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We present and study a model for surface fluctuations and equilibrium crystal shapes in solids

with quenched bulk translational disorder but infinitely long-ranged orientational order. Strictly

speaking, such surfaces have no sharp surface phase transition. However, for reasonable values of
the bulk correlation length gs (gs & 30 A should be sufficient), an experimentally sharp "super-

roughening" transition occurs at a temperature TsR. This transition separates a high-temperature
"rough" phase of the surface from a low-temperature "super-rough" phase that, counterintuitively,

is even rougher. Specifically, the root-mean-square equilibrium vertical fluctuation in the position
of the interface (h ) ' diverge like &lnL as the length L of the surface ~ ~ for T & Tsk (just as

in ordered solids for T greater than the roughening temperature T~), while (h') '~~~lnL for
iq (h(x) —h(0}]

T & Ts„. This causes the correlation function C(q„x)—= (e * ) measured in surface-

sensitive scattering experiments (e.g., anti-Bragg x-ray scattering) to go from algebraic decay
—g(q )

—g(q )ln(ixi)
C(q„x) ~ ~x~

* in the rough phase to short-ranged order C(q„x) ~ ~x~
' in the super-

rough phase. The functional dependence of g(q, ) on q, differs from that for fluctuating surfaces of
both bulk ordered solids (above T&) and liquids. We identify an experimentally measurable correla-

tion length gs„ that diverges as T~ TsR as exp[A Ts„ l(Ts„—T)'], where 3 is a constant of order

ln ~gs/a~ and a is a lattice constant. The equilibrium crystal shapes do not have facets in either

the rough or the super-rough phase. At low temperatures in the super-rough phase, however, near-

ly flat regions appear, with a radius of curvature scaling like (fs )

I. INTRODUCTION

After many years of intensive theoretical' study a fairly
clear and complete understanding of the roughening tran-
sition on the surface of crystals has emerged and has be-
gun to be tested experimentally. All of the theoretical
work to date' has been based on a highly idealized mod-
el that assumes that translational correlations in the bulk
crystal are infinitely long ranged. We shall refer to this
idealization as the bulk-ordered crystal. But real crystals
typically have only finite ranged translational correlations
due to the presence of quenched defects of various types
(e.g. , pinned dislocation lines). So, we will consider the
question of what effect this type of disorder has upon the
roughening transition.

In particular, we focus on crystals with infinitely long-
ranged orientational order but only a finite correlation
length g~ for translational order. This would describe,
e.g., single crystals with a random tangle of dislocation
lines quenched in, but with no grain boundaries (i.e., no
sample mosaic). In samples with a small mosaic, our re-
sults will apply up to a length scale comparable to the
size of a single mosaic grain. Our main results are as fol-
lows: (1) Quenched disorder destroys both the low-
temperature smooth phase' and the conventional
roughening transition. However, these are replaced by a
new phase transition at a nonzero temperature TsR and a
new low-temperature phase, which we call the super-
rough phase. (2) As its name implies, the crystal surface
is actually rougher in the low-temperature superrough

phase than in the high-temperature rough phase. (3) The
additional roughness of the superrough phase can be ob-
served experimentally using, e.g. , x-ray diffraction; such
experiments could thereby provide an unambiguous sig-
nature of the super-roughening transition. In addition,
these measurements would also observe clear quantitative
and qualitative effects of the bulk disorder on the correla-
tion functions of the rough phase at T & TsR as well. (4)

Surprisingly, the superroughening transition has virtually
no efFect on macroscopic properties like the crystal shape
and the Wulff plot. ' (5) For large gs, the superrough
transition temperature TsR is near the ordinary roughen-
ing transition temperature Tz of a bulk-ordered crystal
of the same material.

Let us elaborate on these results in more detail.
(1) The super-rough phase owes its existence to the

presence of quenched disorder in the bulk solid. It is im-
portant to realize that the properties of the system would
be totally different if the disorder were annealed (i.e.,
equilibrium); in this case the system would simply be a
(bond orientationally ordered) liquid and there would be
no surface phase transition. The super-roughening tran-
sition is not a "true" (i.e., infinitely sharp in the thermo-
dynamic limit) phase transition either, but its rounding
would only be detectable on length scales larger than

a)~ /a
L, —:g~e, where a is a lattice constant and a is a
constant of order 1. The length scale L, can be enor-
mous even for fairly short (and easily experimentally ac-

O 0
cessible) gz. e.g. , g&=100 A, a =4 A, and a= 1 gives

L, =720 m.
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For length scales L &L„ the behavior of the surface
crosses over to that of an interference pinned by random
bond impurities at all temperatures, with no surface
phase transition. Knowledge of this length scale enables
us to identify a criterion for the optimal value of g~ at
which to study super roughening experimentally. Since

(~ can presumably be "tuned" (roughly) by varying the
sample preparation, such a criterion could prove useful.
The optimal value of g)() is that which maximizes the
number of decades of length scale (over which our theory
is applicable) that can be probed by whatever experimen-
tal technique is being employed. The lower limit of this
range is gz, since, for shorter length scales the bulk looks
ordered and surface fluctuations should be accurately de-
scribed by conventional roughening theory. The upper
limit is the smaller of L, and the maximum length scale
L,„probed by the particular experimental technique be-
ing used (e.g. , in high-resolution synchrotron x-ray
scattering, L,„ is set by the instrumental wave-vector
resolution and is typically —1 —10 (um).

Since L, goes down with decreasing g~, the goal of op-
timizing the experimental window clearly involves a com-
petition between making L, large and g~ small. Since
there is nothing to be gained by taking L, &L,„,the op-
timum is simply given by that value of g)(( that makes

L, =L,„,namely,

g, exp(ag, /a ) =L, .„.
For synchrotron x-ray experiments, taking L =1p,

0
a =4 A, and a=1, this condition gives /&=24 A, and
hence a factor of roughly 400 in length scale over which
super roughening could be observed. Thus the theory we
present here should be eminently testable; indeed, the
biggest practical obstacle may be the manufacturing of
sufficiently dirty crystals (to reach the optimal value of
g~) without destroying the bond orientational order re-

quired for the theory to be valid.
(2) The (rms) height fluctuations (h (r)) '~ [where

h (r) denotes deviations from the average height of the in-
terface at a point r on the surface, ( ) denote a thermal
average, and the bar denotes an average over the
quenched disorder], are given by

V'2
~R( TSR ) &

G0
(1.3)

where G0 is the smallest nonzero reciprocal lattice vector
of the bulk normal to the crystal face under discussion.
By contrast, the value Wz(Tz ) at the pure roughening
transition is universally' W„(TR ) =2/6().

(3) The (long-wavelength) fluctuations of the surface
should be directly observable by surface-sensitive scatter-
ing experiments using either x rays or atomic beams.
Such experiments are exponentially sensitive to fluctua-
tions in h since they measure

iq, [h(x) —h(0)] qCq, ;x =—(e

L =L, (whichever is appropriate at the temperature in
question).

The counterintuitive result that the low-temperature
phase is rougher than the high-temperature phase may be
understood by the following heuristic argument (which is
confirmed by the detailed quantitative calculations we
will present later): At high temperatures (i.e., in the
rough phase) thermal fluctuations kick the surface out of
any "potential wells" (a concept we will make more pre-
cise later when we define our model) that disorder in the
bulk may cause. Therefore, in the rough phase, the
(long-wavelength) fluctuations of the surface largely ig-
nore the bulk; thus at these high temperatures it makes
little difference what state the bulk is in. As a result, sur-
faces of bulk-ordered crystals, bulk-disordered crystals,
and liquids will all have rms height fluctuations with the
same functional dependence on L, namely, (1.2).

At suSciently low temperatures, on the other hand,
the surface becomes "locked" to the bulk. In the pure
problem, such locking smooths the surface. In the bulk-
disordered case, though, locking to the bulk causes the
surface to meander (or fluctuate) more since the favorable
bulk lattice planes (that the surface attempts to follow)
are themselves disordered. This leads to the larger fluc-
tuations given by (1.1).

Unlike the pure problem, ' Wx(T) in (1.2) takes on a
nonuniversal value at T=Ts„; however, this value is
bounded below

(h (r)) '~ = Ws(T)ln(L/a), T(TsR
in the super-rough phase, and by

(h2(r)) = Wz(T)&l n( L/a), T& Tsa (1.2)

As in the bulk-ordered problem, ' in the rough phase of
bulk-disordered crystals this correlation function is ex-
pected to decay algebraically with distance:

C(q, ;x)=I(q, )lxl
" ', T&TsR, (1.4)

in the rough phase, where L is the linear extent of the
surface, and Wz(T) and W„(T) are functions of the de-
gree of disorder as well as temperature. The results (1.1)
and (1.2) apply asymptotically in the limit L, »L »g)((.
Note that in that limit (1.1) is larger than (1.2) regardless
of the values of 8'~ and 8'&, this means, as claimed, that
at any temperature in the super-rough phase the fluctua-
tions are larger than at any temperature in the rough
phase.

For L )&L„the two phases become identical, with the
width (h ) '~ scaling as in the random-bond interface
problem; i.e., (h ) '~2= WRa(L/L, )&, with ' g=—0.5,
and W„t) a constant chosen to match Eqs. (1.1) or (1.2) at

while in the super-rough phase we predict an asymptotic
decay faster than any power:

I(q, )lxl ""', lxl &g,

I(q, ) lxl
(1.5)

Here I(q, ), g(q, ), and rI(q, ) are functions of both tem-
perature and the degree of disorder. Equation (1.4) has
the same form as it would in the rough phase of the sur-
face of a bulk-ordered crystal. However, these two
phases are not identical; the exponent g(q, ) has a
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different functional dependence (on q, ) in the two phases,
as shown explicitly in (3.20) and (3.21) (see also Fig. 1).
We are unable to calculate r)(q, ).

The crossover in (1.5) defines a correlation length in
the super-rough phase, /sit. This correlation length
diverges as T~Tz& as

A
s B P (T T)2/T2

where the constant

A =O((Ta —TsR) /TER)=O(ln (g~/a)) .

The power-law form in (1.4) implies that, in the rough
phase, the surface x-ray structure factor

S(qt, q, )= Jd r C(q, ;x)e

diverges as ~qi~ ~0 for rt(q, ) (2 [which is always
satisfied as q, ~0, see Eq. (3.21)]. In contrast, (1.5) indi-
cates that, in the super-rough phase, S(qi, q, ) is always
finite in the limit ~qi~ ~0; this difference provides a clear
and unambiguous experimental signature of the super-
roughening transition.

(4) Unlike the rich behavior of the correlation func-
tions, the equilibrium crystal shape in the presence of
quenched bulk disorder shows no signature of the super-
roughening transition. In both the rough and the super-
rough phases, there are no flat facets on the surface; the
surface has a nonzero radius of curvature everywhere (see
Fig. 2). However, there is an interesting crossover behav-
ior in systems with a long bulk correlation length: At
low temperature in the super-rough phase, there are large
nearly flat regions on the surface that we call pseu-
dofacets. A quantitative characterization of what we

q(qz) )(

8+ fp(~)/Ca

FIG. 2. The equilibrium shape of a bulk-disordered crystal
for fairly large gs/a at temperatures T well below Ts„. The
surface contains a number of slightly curved regions that we call
pseudofacets (e.g. , the segment of length L in this figure). When

(p( T) gets »a, these pseudofacets start to shrink according to
Eq. (2.3), and are connected to each other by regions whose ra-
dii of curvature are O(L). We have chosen to show the crystal
shape without these (as it would be at low temperatures) for
reasons of clarity.

mean by "nearly flat" is the radius of curvature R of
these regions: As the bulk correlation length ga goes to
infinity (i.e., as the bulk becomes less disordered), this
diverges as

R =Lofti/a,

where L is of order the crystal size. With increasing tem-
perature, this radius of curvature shrinks according to

P

gp(T)

where (p(T) is a correlation length associated with the
pure problem, which diverges at the pure roughening
transition temperature TR & TsR as'

gp( T) = go exp[B /( T/Ttt —1)' ], (1.9)

UGH

where (o=O(a) and B =O(1).
While the radius of curvature of the pseudofacet is de-

creasing, its linear extent lF is shrinking as well, accord-
ing to the same law followed by a facet in the pure
roughening problem'

(q, /Gp)
a (1.10)

FIG. 1. Plot of the dependence of q(q, ) on q, at fixed tem-
perature for liquids, bulk-ordered solids, and quenched bulk-
disordered solids. The dependence is strictly parabolic for all q,
in a liquid, while in a bulk-ordered solid it consists of a periodic
sequence of parabolic segments, with period Go, where Go is the
smallest reciprocal lattice vector of the crystal orthogonal to the
surface. This periodicity reflects the underlying periodicity of
the crystal lattice. In our system, the quenched bulk-disordered
solid, g(q, ) is no longer periodic, but still consists of parabolic
segments joined by cusps which now occur at q, 's that are in-
tegral multiples of Go.

Of course, (1.8) only applies when R &)L; once
(Tp)=O(g~), R -L and the pseudofacet ceases to be

well defined. Thus, from the point of view of the equilib-
rium crystal shape the e6ect of the bulk disorder would
appear to be simply to round the sharp roughening tran-
sition, in much the same way as a uniform magnetic field
rounds the ferromagnetic-paramagnetic transition. How-
ever, as we have seen, the correlation functions still define
a sharp super-roughening transition at TsR ~ T~; there is
no signature of this transition in the equilibrium crystal
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II. THE MODEL

DISORDERED
ROUGH

PURE
ROUGH

In this section we motivate a model Hamiltonian that
should describe lang-wavelength surface fluctuations on a
solid with quenched bulk disorder. We also develop a re-
plicated form of the partition function of the surface,
which enables us to perform quenched averages over the
bulk-disorder systematically. Using this formalism, we
calculate the experimentally measurable correlation func-
tions, and present the renormalization-group recursion
relations.

A. Formulation

0

I I

l I

I I

TETR

FIG. 3. The various regimes of length and temperature ex-

hibiting qualitatively different surface correlation functions.

TsR T~ 1— g
ln (g~/a)

with g a constant of order 1. Hence the temperature win-
dow over which we can see all four behaviors of C(q, ;x)
(pure rough, smooth, disordered rough, and super rough)
with increasing I is quite small (see Fig. 3).

The remainder of this paper is organized as follows: In
Sec. II we present and motivate our model. We also ap-
ply the replica technique to handle the quenched bulk
disorder, derive the connection between replicated and
physical correlation functions, and develop renormal-
ization-group recursion relations for this problem. In
Sec. III we use this machinery to derive the results quot-
ed earlier; in Sec. IV we discuss the crossovers between
pure and bulk-disordered behavior. Appendix A treats
the rounding of the super-roughening transition, while in
Appendix B we calculate the exponent g(q, ) in the bulk-
disordered rough phase.

shape, however.
The temperature-dependent length scales gs„and gp

and the temperature-independent length scale gz break
the length scale I and temperature T plane up into a num-
ber of regions of different behavior of C ( q, ;x ), as illus-
trated in Fig. 3. For lxl

—=1(ga, the bulk looks ordered;
hence we have conventional roughening behavior on the
surface, with the length scale gp separating pure rough
behavior [defined by Eq. (1.4) with r1(q, ) given by its pure
form, Eq. (3.20)] from smooth behavior [C(q, ;x)~
const%0 as lxl —+00]. gp(T) is infinite for T & T„, so we
see pure rough behavior all the way up to g~ at these
temperatures. For length scales & ga, we see the super-
rough behavior described in Eq. (1.5), with gsa character-
izing the crossover from rough to super-rough behavior.

(&) At the super-roughening transition temperature
Tsii, gp( T) -ge (this is another result of our theory); this

implies that Tsa —Tx if ga »a; specifically,

Here G„are reciprocal lattice vectors of the ordered
iP (R)

solid. The functions r1„(R)—=e " describe the transla-
tional disorder and are taken, for simplicity, to satisfy
(complex) Gaussian statistics with range ga:

r1„(R)=0,

r1„"(R)r1„(R')=f R—R'

4
(2.2)

where f (x) is assumed to decay exponentially when its
dimensionless argument x satisfies lxl & 1, and the bar
denotes an average over disorder. Note that the correla-
tion function f (R/gz) is assumed to be a function only
of the ratio R/gs, furthermore, we will assume it is ana-
lytic at R=O. These assumptions, benign though they
seem, are both violated by the real-space correlation
function that leads to a conventional Lorentzian line—R /g~
shape, namely, e /R, as well as by the scaling form
R ' +"'f(R /ge ) taken by correlations near second-
order phase transitions. Nonetheless, it can be shown
that both assumptions are true for any reasonable model
of quenched, as opposed to equilibrium, disorder. We
will discuss this point further in Appendix A. It should
be pointed out that we need not assume that f (R/ge ) is
isotropic in R; indeed in Appendix A we will use the
separable form

f (R/g ) =g ( I
x I /g, )1i (z/g, ),

where R—:(x,z), to analyze the rounding of the super-

We wish to consider solids that have long-ranged
orientational order but no true long-ranged translational
order. The bulk correlation length, g~, which measures
the range of translational correlations is, however, taken
to be much larger than the lattice spacing a. A single
crystal threaded by a quenched random arrangement of
dislocation lines would be an example of such a solid. Of
interest are the interfacial fluctuations of a surface or-
thogonal to an axis of bond-orientational order in the
bulk (i.e., a surface that would have been parallel on aver-
age to a crystal plane had the bulk been ordered).

The disorder in the bulk is described conveniently in
terms of the density deviation from its mean value po,
5p(R) —=p(R) —

po, which is assumed to take the form

iG R iP (R)
5p(R) =Regp„e " e (2.1)
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E =K fdo[po+5p(x, z=h(x, y))] . (2.3)

Such a term will therefore always be present. Upon reex-
pressing the surface element as do =(1+(Vh) )' d x,
and expanding to leading order in Vh and 5p, one arrives
at a surface Hamiltonian of the form

13H= f d x[ ,'K'(—Vh) + V5p(x, z=h(x))] . (2.4)

In the following, we study the statistical surface fluc-
tuations of h (x) in the presence of the quenched disorder
present in 5p. This procedure is legitimate provided the
surface fluctuations do not anneal away the bulk disorder.
However, we will show that statistical excursions of the
interfacial "height" will typically be small, so only the
top surface layers can be annealed at all; thus the surface
should still "feel" the effects of the quenched bulk disor-
der from below.

In the absence of the second term in (2.4), the interfa-
cial width due to thermal fluctuations increases very
slowly with the system size L,

1/2

(h )' —,lnE' a
(2.5)

roughening transition.
The assumptions embodied in (2.2) imply that the solid

described in (2.1}has long-ranged orientational order, yet
translational order which falls off with the bulk correla-
tion length, 5p(R)5p(0) —exp( —R /gs). To motivate an
interfacial Hamiltonian, imagine cleaving the solid along
a (single-valued) surface o, specified by the function
z =h (x), whose average orientation coincides with a
symmetry axis (i.e., z ) of the bond-oriented solid. Here x
denotes coordinates in the average (i.e., h =0) plane of
the surface. Symmetry allows in the surface free energy a
term proportional to an integral of the (local) bulk densi-
ty over the surface o'.

thermore, we will demonstrate that the condition that
this rounding be experimentally unobservable is some-
what stricter than (2.5) and (2.6) would imply. In fact,
the actual condition is

gs &)a ln( L /gs ), (2.7)

where L is the largest length scale probed by the experi-
ment in question (e.g., 10 pm in very-high-resolution x-
ray measurements), which should be contrasted with the
weaker condition gs )&a&in(L/a) implied by (2.5) and
(2.6). The condition (2.7) is nonetheless still easily
satisfied; for L = 1 pm and a =4 A, (2.7) becomes

gs »24 A, as mentioned in the Introduction. It should
be fairly easy to produce samples with gs this large.
Measurements on length scales L that violate (2.7) will be
described by the theory of interfaces in random-bond sys-
tems, ' as discussed in the Introduction.

Under the assumption (2.7) we can ignore, in the Ham-
iltonian (2.4), the dependence of the disorder on the sur-
face height h: P„(x,y, h}=$„(x,y). Then (2.4) can be
simply expressed as

PH =f d x [ —,'K'(Vh )'+ Vp, cos[Goh(x)+P, (x)]],
(2.8)

where we have kept only the Bragg peak @=1 corre-
sponding to the smallest 6 orthogonal to the surface, and
Go = ~G, ~. The terms involving other G's can be shown
to be irrelevant.

This model is illustrated pictorially in Fig. 4(a). For

where a =2m/Go is a crystal lattice constant. Note that
E' has the dimensions of inverse length squared; we will
see shortly that for temperatures T ~ TsR,
E' ~ a . Thus in this temperature range
(h )-a&in(L/a), which can be quite small (e.g., for
L =1 mm and a =4 A, (h )' =15 A). One might
naively expect that as long as these fluctuations are con-
siderably smaller than the bulk correlation length, i.e.,
that of

h(x)

( I 2 ) I /2 ((g (2.6)

then we can neglect, in the Hamiltonian (2.4), the depen-
dence of the disorder at the surface on the surface height
h, i.e., that we can make the simplifying approximation

P„(x,y, h )
-=P„(x,y, h =0) .

This approximation, as we shall see in a moment, leads to
the prediction of a thermodynamically sharp super-
roughening transition. In Appendix A, we will show that
keeping the dependence of P„on h leads to a broadened
or rounded transition that is no longer a true thermo-
dynamic transition. It also leads to a crossover to the be-
havior of a random-bond interface ' for I )L, . Fur-

h(x)
FIG. 4. Pictorial representation of our model. P{x)

represents the quenched random displacements of the bulk lat-
tice planes along their normal z while h(x) is the height along 2
of the surface. P(x) is coherent (or, equivalently, the lattice
planes are unbroken) over distances of order the bulk correla-
tion length g~. (b) Depiction of the conventional roughening
model for bulk-ordered crystals. It is basically the same as (a)
except that the bulk translational correlation length g~ is
infinite; i.e., the bulk planes are unbroken over the entire sam-
ple.
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(2.9)

Surface thermodynamic properties follow then from the
ensemble averaged free energy,

F= —k~ TlnZ, (2.10)

where the bar denotes an average over the quenched ran-
dom variable P.

This partition function is identical' to that of a two-
dimensional (2D) XY model without vortices in a random
field. "' The model with vortices was studied in Refs. 11
and 12; the latter also studied the Gaussian (vortex free)
limit. The analogy we are using is that the free energy
for the angle field 8 in the XY model is almost the same
as that for the height variable h in our model. The analo-

gy breaks down, however, precisely in the fact that the

purposes of comparison, Fig. 4(b) provides a similar de-
piction of the standard model for the roughening of bulk
ordered crystals. It can be shown, using the renormal-
ization-group arguments that we will present later, that
any other terms one might consider adding to this Hamil-
tonian are "irrelevant" in the renormalization-group
sense. This means that the long-distance behavior of an
arbitrary complicated model consistent with the sym-
metries of the system can be reproduced exactly by (2.8)
for a suitable "renormalizable" choice of the constants E'
and V.

This Hamiltonian is identical to the standard model for
the pure roughening problem' except for the presence of
the quenched random field P.

It should be emphasized that (2.8) has a discrete sym-
metry, h(x)~h(x)+ma for integers m, which is not
shared by the original Hamiltonian (2.4). Since the in-

equality in (2.7) is easily satisfied, though, this should not
matter in practice. It does mean, however, that the
rough —super-rough transition present in (2.8} and de-
scribed later, would be "rounded" in terms of the full
model (2.4). This is discussed in more detail in Appendix
A.

The statistical surface fiuctuations described by (2.8)
can be analyzed by considering the partition function

Zt{t, l
=fDg e »~h&~—

XY model allows real vortices (as opposed to the "dum-
my" vortices that arise from the dual transformations on
the cosine term), whereas the interface model does not.
A "real" vortex in the XY model is a configuration of
spins in which, as one moves around the vortex, 0 in-
creases from 0 to 2m. This is a low-energy configuration
in the XY model because 0=2+ is indistinguishable from
0=0 (both correspond to an XYspin pointing in the same
direction). In the interface model, such a configuration of
h would have a step along the discontinuity from h =0 to
2n iG, this step costs a large energy E (i.e., E is linear in
the system size} and hence such fluctuations are ir-
relevant to the interface problem. Thus, our problem is
equivalent to the one studied in Refs. 11 and 12 only if we
ignore the "real" vortices in the XYmodel.

We will use the replica approach, recursion relations,
and some of their correlation functions of Ref. 12 to
derive our results. Our results for the h —h correlation
function in the super-rough phase, for

fq, [h(x) —h(0)]
)

in both phases, and for the crystal shapes, while founded
upon the results of Ref. 12, are new. The same is true of
our arguments in Appendix A concerning the rounding
of the transition.

Z"—1F= —k~T lim
n~O n

(2.11)

and
n nZ"=f gDh exp —g PHth. „g] . (2.12)

a=1 a'=1

Performing the quenched average over P will now couple
the previously uncoupled replicas h . This average can
be done perturbatively in the strength V of the
cos(Gob —{I)) term in (2.8), yielding

B. Replicas

The quenched average in Eq. (2.10) is evaluated using
the replica procedure. ' The important identities that we
use are

n n n

exp QPH[h, g} = exp —fd x ,'Eg ~Vh (x)~ ——Vp,g cos[Goh (x) —P(x)]
a=1 a=1 a=1

n= ——fd'x y ~Vh. (x)~'
2

n

X 1 —Vp, g f d x cos[Goh (x}—P(x)]
a=1

n

+ —,'( Vp, ) fd x d x' g cos[Goh (x}—P(x)]cos[Goh&(x') —P(x')]+0( V p, )
a,P=1

(2.13)
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The quenched averages appearing in this expression may now be evaluated with the help of Eq. (2.2):

cos[Goh (x)—P(x)]=0,

cos[Goh (x)—P(x)]cos[Gohp(x') —P(x')]= —,
' cos[GO[h„(x)—hp(x')]If((x —x')/gs) .

Using these in (2.13) and reexponentiating (i.e., writing 1+x =e for small x) we obtain

(2.14)

Z"= Dh e
a=1

where

n n

PH{h I
= ,'E Jd—xQ~Vh (x)~ —

—,'(Vp, ) Jd xd x' g cos[GO[h (x)—hp(x')]jf((x —x')/gp) .

(2.15a)

(2.15b)
a=1 a,p=1

(The dummy index P should not be confused with P—:1/ks T, as the distinction should always be clear from context. )

Now we can exploit the fact that f(xlgp) is short
ranged (i.e., falls off exponentially for ~x~ ~gp) to gra-
dient expand the cosine term. We thereby obtain our
final replicated Hamiltonian:

PH= ,' fd'x+—K pVh Vhp
ap

—ug f d x cosIGo[h, (x)—hp(x)]], (2.16)
a, p

can easily be calculated by assuming that K p' has the
same form as E p [i.e., K p'= A5 p+B(1—5 p)] and
verifying this form by solving K pKpr =5~& (the
definition of the inverse) for A and B. The result is'

1 K —K
&h (q)hp( —q)&=

2
5 p+

Kq nK (n ——1)K

(2.19)

where u = A/((s Vp, ) and Af:2 f d x f ( x) is a con-

stant of order unity. An implicit "short" distance cutoff,
of order gp, is understood in (2.16). The stiffness matrix

Kap 1s

which when inserted into (2.18) yields

&lh(q)l &= 1 K

Kq K
(2.20)

K p=K5 p+(K E)(1—5 p—)

with

K =K =K'+ ,'B/g~( Vp, GO—)

(2.17) As we shall see in the following, after renormalization
K (K; therefore,

(& lh(q)l'&) &
Kq

Here BI=—f d y ~y~ f(y) is another constant of order
unity. We have written this matrix with K and K
different in anticipation of their becoming different under
renormalization, even though they start out equal.

C. Gaussian correlation functions

The last inequality is reassuring.

D. Recursion relations

The renormalization-group recursion relations are'

Before presenting the recursion relations for this mod-
el, it is first instructive (and will later prove useful) to cal-
culate the spatially Fourier transformed thermal and an-
nealed averaged height-height correlation functions
& ~h(q)~ & when u =0. Using very similar manipulations
to those just presented for the partition function, we can
show that

dK
dl

dK
dl

du

dl

Go u',
W4

Go
2 u

2+K

(2.21a)

(2.21b)

(2.21c)

& lh(q)l'& = »m & h. (q)h. ( —q) &,n~0
(2.18)

where we are not applying the Einstein summation con-
vention (i.e., a is not summed over in this equation), and
&h (q)h (

—q)& denotes a thermal average of ~h (q)~
over the distribution embodied in the partition function
Eq. (2.8). When u =0 this distribution is both Gaussian
and local in q space; thus the desired average can be tak-
en just by inverting the matrix K p in (2.16). This inverse

where Az and A„are dimensionless, nonuniversal con-
stants of order unity and A is an ultraviolet cutoff of or-
der g~ '. The precise value of A used in these recursion
relations is unimportant, since, as we shall soon see, it
drops out of all physically observable results.

Note that K is unrenormalized; this is true to all or-
ders' and has important physical consequences for the
crystal shapes. This result can be demonstrated as fol-
lows: We can rewrite (2.16) as
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PH= ,' f—dx K, g ~Vh
~

+K~ g ~V(h —hp)~
a = 1

—u g cos[GO(h —h~)]
aWP

(2.22)

)I

Ir

where, for n =0, K, =K and IC2= —,'(K —K). Clearly,
the u term in (2.22) is invariant under the transformation
h (x)~h (x)+g(x) for all a. Thus, under the action of
the renormalization group, it can only generate terms
that preserve this symmetry. The term K,g", Vh
clearly does not have this symmetry; therefore it is not re-
normalized by u. Since u is the only anharmonicity in
this model, there is nothing else in the Hamiltonian to re-
normalize K& either. Hence, K& and therefore E for
n =0 suffers no renormalization.

The renormalization-group flows predicted by the re-
cursion relations (2.21) are depicted in Fig. 5. Their
physical implications will be discussed in the next sec-
tion.

III RESULTS FOR IxI & 4
In this section we use the results of Sec. II to derive ex-

perimentally observable properties of the super-
roughening transition. The first of these is the fact that
the transition exists. This can be seen from (2.21c), since
for E (Go/4n the random potential u Hows to zero un-

der renormalization and is thus irrelevant at long length
scales, whereas for K) Go/4~ it is relevant (a small u

will grow). Thus
K&K 62

K=X, =
4m

(3.1)

FIG. 5. (a) The renormalization-group flows in the y —K
plane implied by the recursion relations (2.21). Because K is un-

renormalized, the flows in this plane are all along vertical lines.
For K &K, (which corresponds to high temperatures), u flows

to zero (i.e., is irrelevant) and the surface is rough. For K )K„
u flows to a nonzero value u~(K); and the surface is super
rough. The super-roughening transition therefore occurs when

K passes through K, ; that is K(Ts&)=K, . Note that u+(K) is
linear in K —K, for K~K, . (b) The renormalization group
flows in the u —K plane at fixed constant K & K, . Note that any
initial u flows to zero, and K flows to a (nonuniversal) fixed

point value. This corresponds to the rough phase. (c) Flows in
the u —K plane for K )K, . Now u flows to a nonzero value u ~

and K flows to —ac as a result. This behavior of K makes the
surface superrough.

marks a phase boundary between two qualitatively
different types of long distance behavior. Since E de-
creases with increasing temperature, the phase in which u

is irrelevant is the high-temperature (rough) phase, while
the u relevant (super-rough) phase occurs at low tempera-
ture.

In Sec. III A, we will show that this transition can be
unambiguously identified by experimental measurements
of the appropriate height-height correlation function.
We also demonstrate that even the correlations of the
rough phase differ from those of the surface of a bulk-
ordered crystal. In Sec. III B, we show that, surprisingly,
the equilibrium crystal shapes are totally unaffected by
the super-roughening transition, with neither the rough
nor the super-rough phase having flat facets.

A. Non-Gaussian correlation functions

The long-distance properties that distinguish between
these two phases are manifest in the interfacial correla-
tion functions. Specifically, consider the ensemble aver-
aged height-height correlation function, (~h(q)~ ).
When u =0 this is given by (2.20). Since u Aows to 0 for
I~ ~ in the rough phase, (2.20) will hold on large length
scales, with K replaced by its l ~ ao value I( . Although

is not necessarily positive in this phase, it will have a
finite value since u (I) vanishes sufficiently fast (exponen-
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(h (r)) =—2 — f d g 1

E K (2ir} q

K
2 — ln

2irK E
(3.2)

Since K (Go/4ir in the rough phase, and K„(K al-
ways, the coefficient of the logarithm in (3.2) can be
bounded from below:

&h') 2
ln(L /gii ) Goi

(3.3)

which is the result quoted in the Introduction. Note,
however, that although K is universal at the super-
roughening transition (K, =Go/4n ), K„ is not [its value

depending on the initial strength u (1 =0) of the random
potential. ] Thus the coefficient of the logarithm in (3.3) is
not universal' at the super-roughening transition, unlike
the analogous coeScient at the roughening transition in
the pure problem.

In the super-rough phase, K &Go/4n, and a suff-

iciently small initial u will grow under renormalization.
It will not grow without bound, however; eventually it
approaches a nonzero fixed point value at large l that can
be obtained near the transition by equating the right-
hand side of (2.2lc) to zero [see Fig. 5(c)]:

G2
u(l~~)= ,u=D 2—

2m'E
(3.4)

tially) as 1~~ [see Fig. 5(b)]. Moreover, since the renor-
malization of K(1) is always negative, K„ is always
bounded above by E.

The actual mean-square fluctuation in the height of a
surface, with linear dimension L, can be obtained by sum-
ming (2.20) over q with an infrared cutoff proportional to
L ' (and ultraviolet cutoff gati

":

tions of the temperature dependence of critical phenome-
na near the super-roughening transition.

Since u, &0 in the superrough phase, (2.2lb} indicates

that K(1~ oo ) is driven to —~. More specifically,

Go
K (1)=K, (1)—u, Ax. 1

A

with

2Go
K,(l):K(1—=0)—Ax f dl'[u~(1') —u~ ] .

(3.6a)

(3.6b)

=e 'I {e'q,K,K(l), u(l}) . (3.7)

This relation can be used to calculate I (q) by choosing 1

such that e'q =alii ', the ultraviolet cutoff. At this point,
the long length scale ( & gati ) fluctuations should no longer
be important so that I (e'q, u) on the right-hand side of
(3.7) should be analytic in u. Moreover, in the asymptot-
ic q~0 limit, e ~~ so that u (I) approaches its fixed
point value u, . Thus, close to the transition where u, is
small, one may safely replace u, on the right side of (3.7)
by zero and evaluate using the Gaussian result (2.20).
This gives

Since the integrand in (3.6b) vanishes exponentially fast
as 1~ ~ for u, %0, K, (1) asymptotes to a finite constant,
K, —=K, {00 ). One may also verify from the recursion re-
lations that K, ( ~ ) is finite even at TsR, where u, =0.

What does this imply for the long-wavelength interfa-
cial correlation functions in the super-rough phase? To
answer this, consider applying the same renormalization-
group techniques used in the preceding section on the
partition function to the height-height correlation func-
tion. Specifically, by employing the rescaling of h (q) and

q we have

I {g,K,K(0),u)=(h(q)h( —q))={h (q)h (
—q))

u „(1)=uot t = ( TsR T )/TsR (3.5a)

with a universal constant D:—A /A„. Notice that u,
vanishes linearly with temperature as TsR is approached
from below (assuming, as one usually does in critical phe-
nomena, that the parameters of our model —in this case
E—are smooth and analytic functions of temperature
near the transition), i.e.,

1

~21 2

K, (00)2—
E E

ue Go
2 2

z z Ax 4 in(qge),
SC 2q2 A4

e ' K(1)I (q, K,E(0},u }= 2—
K E

(3.8)

with

DGO
uo &sR d T 2~+ 'r ~sR

2 d lnE
A„d lnT

(3.5b)

where we have used the fact that E(TsR)=GO/4m. We
will see later that

[d lnK/d 1nT]~r r

d 1f ln(qg~ )
K ~ (2ir) q

A~ ln
2~K ' (3.9)

where in the last step we have used (3.6a) for K(1) and
the condition e'q=gii ' to solve for 1 as a function of q.
The last term clearly dominates as q~0. Evaluating
{h (r)) as before, and keeping only this dominant last
term, we now find

is large when ge »a; uo is consequently large as well.
Equation (3.5) provides the basis for most of our predic- for a system with linear dimension I.. Although this re-
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suit was derived only for small u, (near the transition),
we expect the (lnL) dependence on L to be valid for
asymptotically large L throughout the entire super-rough
phase. For T near TsR, we can use Eq. (3.5) to estimate
the value of the coefficient of [ln(L/gs)] in this expres-
sion. We find

SC I%'02—
2' g

A„

32~AK

260
AK 4~0

A T= TSR

2
d in%
d lIlT T= T~R

(3.14)

u 2 62 u 2t262
AK =A

'SC2W4 ' Z2W4
'2

(3.10)

G(x)—:([h(x) —h(0)] ),
which is related to I (q) by

EjG(x)= f (1—e'q")I (q) .
(2qr )

(3.11}

Inserting I (q) for the super-rough phase (3.8) one finds

K,G(x)= 2—
2m' K

ln(
~
x

~ /gs )

u"' Go ~x~+ A)r ln (3.12)

The value of ~x~ at which the [ln( ~x~ /gs )] term in (3.12)
becomes comparable to the first term gives us a natural
definition for gsR( T). One thereby obtains

d ln&=t' 0
d In T T = Ts„

where we have again used the fact that f(. (Ts„)=60/4n.
and G0=2qr/a. Recalling that A)r and A„are O(1), we
see that this coefficient is of order a t times a dimension-
less factor of order [[d ]nJ /d ]nT]~T T )'~ . We will

see later that this factor is of order ln (gs/a), and
hence large when gt) »a. Note that A has dropped out
of this expression for the correlation function in Eq. (3.9),
in keeping with our earlier claim that all observable
quantities are independent of it.

Notice that in the super-rough phase the interfacial
width increases more rapidly with the system size L than
in the rough phase (3.2). Physically, the super-rough
phase corresponds to glassy phase where the interface has
become "pinned" to the disorder felt from the bulk. The
interface exhibits large excursions in order to take advan-
tage of favorable regions of disorder.

A correlation length in the super-rough phase, gs„, can
be defined by considering the correlation function

Note that since u0 o- A, (3.14) is also independent of A.
We will show later that A =O(ln (gt) /a )). Experimen-
tally, gs„ is significant because for ~x~ (gsR the experi-
mentally observable surface correlation function still de-
cays algebraically, while for r & gs„ it decays far more
rapidly (see the following).

The changeover from (h )'~ ~&(lnL) to
( h ) ' ~ (lnL ) is the signature of the
super-roughening transition. At first glance, this might
seem a rather unspectacular change; in a 10 cm sample
with (& =100 A, the ratio of the height fluctuations in

the super-rough phase to those in the rough phase is

[]n(L/gs)]' -4. Fortunately, the most direct experi-
mental probe of these fluctuations, namely, surface
scattering, is exponentially sensitive to height fluctua-
tions, and hence this changeover should be quite easy to
observe experimentally.

More specifically, surface-sensitive scattering experi-
ments, using either x rays, atomic beams, or neutrons,
measure the structure factor:

iq, [h(x) —h(0)] ~ iqi. x
)e (3.15)

where q~ and q, denote components of the scattering
wave vector along and orthogonal to the surface, respec-
tively. Thus we are interested in the correlation function

iq [h(x) —h(0)] ~Cq„x=(e ' (3.16)

C-exp[ —
—,'q,'((bh )') ] .

Using the result of Sec. III B one finds then that C decays—g(q )1n~x~
faster than any power C-(~x~ '

), implying that
S(qi, q, } is Pnite and analytic at qi=O. In contrast, in

the rough phase, since the interfacial width grows loga-
rithrnically, one expects power-law behavior

This can be calculated as follows.
In the super-rough phase the large

~
x~ asymptotics of C

can be extracted (for small q, ) by expanding the exponen-
tial in Eq. (3.16) to quadratic order and then reexponen-
tiating,

K,
4R(T)=g e"p 2—

2m
u~ ~ exp(A/t ) .

C(q„x)-ix[ "', [x[ (3.17)

(3.13)

Here we have used expression (3.6) for the asymptotic be-
havior of u, (t) near the transition temperature Tsa. The
last proportionality in (3.13) holds near TsR, and the di-
mensionless constant

with an exponent qi(q, ).
For a fluid interface, described for example by (2.6)

with V=O, qi(q, ) depends quadratically on q, . For a
crystal interface, however, g(q, ) will reflect the periodici-
ty of the bulk density. Consider, for example, a rough in-
terface of an ordered crystal, described by (2.8) with

P, =0. In the solid-on-solid solid limit one expects
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Co,d(q„x) = K
ln(~x/a ~)

] /2

X g e * exp
2 2

(3.18)
ln(

~
x/a ) )

with m =[q, /Go+ —,'], where [x] is the largest integer
&x. Therefore, the asymptotic form of C„d(q, ;x) is
algebraic, with the exponent ri«d(q, ) taking a "scalloped"
periodic form

C,„d(q„x)= (3.19)

where we have used Go=2m/a. The dominant term in
this sum at large ~x~ is clearly the one with the smallest
value of (q, —Gom ) . This is readily seen to be the term

where the second exponential accounts for logarithmic
surface fluctuations (the v'E/ln~x/a~ prefactor is the
normalization} and the sum over integers n accounts for
the discreteness of the underlying lattice (or height vari-
able). Performing the sum in (3.18) (using the Poisson
summation formula) yields,

—(q —G m) /4mKz 0

(3.20)g„d(q, ) = q, —Go —,'+; q, )0 .
4+K 0

Here the square brackets denote the integer part. Equa-
tion (3.20) is plotted in Fig. l.

When the crystal is disordered, ri(q, } must be comput-
ed from (2.8) or the replicated form (2.16). Provided the
interface is in the rough phase, where u flows to zero at
long distances, the correlation function C can be evalu-
ated as an expansion in powers of u [from (2.16)]. Each
successive even power of u (i.e., u ) proves to dominate
C(q, ;x) [and thereby ri(q, )] in the interval
m &(q, /Go) &m +1. The general form for ri(q, ) is cal-
culated in Appendix B. We find

60 q,
ri(q, )= (2—K/K)

4mE 0

2
qz

60
1+ '

60
q,—2, q, &0,

0
(3.21)

where once again the square brackets denote the integer
part. This curve is sketched in Fig. 1. Not surprisingly,
the exponent (3.21) lies between the parabolic fluid ex-
ponent and the exponent for the ordered crystal (3.20).
The atomic discreteness of the ordered crystal interface is
still evident in the exponent for the disordered solid s sur-
face.

y(8)=Fr (8)/(L sec8), L —+ac .

When the system is replicated, as in (2.8), the boundary
condition (3.22) applies to each of the n interfaces (h
This fact enables one to relate F(8) trivially to F(8=0}.
Specifically, for each configuration h of the tilted i.nter-

B. Crystal shapes

h(x =L,y)=h(x =O,y)+8L . (3.22)

Equation (3.22) imposes an interfacial tilt, by an angle 8,
away from the crystal symmetry axis. For an interface of
size L XL (in the x-y plane) one then has

For a crystal with true long-range order, the conven-
tional smooth to rough interfacial transition manifests it-
self in the equilibrium crystal shape, or equivalently the
Wulff plot (see Fig. 6). A smooth interface corresponds
to a cusp in the Wulff plot and a crystal facet. In the
rough phase the angle-dependent surface tension y(8) is
analytic even for 8=0, (y(8) =yo+ —,'yo 8 ), which corre-
sponds to a crystal symmetry axis.

One might ask whether the rough to super-rough tran-
sition, for a disordered solid, is also manifest in the Wulff'

plot (or angular-dependent surface tension). Below is a
brief argument that this is in fact not the case; y(8) al-
ways varies quadratically for small 8, in both the rough
and the super-rough phase, with a coefBcient that varies
smoothly at the transition.

The angular dependence of the surface tension can be
extracted by evaluating the free energy from (2.10) with
appropriate boundary conditions

FIG. 6. The Wulff construction for determining the equilibri-
um crystal shape r(O, T) given the direction dependent surface
tension y(0, T). The construction consists of drawing a radius
from the origin to each point on a polar plot (actually a three-
dimensional surface, through which this figure is a two-
dimensional slice) of y(8, T). Qne then draws the planes [which
in this 2(d) figure are, of course, lines) orthogonal to each of
these radius vectors. The resultant infinite set of planes fills all
of the space except for a hole in the middle whose shape is the
equilibrium shape of the crystal. Cusps in the polar plot of
V(O, T) are readily seen via this construction to lead to flat
facets in the equilibrium crystal shape.
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face satisfying the boundary condition (3.22), define an
"untilted" configuration by it =h —(8x/L). The terms

in H that depend only on h —
h& are unaffected by this

change of variable, since all of the replicas change in the
same way. The replicated Hamiltonian (2.16) can there-
fore be simply written in terms of h as

PH( [h I ) =PH( I h I )+ K8—L (3.23)

The change of variables (h ~h ) can also be performed in
the functional integral for the partition function. Since
h satisfies the appropriate boundary condition for an un-

tilted interface (8=0), one thereby obtains, quite general-

ly,

F(8)=F(0)+ ,'K8 L— (3.24)

Note that the result (3.24) is independent of the strength
of the disorder u. Moreover, it applies to both the rough
and super-rough phases. Thus, in contrast to the conven-
tional smooth to rough transition for an ordered crystal,
the rough/super-rough transition has no effect on either
the Wulff plot or the crystal shape.

The preceding conclusion might seem a bit surprising,
particularly in view of the fact that the interfacial
height-height correlation functions evaluated in Sec.
III A, do differ in the rough and super-rough phases. To
see that this is not inconsistent with (3.24), it is instruc-
tive to rederive (3.23) for small 8, using only 8=0 interfa-
cial correlation functions. To this end, imagine applying
an external "tilt" field p to the interface Hamiltonian
(2.6), H~H+(p/L) Jd2xB, h The m.ean tilt angle 8
follow from the free energy per area, f (p, ) as

8=(B„h ) =— ()Lt=0) .
p

(3.25)

(yo') '= lim q [(~h (q)~ ) —(h (q)ht)( —q))],
(2m. )

(3.27)

where the brackets now refer to an average with respect
to the replicated Hamiltonian (2.16) and P&a is under-
stood.

The height-height correlation function evaluated in

Sec. II B also depends directly on the average ( ~h (q )
~

).
As noted there, the singular small q dependence of
(~h (q)~ ) differs in the rough (1/q ) and super-rough

(lnq/q ) phases. However, in the connected correlation

Since the angular-dependent surface tension y(8) is the
Legendre transformation of f, y(8)= f+8p, the curva-
ture yo' is equal to —(8 f/Bp ) ', evaluated at )M=O.

Thus yo' can be expressed in terms of a connected interfa-
cial correlation function for the untilted interface, name-

ly.

y"=L f d xd x[(B,h( x)B,h( x'))

—( B„h (x) ) ( a„it (x ) ) ] . (3.26)

After replicating, Fourier transforming, and performing
an ensemble average one has

function (3.27) this difference cancels out between the two
terms. Indeed, upon evaluating (3.27) using H from (2.16)
with u =0, one finds that the K dependence of the two
terms cancels, yielding simply yo =K. Since K is un-
renormalized, this reduces to the trivial result (3.24).
Thus, all the differences between the rough and super-
rough phases, manifest separately in the two contributing
terms in (3.27), cancel one another exactly in the "con-
nected" combination. This is closely analogous to the re-
lation between the magnetic susceptibilities and structure
factors in random field magnets,

' ' and reconfirms our
earlier statement that the crystal shapes are unaffected by
the super-roughening transition.

IV. CROSSOVERS

"'' lxl&4p

C„(q,), ix[ & g'p, (4.1)

where the correlation length gp diverges at the roughen-

,ing temperature TR as

gp
—exp[B /Q( T„—T) /TR ] (4.2)

and C„rt (q, )(q, ) vanishes like (gt ) ', as can readi-
—yip(q )

ly be seen by matching at ~x =gp. [In Eq. (4.2) B is a di-

mensionless constant of order unity. ] In all of these ex-
pressions, rtp(q, ) is the exponent for algebraic decay for
the bulk ordered surface given in Eq. (3.20). The con-
stant behavior of C at large ~x~ is the signature of the
asymptotic fatness of the surface; hence we will refer to
it as the smooth behavior. For T & Ttt, gp is infinite, and
the algebraic behavior described above persists out to the
bulk correlation length gs. This behavior is summarized
in Fig. 3, which shows the different regimes of behavior
of the correlation function C(q„x) at different tempera-
tures.

We will now show that the roughening temperature TR
is close to but always slightly larger than the super-
roughening temperature TsR. The bulk-ordered problem
is described by a Hamiltonian of the form Eq. (2.16), but
of course with the random field /=0. Both K and u re-
normalize in this model; in the smooth phase, K and u

both renormalize to infinity, while in the rough phase u

renormalizes to zero while K renormalizes to a finite
value {the smooth and rough phases are in this

In the preceding sections we have discussed the behav-
ior of the surface only for length scales L large compared
to the bulk correlation length gs. In this section, we con-
sider the crossover between this behavior and the bulk-
ordered behavior which prevails for L (gt), and the
consequences of this crossover for the correlation func-
tions, the Wulff plot, and the equilibrium crystal shape.

We begin by summarizing the behavior of the bulk-
ordered crystal as obtained from the standard theory of
roughening. ' This theory predicts that below the
roughening temperature T„(which we will show in a mo-

ment is very nearly equal to but always slightly greater
tan TsR ), the correlation function C(q, ;x) is given by

iq„[h(x) —h(0)]
)
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K „„,(1)»Ki'""'=—,'K, = G
(4.4)

which implies that K „„(I)»Go ) while for

/x[ (gp, K „„(I=in(/xf/a ))

remains of order Go. Thus

gp(T)
Ismooth =

a
(4.5)

is the renormalization-group time that separates large
K~„„(I)from K~„„(l)-O(GO). Therefore, at those tem-
peratures where I, „,h « I' as defined in (4.3), Kp„„(l'),
and hence, using (4.2), K(l" ), will be driven to very large
values. (Specifically »Go. ) We will therefore be in the
super-rough phase. We can only reach sufficiently small
values of K „„(I' ) and hence K(I~«) to have a super-
roughening transition (which occurs at K=GO/4~) by
making I, «,h-I', which implies, using (4.3) and (4.S),
tllat gp( TsR ) gs ~ This, in turn, implies, using (4.2), that

2'

ln
B

(4.6}

renormalization-group sense precisely analogous to the
super-rough and rough phases, respectively, of the bulk-
disordered problem). Of course, the bulk-ordered recur-
sion relations cease to hold and are superseded by the
bulk-disordered recursion relations given in Eq. (2.21),
once we have renormalized out to gs (which occurs after
a renormalization-group time I*=in[(s /a )]. The renor-
malized elastic constants K „„,(I*) and V „„(I ) derived
from the bulk-ordered recursion relations then enter as
initial conditions on K, E, and u in the bulk disor-dered
recursion relations; in particular,

K(l') =Kp„„(l'),I' =ln((s/a ) . (4.3)

Our expression below Eq. (2.17) for K in terms of K, V,
and gs may be thought of as a lowest order in V form of
this more general result. E does not renormalize any fur-
ther once we are beyond I' (since we are then at length
scales greater than gs, where, as we showed earlier, K
does not renormalize), so its value for all length scales
larger than gs is determined by (4.3). The pure correla-
tion length gp separates those length scales ( ~x~ (gp) on
which the bulk-ordered problem' is smooth from those on
which it is rough; this implies that for length scales

~x~ )&g, K „„[I=ln(~x~/a)]

has renormalized to very large values (specifically,

change from its value K, =G o /4n at TsR to the value
Kp""=Go/8m at TR, its derivative in this temperature
range is of order

dE
dT TsR

K,p""'—E,( TsR )

~E ~SR

In (gs/a) Go

g TsR 4a
(4.7)

Inserting this into Eq. (3.14) for A shows that

(2 —K. ) g'&„'
"ln 4

x
(4.8)

All of the factors in this expression are of order unity ex-
cept for ln (gs/a), which is (&1 for gs &)a. Thus,
3 =O(ln (gs/a )), as claimed in the introduction.

Although, as we showed in Sec. III, the Wulff plot and
the equilibrium crystal shape are unaffected by the
super-roughening transition, both are affected by the
(nearly sharp) roughening transition when gs »a.

We can understand this by noting that when the crys-
tal is cut at an angle 8, the equilibrium configuration of
the surface is a set of steps of height a separated by a
mean distance a/8 (see Fig. 7). For T & Ttt, the Wulff
plot will show three distinct regimes: In region 1 (see
Fig. 8), the tilt angle 8 is greater than a/gp, which means
that characteristic features of the surface (i.e., steps} are
separated by less than gp. As just discussed, at this
length scale the crystal should exhibit bulk-ordered rough
behavior; this means that the Wulff plot should go like a
parabola o(8)=K'8, where K' is the elastic constant in

Eq. (2.8) and o is the surface energy. For a/gs &8
&a/gp (i.e., for length scales between gp and gs), the
surface looks smooth, meaning that the Wulff plot be-
comes linear (region 2 in Fig. 8). It must join smoothly to
the parabola in region 1, which means that the slope of
this straight line is (a/gp)K. Finally, in region 3 where
8 & a /gs, the surface is disorder-dominated rough (or su-

perrough; it does not matter), so the Wulff plot is again
parabolic; to join smoothly to the straight line in region
2, o =(gs/gp)8 .

When gs &)gp (i.e., at low temperature), the curvature
in region 3 is very high. This leads, via the Wulff con-
struction, to a crystal shape which has nearly the appear-
ance of a normal faceted crystal. At sufficiently high
temperatures the crystal will also contain rounded re-
gions with radius of curvature of order L coming from re-
gions I and II of the WulfF plot. We have not shown such
regions in Fig. 2 for clarity. Figure 2 shows this crystal
shape for a hypothetical square crystal. The crystal also
contains "pseudofacets" which come from region 3 of the

where g =8 is of order unity. This shows that the
super-roughening transition in a bulk disordered crystal
with correlation length gs )&a will occur at a tempera-
ture TsR quite close to the temperature Tz at which the
roughening transition would occur in a bulk-ordered
crystal of the same material.

We can also use this result to estimate dK/dT~r
SR

which we need, via Eqs. (3.13) and (3.14), to calculate the
temperature dependence of g'sR near Ts„. Since K must

l(

a

FIG. 7. A crystal interface tilted by 0 obtained by a series of
regularly spaced steps of height a and spacing /; for 8((1,
I =a/8.
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FIG. 8. A magnified view of the Wulff plot for small 8 in a
bulk-disordered crystal below TSR, showing the curved regions
at 8 »a /gp, the straight (cuspy) region a /g~ &&8&&()/gs, and

the (sharply but not infinitely) curved region 8 &(a /gs.
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Wulff plot. The radius of curvature here is very large:
R =(gp/(p)L. This makes sense, since in a perfect crys-
tal gp —+ 0() and there are perfectly fiat facets with infinite

radius of curvature. As the temperature increases and

(z, begins to approach gp, two things happen to the crys-
tal shape: curved regions appear and grow because the
slope in region 2 of Fig. 8 is decreasing, and the pseu-
dofacets shrink and become more curved. When T gets
near Tz, the curvature of the pseudofacet and of the
curved region gradually become equal and the two parts
of the crystal surface merge. The curvature at this point
should be near the universal value which occurs in ordi-
nary pure roughening. However, there is no real phase
transition in the crystal shape; all the changes described
here occur continuously.

APPENDIX A

In this Appendix we will discuss the rounding of the
super-roughening transition due to the dependence of
())(R) on h in Eq. (2.4) and show that while in principle
this is an important effect, in practical experiments the
rounding should be unobservable.

For the sake of simplicity in the later calculations, we
will begin by assuming that the phase correlation func-
tion in Eq. (2.2) has the separable form

f (R/gp ) =g, (x/gp )g, (z /gp ), (A 1)

where x, as before, denotes the two components of R in
the mean plane of the surface, while z denotes the direc-
tion orthogonal to the surface. We do not believe that
this simplifying assumption restricts the generality of our
results. We will also assume that g, decays exponentially
for z & (p, and furthermore, that it is analytic near z =0.
This last assumption, and the assumption that the corre-
lation functions depend only on the ratio R/gp, innocu-

ous though they appear, are both violated by many of the

standard forms usually assumed in fitting the x-ray peak
shapes of disordered systems. For example, a Lorentzian

peak implies

(&i[/(R) —P(0)j) ~ &
~

/~R~

which is neither analytic as ~R~~O nor a function
only of the ratio R/gp. In critical phenomena, one
more generally observes correlations of the form
~R~ +"g(~R~/gp), which likewise violate both our as-

sumptions.
Nonetheless, we believe that in the case of quenched

disorder, both assumptions are correct. We will return to
this point at the end of this Appendix. For now, we will

explore the implications of Eq. (Al) for the super-
roughening transition.

We proceed, as earlier, by replicating the partition
function and performing the quenched averages over dis-
order perturbatively in V. Everything goes through as
before up to the point of evaluating the quenched aver-
ages. These now become [cf. Eq. (2.14)]

cos[Goh (x)+())(x,h )]=0 (A2)

cos[G()h (x)+P(x, h (x))]cos[Gohp(x')+(i)(x', hp(x')}]
=—'cosIGO[h (x)—hp(x')]Jgz(x —x'/gp)g, ([h (x) hp(x')]/gp) —(A3)

Upon reexponentiating and gradient expanding, these
lead to the replicated Harniltonian:

n

H= fd'x )K
p g Vh (x).Vh—p(x)

a,@=1

I

where

V(y) =cos(G()y)g, (y/gp ) . (A4')

We now proceed by Fourier transforming V(y) as a
function of its argument y. The Hamiltonian (A4) can be
rewritten:

—u g V(h (x) —hp(x))
a@P

(A4)
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n

H= fd'x ,'K—p g (Vh Vhti) —u f V(6)
p )

oo 2 fT

X g cosI G[h (x)—h&(x)] I

a@P

(A5)
where

M(1)=— e 'f dx cos(Gox )g,
oo B

—m.Kx /21~+
l

(A 1 1)

V(6):—f cos(Gy) V(y)dy

is the Fourier transform of V(y}.
The V term in this expression is now readily recognized

as just a linear superposition of (an infinite number of)
terms of the forin in Eq. (2.16), with 60 just replaced, for
each of the Fourier components V(6), by the appropriate
G. Because it is such a linear superposition, the recursion
relations to linear order for each V(6) are precisely the
same as those for u found earlier [cf Eq.. (2.21)] except
for the replacement Go —+6 and u~V(G). Thus we
have

dV(G)
2

G V(6) (A6)

This recursion relation can be instructively rewritten
by Fourier transforming back to real space, giving a par-
tial differential equation recursion relation for V(y, I )

BV(y I) 1 B'

2nK By'
(A7)

Writing V(y, I) =e 'U(y, I) we obtain a diffusion equation
for U,

BU, 1 B'U

2n.K By'
y, l = (AS)

with the renormalization-group "time" I playing (ap-
propriately) the role of time. We can easily solve this
equation using Green functions and the initial condition

U(y, I =0)= V(y, I =0)=cos(Goy)g, (y/gs ) .

I /2
K

V(y, I)=
21

2!f d
—nK(x y) /2l—

X cos(60x )g, (A9)

A good measure of the effect of the renorrnalized po-
tential on the height fiuctuations (and hence on all the
other features of this problem) is the renormalized mass

Doing so and using our expression for V in terms of U
gives an expression for V(y, I),

Now we proceed by expanding g, (x/gs) in powers of
its argument, and asyinptotically evaluating (All) in the
limit ( Go ps ) ))6ol /K ))1. We obtain

G2
M(l)=60 exp 2 — I

2nrt

IGO dg, (t)
X 1 ——

mK(s dt

IGo2+0
Kgs Go

I =0

IGp

K(ps Go )
(A12)

The lowest-order term in this expression (i.e., the 1) is the
only one we would have gotten using the approximation
we have made throughout this paper of neglecting the
dependence of the random phase P on h.

Clearly this approximation breaks down once the
second-order term is comparable to the first. Since by
our assumption of analyticity, d g(t)/dt I, 0 is of order
1, this will occur when IGO/nK(s -O(1), or
I -m Kgs /Go. Converting this to a length scale via the
relation L =gee' (the prefactor is gs because our starting
Hamiltonian (A4} had an implicit ultraviolet cutoff of gs
because of the gradient expansion) yields

a(g& /a)
L, =gBe (A13)

where a -Ka is of order 1 (in the temperature regime of
interest where K- Go4/m. -m /a). This is, of course,
the result quoted in the introduction.

We now return to the question of whether or not the P
correlation functions should depend only on the ratio
R/gs, and if so, whether or not this dependence is ana-
1ytic. In critical phenomena, we are familiar with corre-
lation functions of the form

C(R)=R' d "g(R/g),

which are clearly not functions of R/g alone. However,
the origin of this form is clear: the factor R +" is the
scaling behavior of the correlation function at the critical
point, where g= m; g defines the length scale at which
this scaling behavior starts to break down. An analogous
form for the correlation function of a crystal with
quenched bulk disorder would be

0 VM(l) =——
Op y p

which combined with (A9) yields

(A10}

C(R) = IRI'-'+~g(R/g, );

with again, the factor R " " representing the decay of
order when ps = ~ there is, by definition, no quenched
disorder in the solid (in contrast to the critical phenome-
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na case, where, even at the critical point, there are still

large fluctuations —namely, the critical fluctuations—
leading to decorrelation); ergo, we have a perfect ordered
crystal in this limit. The correlation function, therefore,
must not decay when gI] = Go; hence ql

=d —2 and

C(R) =g(R/gI] ), as we assumed here.
In renormalization-group jargon, the correlation

length g in critical phenomena is associated with flows

away from a finite temperature, disordered fixed point,
characterizing the system at T„where C(R ) already de-

cays to zero as ~R~~ (&G; while in the quenched disorder
problem, gp is associated with flows away from an or-
dered, T=O fixed point characterizing the pure, ordered
crystal, in which C(R~ (&(& ) is finite, reflecting the pres-
ence of long-ranged order.

This argument is supported by an analytic calculation'
of C(R} for a simple model of a tangled quenched ran-

dorn array of dislocations. This calculation also finds an
analytic C(R/gp) near R =0.

We begin by writing in terms of the replica fields h

C(q„x)= ( exp I iq, [h~(x) —hr(0)] j ), (B1)

where the average is over the Hamiltonian (2.16) in the
usual n ~0 limit. We proceed by evaluating this average
perturbatively in u. This leads to

APPENDIX B

In this Appendix, we compute the exponent q)(q, ) for
the algebraic decay of the experimentally measurable
correlation function

—g(q )

C (q„x—:( exp [iq, [h (x)—h (0)]j ) GG

a

C(q„x&=(exp iq, [h (x& —hs(t»]+o X Jd x, oos(Ge[h, (x, &

—hptx, &]]
aWP G

m m m

, I Iidx; X e"pjiq, [h (x&—h„(0&]j ]i sos[6 [h, tx, &

—hp (x, &]jl
=0 ' i =1

I a&P I

(B2)

iq [h (x]—h (0]]& (B3}

Using the fact that for a variable with a Gaussian distri-
bution (e")=e'

C(](q„x)=expI —
—,'q, ([h (x)—h (0)] )0 . (B4)

The Gaussian average in the exponential is now readily
evaluated using Eq. (2.19) and some straightforward
Fourier transform manipulations. We find

where g(, «} is a sum over all n possible values
I I

(remember n ~0 at the end) of each a; and P;, with i run-

ning from 1 to m, and a; and P, not equal, and where

( )o denotes an average over the Gaussian ensemble
defined by the Hamiltonian (2.16) with u =0.

We will first go explicitly through the first few terms in
the expansion to identify those terms in the sum on Ia,P j
and regions of integration over I; which dominate each
term in perturbation theory. These low-order terms es-
tablish a pattern which permits us to write down the
dominant terms at arbitrary order. We evaluate these
terms, and we finally identify which order, for a given q„
dominates at large ~x~; this will give us our final result for
qi(q, ). We have verified that this approach, when applied
to the pure (bulk-ordered) roughening problem, recovers
the result, Eq. (3.20), derived by other means.

Consider first the zeroth-order term

qz K
2 K K

(B6}

&& cos( G0[h (x') —h p(x)] j ) o (B7)

vanishes in the thermodynamic (L ~ (x& ) limit, for all x.
To see this, we rewrite the cosine using cosx=(e'"
+e '")/2 and again use the fact that for a Gaussian en-

&/2(x')semble (e")=e'~ (" ). This yields

C, (q„x}=g f d x'exp( —] ( Iq, [h (x)—hr(0)]
aWP

—G(][h (x') —h p(x') ] j )0 )

+(G(]~—G(]) (B8)

Consider for the moment just the piece of the argu-
ment of the exponential proportional to the G0. This
piece is also proportional to

Here a =2qr/G0 is a lattice constant, and the constant

A0 is a dimensionless "fudge factor" of order unity that
takes into account fluctuations on short length scales
(large q) which are not accurately described by Eq. (2.19).

The first-order term

C, (q„x)= g f d x'(e
a~P

X
C(](q„x)= A(]

with

—go(q )

/xf~m, (B5)
C p=(h (x'))6+(hp(x'))6 —2(h (x')hp(x'))0 .

Using Eq. (2.19) and Fourier transforming back to real
space yields
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L K K
C &= ln — 2 ——— 1 ——

~K ~ K K

ln(L /a)

as L~ ~, where L is the linear extent of the surface.
Thus the argument of the exponential in Eq. (88) has a

piece proportional to Go which goes to —Do in the ther-
modynamic limit. This cannot be cancelled (for arbitrary
a, ) by any of the other terms arising from the expansion
of the exponent in Eq. (BS), since those terms have a
different dependence on Go. After exponentiating, the
power-law dependence on L given by the preceding equa-
tion is sufficiently strong to make this term vanish in the
thermodynamic limit.

Consider now the second-order term

Cz(x}=
a&P, a'WP'

d'x'd'x" exp —
—,
'

q, » —» 0 +Gp» x' —
»13

x' +» ~
x" —»p x" '

G (89)

c, = —2(5 +5)i' —5 tr
—5' ) —4 . (810)

c2 is nonpositive definite, and can only vanish when
a =p' and p=a'. Only for this choice of indices can the
second-order term Eq. (89) not vanish. Once we have
made this choice, we can rewrite the coefficient of Go in
the exponential as

([h (x'}—h (x")+h&(x")—h&(x')] )

=(2/~E')»[l(x' —x")/a I]

+3 other sign permutations.
In light of our experience with the first-order term, a

natural first step in evaluating this term seems to be to
identify those terms proportional to Go ln(L/a) in the ar-
gument of the exponential. For the explicitly displayed
term in (89), we find that Go ln(L /a) has coefficient

is precisely the factor that determined the zeroth-order
dependence on x. So clearly any different dependence on
x comes from those terms in the sum on a and p with ei-
ther a=y or p=y (but not both, since asap). For p=y,
the factor (812) is largest when x" is near 0 and x' is near
x. For q, GO/~E &2, the integrals over x' and x" con-
verge near these regions; this condition is always satisfied
for q, & Go in the rough regime. For smaller q„ the in-

tegral over x' and x" is dominated by those regions far
from x and 0. As discussed before, when this happens
this term has the same functional dependence on lxl as
the zeroth-order term.

Returning to the case q, Go/irK) 2, performing the
convergent integrals over x' and x" amounts, for large
lxl, to absorbing the numerical values of these integrals
into an overall multiplicative constant and replacing x'
with 0 and x" with x in (89). This yields

where we have again used Eq. (2.19) and Fourier
transformed back to real space. %'e have also used the
fact that asap. This term gives the integrand in (89) an
overall multiplicative factor of

Go/~K
X X (811)

x
Cz(q„x)=c'—

where

Go
7l2 — 2 —=2' K

qz

Go

2qz— '+2
Go

(813)

(814)

The exponent G() /n. K is )4 in the rough regime
E (Go/4m. ; hence the integral in (89) (over the difference
x—x") converges in the infrared. This factor makes the
integral tend to be dominated by points with x' close to
x". Now consider the cross term proportional to q, Go in
the argument of the exponential in (89). By the same ma-
nipulations as before, we now find that this leads to a
multiplicative factor of

(g 60/ K)(s
& ss&)

(812)

This is the only term that connects the dummy points x'
and x" to the two points 0 and x that we are trying to
calculate. Those terms in the sum on a and p with nei-
ther a nor p=y, therefore, clearly cannot change the
dependence of C(q„x) on x from its zeroth-order form,
since for those terms the exponent in (812) vanishes and
the dependence on x comes exclusively from the
Iqz[h~(x) —h~(0)]} term in the exponent in (89), which

and we have ignored all of the aforementioned terms that
have the same dependence on x as the zeroth-order term.

Note that g2 & go when q, & Go: thus in that regime of
q, Cz(q„x) ))Co(q„x) as lxl ~ 0(). This means that once

q, grows beyond Go, the asymptotic exponent of algebra-
ic decay zl(q, ) of the full C(q„x) changes abruptly from

z)o(q, ) to z)z(q, ). There is no actual discontinuity in

rI(q, ), since z)z(Go)=z)0(GO); its slope drj(q, )/dq, is

discontinuous, however. We shall now show that such a
changeover happens every time q, passes an integral mul-
tiple of Go. at q, =mGO, g(q, } goes from being equal to
q2~ 2 to q2~, where q2~ is the exponent of algebraic de-
cay of the largest term at 2m'th order in perturbation
theory.

The same type of analysis of the next few even terms in
perturbation theory shows that a few simple rules deter-
mine which terms in the sums over the dummy indices

j a;,p; } and which regions of integration over the dummy
variables x; dominate. These rules are in exact
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correspondence with the second-order case just present-
ed: (1) All of the indices must be equal to other indices in

pairs; otherwise the term vanishes in the thermodynamic
limit L~ ao, or it makes a contribution which vanishes
at large x (i.e., has larger g). (2) For each i, one of the in-
dices must be =y. (3) For each equal pair of indices, the
integral over the dummy position variables Ix,. j is dom-

inated by the regime in which one of them is equal to x,
and the other to zero. The integrals around these regions
converge for q, 60/mE & 2; so, for large x, we can, up to
an overall multiplicative factor, simply replace each x,- by
either x or 0.

Using these rules, we can rewrite the general 2m'th or-
der term as

m m

Cz = A2 g g exp —
—,
' (q, —mGo)[hr(x) —hr(0)]+Go g [h& (x)—

h& (0}]
p=& IlapI p=1 G

(815)

where A2 is a constant. Evaluating the average in the exponential as before yields

(Ip I)

Cq =A2 (816}

with

rizm ( IP~ ) ) = (q, mG—o ) 2 ——+2(q, mGo—)mGo 1 ——

+mG 2 ——+G [m —m n] 1 ———+n 2 ——G2 K 2 2 K K
0 K 0 K K

(817)

Here n, ([)t3 I ) is the number of pairs of Ps that are equal to each order. Reorganizing this rather messy expression
gives

G2
nz

Go

2
K 2qz

2 ——+m 1 — +m +n,
K Go

(818)

Clearly, at large ix), the dominant term in the sum over tP~ J in (816) is that with the smallest ri2 (IP&) ); inspection of
(818) makes it clear that this is the term with all of the P's difFerent; n, =0. Keeping only this term at each order, and
summing all the C2 's, we obtain an expression for C (q„x):

C(q„x)= g Az
m=0

' —g(m, q )

(819)

with

q,

Go

K 2qz
2 ——+m +m 1—

K Go
(820)

Note that this agrees with Eq. (814) for m = 1.
The sum in (819) is also dominated, at large x, by the term with the smallest g(m). Minimizing (820) over all integer

m gives m =[q, /Go], where [y] is the largest integer (y. Inserting this into (820) and keeping only the corresponding
term in (819) gives Eq. (3.21) for g(q, ).

'See, e.g., S. T. Chui and J. D. Weeks, Phys. Rev. B 14, 4978
(1976); J. V. Jose, L. P. KadanoF, S. Kirkpatrick, and D. R.
Nelson, ibid. 16, 1217 (1977}. For a more recent discussion
see C. Rottmann and M. %'ortis, E'bid. 29, 328 (1984); and H.

van Beijeren and I. Nolden, in Structure and Dynamics of
Surfaces II, edited by W. Schommers and P. von Blanck-
enhagen (Springer, Berlin, 1987}.

Doubts about this picture have been raised by F. S. Rys, Phys.
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Rev. Lett. 56, 624 (1986).
See, e.g., E. H. Conrad et al. , J. Chem. Phys. 84, 1015 (1986);

85, 4756(E) (1986); J. Lapujoulade, J. Perreau, and A. Karra,
Surf. Sci. 129, 59 (1983); F. Fabre, D. Gorse, J. Lapujoulade,
and B. Salanon, Europhys. Lett. 3, 737 (1987); G. A. Held, J.
L. Jordan-Sweet, P. M. Horn, A. Mak, and R. J. Birgeneau,
Phys. Rev. Lett. 59, 2075 (1987).
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