that the
width of the distribution is given by

I —I
5I =a C S

ln[v5I, /(dI/dt )]
(5.11)

VI. DISCUSSION

Equations (5.10) and (5.11) imply that I, and 5I, are, not
surprisingly, related. If we choose a value of 50 such that
I, /I, -0.5, a typical value in Fig. 8, we find from (5.10)
and (5.11) that 5I, -0.02I„which agrees with the results
in Fig. 7 to within a factor of 2. We note that this re-
quires b,o-40, which seems reasonable based on our pre-
vious results, and we have used a= —,

' as appropriate here

[see (5.2)]. Note also that this value of 5I, was used
above to convert the values of dI/dt to I in our discus-
sion of Fig. 8.

a qualitative model of quantum phase slip, based on
analogies with the theory of macroscopic quantum tun-
neling. At present this analogy is incomplete, due to un-
certainties in the equation of motion appropriate for our
case. A quantitative theoretical study of this question
would be most welcome.

So far as we know, the only previous experiments that
have been aimed at observing quantum tunneling in one-
dimensional superconductors are those of Mooij and co-
workers. They interpreted their results in terms of the
thermal activation model, and reported reasonable agree-
ment. However, their samples were somewhat wider
than ours (typically by a factor of 10), and were one di-
mensional only fairly near T, . It would be interesting to
make a detailed comparison of the results of Mooij and
co-workers and the quantum tunneling model.

In conclusion, we again wish to emphasize that our re-
sults certainly do not rule out the possibility that the be-
havior we have observed is due to some hitherto
unidentified phase-slip mechanism, other than quantum
tunneling. However, it does appear that all of our results
are consistent with the quantum tunneling model. It will
be interesting to see if any related quantum effects can be
observed in this system.
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We have analyzed in detail the behavior of very thin In
wires near the superconducting transition. Two types of
measurements have been discussed. We first analyzed re-
sults for the resistance measured with small currents,
I C(I, . For our largest samples it was only possible to
obtain results relatively near T„while for the smaller
samples the behavior could be studied over a fairly wide
range. Near T, the results for the resistance are in
reasonable agreement with the thermal activation theory.
However, at temperatures T, —T~0.2 K the observed
resistance cannot be explained by the thermal activation
model. This suggests that there must be some other
mechanism for phase slip in this region. We have shown
that the behavior is consistent with a model based on
quantum tunneling of the phase degree freedom, similar
to what has been observed in tunnel junctions and super-
conducting quantum-interference devices (SQUID's).
The second type of measurement involves the behavior of
the phase slip rate for currents near I, . We have shown
that these results cannot be explained by the thermal ac-
tivation theory alone. The experiments again imply that
there must be another mechanism for phase slip, and the
quantum tunneling model is again qualitatively consistent
with the experiments. It is noteworthy that the results
for both our large and small samples indicate the presence
of a phase-slip mechanism in addition to thermal activa-
tion. In order to interpret our results we have developed

APPENDIX

Here we consider the values of the parameters y, , yz,
P, , and P2 from Table I. To this point in our analysis we

have not placed much emphasis on the precise numerical
values of these parameters, concentrating instead on the
qualitative form of the quantum tunneling rate. Our ra-
tionale has been that this theory is extremely qualitative,
and hence that the numerical factors should not be taken
too seriously. Nevertheless, it is interesting to consider
these values in a little more detail.

We first consider y, and y2. These parameters multi-

ply, respectively, the attempt frequency and free-energy
barrier in the expression for the thermal activation rate,
(4.1). If the LA-MH theory worked perfectly and our es-
timates of parameters such as T„H„etc., were all accu-
rate, then y, and y2 would both be unity. We see from
Table I that this is not the case. The theoretical predic-
tions are much more sensitive to y2 since it multiplies the
exponent. Variations of the prefactor y &

by a factor of 10
or more can be compensated for by relatively small
changes in y2. In addition, in previous comparisons with
the thermal activation theory reductions of the prefac-
tor by a factor of 10 or more were sometimes required.
Finally, as we noted above, phase slip will occur preferen-
tially at the locations at which the cross-sectional area is
smallest, and that if there are only a few such places the
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value of the thermal activation attempt frequency mill be
significantly reduced. This would be manifest as a value
of y, less than unity. Thus, there are several ways to ac-
count for the observed values of y, .

The values of yz in Table I are also seen to be less than
unity. As discussed above, an independent estimate of y2
can be obtained from the value of the critical current.

0
For the 640 A wire considered in Fig. 9, the value of y2
obtained from I, was =0.6, which is about a factor of 8

larger than inferred from the analysis of the resistance.
For other samples the difference was not as large. For
the 410 A sample the I, data yielded y2=0. 4 while the
resistance data gave y2=0. 22 (Table I}, while for the
1010 A sample the two values were 0.2 and 0.05, respec-
tively. This difference could arise in several different
ways. First, as noted above, a small amount of external
noise could lead to an effective (noise} temperature above
the ambient temperature, and this would act to depress
the value of y2. A noise temperature of order 15 K
would be required, and it is difficult to rule out such an
effect. Note that even if this noise were present, none of
our conclusions concerning the failure of thermal activa-
tion theory, or the relevance of quantum tunneling would
be affected. Another way to account for this discrepancy
would be an error in the choice of T, in the analysis of
the resistance data. As noted above, we used the value of
T, measured for co-deposited films. However, it is possi-
ble that this is not the proper value. Theoretical work
predicts that the presence of disorder should have a
significant dimensionality dependent effect on T, . For

our one-dimensional samples, the theory predicts a
suppression of T, much too large to be consistent with
our results. ' However, it is possible that this mecha-
nism could cause a relatively small downward shift of T,
for the wires, and this would reduce the value of yz in-
ferred from the resistance data. Rough estimates indicate
that this could cause a factor of 2 (or more) change in y2.
Hence, most of the discrepancy could be accounted for in
this way. Again, we emphasize that this would in no way
affect the conclusions we have drawn in this paper.

Let us now consider the values of P, and P2. In our de-
velopment of the quantum tunneling model, we ignored
numerous factors of order unity. We expected P, and Pz
to be of order unity, and it seen from Table I that they
are both somewhat smaller than this. We will first as-
sume that the overdamped limit is appropriate, hence we
will begin by using (3.22). Comparing (3.23) with (3.22)
one finds that if all of the numerical factors in (3.22) are
correct (which we certainly do not claim to be the case),
then P, should be equal to 8&2/(36&2)7~2=1. 2X10
which is much smaller than the experimental values
(Table I). If we use the result for weak damping, (3.16),
we find P) =4.7. Presumably for intermediate damping

P, would lie between these two values, which would be
consistent with the values in Table I. Thus the observed
values of P) seem quite reasonable. Turning to Pz we see
from (3.22} that (again assuming this expression is accu-
rate) pz=m/(6v 2)=0.37, which is reasonably close to
the values found in Table I. Hence, the experimental
values again appear to be reasonable.
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