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Spin excitations and pairing gaps in the superconducting state of YBa2Cu307 —$
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We show that it is possible to give a quantitative account of the temperature dependence of the
measurements of the Knight shift and the spin-lattice-relaxation times for planar copper and oxygen
sites in the superconducting state of YBa2Cu307 z by assuming that the planar excitations form a
strongly coupled antiferromagnetic Fermi liquid. We consider anisotropic singlet and triplet pair-
ing states with an orbital momentum I 2 and report on gap parameters and antiferromagnetic
enhancement factors that are consistent with experiment. We present as well our calculations for
the chain sites, for which an additional relaxation mechanism appears required.

Nuclear magnetic resonance experiments on Cu and
Cu nuclei in YBa2Cu307 s (Refs. 1 and 2) provide an

excellent microscopic probe of the static and dynamic
field fluctuations in the local surrounding of the nuclei.
The recent relaxation time and shift measurements of
Pennington et al. on a single-crystal sample in the nor-
mal state, when combined with the measurement of the
Knight shift in the superconducting state of the chain
Cu(1) and the planar Cu(2) in aligned powder samples of
YBa2Cu307 by Takigawa et al. , who determine the local
magnetic field from measurements of bulk demagnetizing
factors, and Barrett et al. who determine the local mag-
netic field by using the 'Y resonance line as a reference
probe, make possible a rather complete phenomenologi-
cal analysis of the possible values of the hyperfine cou-
plings at both the chain Cu(1) and planar Cu(2) sides
without referring to any particular model. As Monien,
Pines, and Slichter and Pennington et al. ' have shown,
it is possible to give a consistent account of the normal-
state experiments based on a description of the Cu +

spins as local moments, supplemented by the introduc-
tion of hole excitations in both the chains and planes.
However, such a description runs into difficulties when it
is applied to the experimental data for the spin-lattice-
relaxation time and the Knight shift in the superconduct-
ing state, which show that the spin-relaxation time,
1/T„of the Cu(1) and Cu(2) nuclei drops very rapidly at
the transition temperature T„' while for the planar sites
the spin contribution to the Knight shift likewise de-
creases, and, at low temperatures, may vanish linearly
with temperature. '

There are two alternatives to explain the decreasing
spin-relaxation time in the superconducting state. One is
that the Cu + local moments are not an essential part of
the superconductivity, but that as the system goes super-
conducting the Cu + local moments are less effectively
scattered by the hole excitations, so that by the time one
reaches the ground state at T =0 all spins are paired off.
In the second picture the Cu + spins are regarded as an
essential part of the normal-state quantum liquid, which
then goes superconducting at T, . In this communication
we explore the consequences of this second approach. To

be more specific, we assume that both above T, and in
the superconducting state the Cu + spins are strongly hy-
bridized with the planar oxygen holes in such a way that
the quasiparticles in the resulting Fermi liquid behave in
the neighborhood of a Cu nucleus very much like local
moments, while maintaining elsewhere an essentially
itinerant character. Since local moments at adjacent Cu
nuclear sites couple antiferromagnetically, the quasiparti-
cles of the hybridized hole-Cu + Fermi liquid will conse-
quently interact antiferromagnetically. We show that by
treating the Cu + spins in the superconducting state as
an antiferromagnetic Fermi liquid, it is possible to give a
quantitative account of the temperature dependence of
the planar spin-relaxation rate' which is consistent with
the temperature dependence of the Knight-shift measure-
ments by Takigawa et al. and Barrett et al. 5

In addition to the usual Bardeen-Cooper-Schrieffer
(BCS) isotropic s-wave state, we consider in some detail
three kinds of anisotropic states: anisotropic s-wave
states, conventional d-wave states, and d-wave states with
an admixture of higher harmonics.

The gap functions we consider are shown in Fig. 1 as a
function of the angle P where tb is the angle in the a, b
plane describing the position on the cylindrical Fermi
surface. Our reasons for exploring these anisotropic
states are twofold. First, the relaxation rate (1/T&)
shows no coherence peak just below T„as one would ex-
pect for a singlet, I =0 superconductor, if the quasiparti-
cles are sufficiently well defined. With such anisotropic
pairing states one reduces, or eliminates altogether, the
BCS coherence peak in T, just below the superconducting
transition. Second, Monien and Zawadowski find that
d-wave singlet states provide an almost unique explana-
tion of the substantial density of states found below the
energy gap in Raman-scattering experiments. We show
that with proper choice of gap parameters and antiferro-
magnetic enhancement factors, these states also lead to
planar spin-lattice-relaxation rates which are in quantita-
tive agreement with experiment.

We first consider the normal state, for which both the
magnitude and temperature dependence of the spin relax-
ation of the Cu(2) nuclei are anomalous. Thus the value
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denominator, and, in view of the smallness of co, replace
yc(q, co) by its static value, yo(q, T). The integrand is
strongly peaked around the antiferromagnetic wave vec-
tor Q. The largest contribution to the integral is there-
fore proportional to

[1—N(0)J.s(Q T)ro(Q T}] '

0.6
E

CI

c3

and we can write

1 1 1

T, (T, )«„[1—
A,(T)]' (3)

0.4
Here we have introduced the average, temperature-
dependent, enhancement factor

0.2 A ( T) = ( N (0)J,s(Q, T)yo(Q, T) ) (4)

0
0 m/4

FIG. 1. The gap function for the s-wave and d-wave pairing
states considered here are shown as a function of t)), the angle on
the cylindrical Fermi surface of the CuO& planes. For the gap
functions on the chain Fermi surface P has to be replaced by po-
sition on the chain sheet ak„, where a is the dimension of the
unit cell.

of (1/T, ) just above T, is strongly enhanced over the
band structure value' " and is weakly temperature
dependent, rising by only some 50% between 100 and 300
K.' We propose that in the immediate vicinity of T, the
enhancement is produced by an antiferromagnetic cou-
pling between the quasiparticles, leading to a spin-spin
correlation function that is strongly peaked at a large q
value, say Q. To be more quantitative, we analyze the be-
havior of a simple random-phase approximation expres-
sion for the spin-spin correlation function,

1 go'(q, co)/co

T& T [1 N(0)J, fry—o(q, ro)] +[go'(q, ro)J,s.N(0)]

the prime denotes the real part and the double prime
denotes the imaginary part of y, and ro is the (extremely
low) frequency of the nuclear magnetic resonance. The
imaginary part of the spin-spin correlation function y is
proportional to energy transfer co for any type of Fermi
liquid; therefore we can neglect the second term in the

X.(q, ~, T}
y(q, co, T) =

1 N(0)J,fr(q, T)yo(q, c—o, T)

where go is the bare spin-spin correlation function, and
N(0) is the quasiparticle density of states. The effective
antiferromagnetic coupling constant, J,s(q, T}, is as-
sumed to depend on both the wave vector q and the tem-
perature T and to peak at Q. For the spin-relaxation
rate, only the imaginary part of y is needed

to describe the influence of antiferromagnetic correla-
tions on the noninteracting quasiparticle relaxation time,
(T& )«„. If we assume that the real part of the spin-spin
correlation function at large Q, yo(Q, T), scales with tem-
perature approximately like yo(q =0, T), we can write the
corresponding expression in the superconducting state in
terms of the Yosida function

Y(T)=go(q =0, T)/yo(q =0, T, )

as

1 1

( T) )scs [1—
A, ( T) Y'( T) ]

where (T, )acs is that calculated for a given pairing state
in the absence of quasiparticle interaction. On this sim-
ple picture, the spin-relaxation rate above T, is enhanced
by a factor [1—

A,(T,)],while, as a consequence of the
small coherence length the pairing correlations in the su-
perconductivity state reduce the influence of the normal-
state enhancement factor, A, ( T, ). Thus the spin-lattice-
relaxation time in the superconducting state is deter-
mined by the product of A, (T, ) and the Yosida function
Y(T). Since for any BCS pairing state, Y(T) decreases
with temperature below T„ to the extent that A, ( & 1) is
appreciable, one will get a fall off of (T, )

' below T„
which is faster than that predicted by the behavior of
gc'(q, T) alone. The magnitude of this enhanced reduc-
tion (T&) [which results from a reduction in the
normal-state enhancement factor, (1—

A, } ] depends of
course on A,(T, ) and Y(T).

We estimate the possible magnitude of this enhanced
reduction by first using the experimental data on the
Knight shift to constrain the Yosida function for the four
pairing states we consider here. Having obtained the op-
timal gap function for a specific set of Knight-shift mea-
surements we calculate the resulting spin-relaxation rate
and compare it to the actual measurement.

The experimental results on the Knight shift obtained
by Takigawa et al. and Barrett et al. possess two re-
markable features in common; for a field applied in the c
direction, the Knight shift varies little with temperature,
while for fields in the a or b directions, it displays a quite
considerable temperature variation. Indeed, Barrett
et al. find that for the c direction, the Knight shift is,
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within experimental error, independent of temperature
and nearly equal to zero; for a suitable choice of their
demagnetizing factor, a similar result is obtained by Taki-
gawa et al. Since spin-orbit coupling is not expected to
play a large role, one possible explanation for these re-
sults is that the superconducting pairing state is a triplet
such that the spin susceptibility remains constant in one
direction, and varies with temperature in the others. To
pursue this possibility, we consider a triplet order param-
eter characterized by a vector d in spin space, which
determines the anisotropy of the spin susceptibility in the
superconducting state. At zero temperature the aniso-
tropic spin susceptibility tensor can be written as'

y p(T) dSk d (k)dp(k)

X-p( T. )
' ~ Id(k) I'

(6)

which is —, for the simplest choice for the orbital eigen-
function g„=k„. In the superconducting states, both
experimental groups find a reduction of the Knight shift
in the a, b direction of -0.3% out of -0.6% for the total
Knight shift, which is possible only if the Knight shift in
the a and b direction has a minimal orbital contribution.
Since such a result is in sharp contrast with the expected
anisotropy (-4) of the orbital shift, a planar triplet state
can be ruled out.

We next consider the possibility of other triplet pair
states. Since the total Knight shift in the c direction is
nearly independent of temperature below T, one is forced
to conclude that the measured total Knight shift of 1.2%
(Ref. 5) in both the normal and superconducting state is,
within experimental error, entirely of orbital origin.
Thus K, = 1.2%. Turning next to the a and b directions,
Barrett et al. have calculated the orbital susceptibility
anisotropy to be, E, /E, =—4.4, in which case we would
expect a orbital Knight shift in the a direction of
E, =0.29% and a spin Knight shift in the normal state
which is K, =0.30%. Since the measured net change in

the total Knight shift is 0.30+0.02% these results rule
out the possibility of a p-wave pairing state inasmuch as
the latter requires a minimum residual spin susceptibility
of T=O, in one direction, of —,

' the normal-state value.
Put another way, a Balian-Werthamer p-wave state is
only consistent with experiment if the orbital susceptibili-
ty anisotropy E, /E, ~6. We therefore turn our atten-
tion to singlet pair states.

One explanation of the near vanishing of the Knight
shift in the c direction is that one has two distinct contri-

where S characterizes the Fermi surface, which has the
form of a cylinder for the plane. One p-wave order pa-
rameter which has the required properties and is compa-
tible with the orthorhombic symmetry is a so-called pla-
nar state with a d vecto-r d=($„,$,0), where f„adng
are orbital eigenfunctions which transform like k, and
k . For this special pairing state y„(T) stays constant
and y„and y&b are reduced at zero temperature by a fac-
tor

de, I q.,y
I2

S 2

butions to the planar Knight shift, one proportional to
the spin susceptibility, y', associated with the Cu + local
moments, and a second, proportional to g", an oxygen
hole spin susceptibility, and that these respective contri-
butions nearly cancel out for fields applied in the c direc-
tion. If, however, one assumes that the hole contribu-
tion to the planar Knight shift is isotropic then one can
isolate the Cu + contribution g', by examining the behav-
ior of the axial Knight shift, K,„(T)=K, ( T) K,—( T).
The results of Takigawa et al. and of Barrett et al. for
the reduced axial Knight shift,

K,„(T) =K,„(T) /K, „(T, ),
which is then identical to y'( T) =g'( T)/y'( T, ), are
shown in Figs. 2(a) and 2(b). There we see that Takigawa
et al. find a linear temperature dependence for K,„(T)
below 40 K, while Barrett et al. find that K,„(T) is fiat
below -20 K; a measure of the sensitivity of the experi-
mental results to low-temperature values is that within
experimental error, a linear temperature dependence, but
with a far less pronounced slope, provides a fit to the data
of Barrett et al.

To compare with experiment we need to calculate the
Yosida function Y(T). In a weak coupling BCS super-
conductor, the Yosida function for an anisotropic singlet
superconductor has the form'

Y(T)= S dE — N(E),
00

where N(E) denotes the density of states and f is the
Fermi distribution function. If, as if the case for the two
s-pair states we consider, there is a minimum gap 5;„in
the density of states below which N(E) vanishes, Y(T)
dies off exponentially like Y( T)-exp( b,„/T); on—the
other hand, for a gapless superconductor with a line of
nodes on the Fermi surface, such as that proposed by
Monien and Zawadowski, the density of states is propor-
tional to the energy at small energies and the Yosida
function is —T for temperatures below 0.1 T, . More
specifically, for a gap with a line of nodes the density of
states rises linearly with the energy E,

[N(E/b, )/N(0)] —A [E/b(0)],

where the slope A is determined by the slope with which
the gap vanishes in the neighborhood of the node, and
the value of the maximum gap. The slope of the gap
function in the neighborhood of the node determines
therefore how many quasiparticles are available at a
given energy.

In contrast to the ordinary s-wave pairing state, the
density of states for the anisotropic s-wave state has a
much weaker singularity at the maximum gap. We con-
sider here a particular example of such an anisotropic s-
wave state, in which the gap modulation that results from
coupling to higher angular momentum states is 20%. In
considering possible d-wave states, we demonstrate the
effect of a large slope of the gap function in the neighbor-
hood of the zero by evaluating the Yosida function for
two different d-wave gap functions: one corresponds to a
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simple 1=2 singlet superconductor, while the second
contains an admixture of higher 1. The gap for pairs in
the 1 =2 singlet state is substantial on most parts of the
Fermi surface, and therefore the density of states below

l.2

the gap is much lower than for the gap function that de-
scribes pairs involving higher spherical harmonies.

For the d-wave states, the Yosida function at low tern-

peratures has the approximate form

Y(T)—=21n2A
T

0.8—

~ Data of Takigawa et al. [4]
where b(0) is the zero-temperature energy gap. The
weak-coupling values for the zero-temperature gap
b,(T=0) and the specific-heat jump associated with the
superconductivity in the planes only are given in Table I.
%e use a common interpolation formula for the tempera-
ture dependence of the gap:

0.6—
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1/2
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The fit parameters are the zero-temperature gap and the
specific-heat jump that determines the slope of 5 ( T) in
the neighborhood of T, . These two parameters take care
of the strong-coupling corrections. The resulting Yosida
function, Y(T), is compared with the experimental re-
sults of Takigawa et al. , for the axial Knight shift,
K,„(T)=K, ( T) K, ( T) in—Fig. 2(a). The optimal values
of the parameters b,(T=0) and the specific-heat jump
-Bb, /BT for the two d-wave states, are given in Table I.

The best fits to the bare y', b(T)/y', b(T, ) for the
Knight-shift data of Barrett et al. with the Yosida func-
tion calculated for both anisotropic s states and d states
are shown in Fig. 2(b) and 2(c). As may' be seen there, for
all temperatures except 20 K, equally good fits to their
data are obtained with either s-wave pairing or d-wave
pairing. The values for the optimal parameters h(T =0)
and the specific-heat jump are given in Table I. The gap
required for the "best fit" d-wave state appears unphysi-
cally large. It is interesting to note that for all investigat-
ed pairing states except the d-wave state the specific-heat
jump is enhanced by a factor of the order two over the
weak-coupling value.

The reasonable agreement of the Knight-shift tempera-
ture dependence with our simple fits encourages us to ex-
tend our simple analysis to the spin-relaxation rate, and
hence to determine A, ( T, ). A simple formula for the
spin-relaxation rate in the superconducting state for an
unconventional superconductor can be obtained in the
following way. For a noninteracting Fermi liquid we
may write'

FIG. 2. Fits to the experimental Cu(2) Knight-shift data nor-
malized to the normal-state values in the superconducting state:
(a) the data of Takigawa et al. (Ref. 4) is compared with the Yo-
sida function calculated for two d-wave states; (b) the data of
Barrett et al. (Ref. 5) is compared with the Yosida function cal-
culated for two s-wave states, which yield similar results within
the accuracy of the plot; (c) the data of Barrett et al. is com-
pared with the Yosida function calculated for two d-wave states.
Optimal fit parameters are given in Table I.

(1/T, T)-g yo (q, co)/co
q

= f dE — [N'(E)+M'(E)], (10)
BE

where N(E) is the density of states

N(E) (Re[E/(E2 Q2 )1/2])

and M(E), defined by
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M(E)=(Re[6k/(E b—x)' ])„s,
takes into account the coherence factors present for s-
wave state. This formula extends the simple Korringa

law to the superconducting phase for noninteracting fer-
mions with an unconventional gap. Extending this for-
mula to the case of antiferromagnetically interacting fer-
mions we obtain from Eq. (3)

(1/T, T)-gyo'(q, co)/co= I dE — [N (E)+M (E)]/[1—
A. ( T, ) Y( T)]

BE
q

Since we do not know how much of the enhancement in
the normal state comes from band-structure effects, we
have plotted, in Figs. 3(a)-3(e), the spin-lattice-relaxation
rate, (1/T, ) for the Cu(2) nuclei, for different enhance-
ment factors for the different pairing states normalized to
the value at T, .

The inset of Fig. 3(a) illustrates the way in which a
temperature-dependent antiferromagnetic enhancement
acts to reduce the coherence peak in the relaxation rate
1/T, for the anisotropic s-wave state. With no
temperature-dependent antiferromagnetic enhancement,
the coherence peak is so substantial that it appears
difficult, if not impossible, to reduce the peak by lifetime
broadening without obtaining an unacceptably gradual
fall off of 1/T, in the vicinity of T, . On the other hand,
with a temperature-dependent antiferromagnetic
enhancement factor, A, -=0.7, the size of the coherence
peak is reduced by a factor of 2, and it is possible that the
lifetime effects could act to reduce the peak further
without producing an unacceptably slow fall off of
(1/T, ) in the vicinity of T, .

Insofar as the coherence peak is concerned, matters are
significantly improved by going to pure d-wave pairing
states since no coherence peak is found, even in the ab-
sence of a temperature-dependent antiferromagnetic
enhancement. One can observe clearly that, for states
other than the d-wave state, the calculated curve for no
temperature-dependent antiferromagnetic enhancement
gives a relaxation rate that is too long for all tempera-
tures, while the temperature dependence of the spin-
relaxation rate is dramatically changed by a
temperature-dependent antiferromagnetic interaction. In
Figures 3(a)—3(c), we use the gap parameters deduced
from the Knight-shift measurement by Barrett et al. to
calculate the spin-relaxation rate. We find that for the

anisotropic s state, Fig. 3(a), an antiferromagnetic
enhancement of A, -0.7 is required for a reasonable fit,
whereas for the d-wave state with higher l admixture,
Fig. 3(c), a A, -0.3 is sufficient. The spin-relaxation rate
calculated for the pure d-wave state, Fig. 3(b), does not fit

the experimental curve. However, if instead of finding a
best fit to the Knight shift and then calculating (1/T, ),
one inverts the process, choosing gap parameters which
fit (1/Ti ) and then calculating the Knight shift, matters
change significantly. Thus in Fig. 4(a) we show a pure d
wave "best fit" to (1/T, ), (the parameters are given in
Table II) in which any antiferromagnetic enhancement is
assumed to be independent of temperature, and in Fig.
4(b) compare the calculated Knight shift with the experi-
mental results of Barrett et al. The fit to the Knight-
shift experiments clearly falls within the experimental er-
ror, while our pure d-wave fit to (1/T, ) is comparable to
the best fit (with an antiferromagnetic enhancement fac-
tor of A, =O. 5) obtained in Fig. 3(d).

If we use the gap parameters deduced from the
Knight-shift experiments by Takigawa et al. , we require
an antiferromagnetic enhancement of A, -0.5 [pure d
wave, Fig. 3(d)], or A, -O. 65 [d wave with higher A, admix-
ture, Fig. 3(e)], in order to explain the observed Cu(2) re-
laxation rate. The fact that at temperatures less than
-0.3 T„ the experimental values of (1/Ti ) lie above the
theoretical values may reflect the presence of added
mechanisms for spin-lattice relaxation.

We further note that the low-temperature behavior of
the calculated spin-relaxation rate depends only very
weakly on the antiferromagnetic enhancement factor A,

because the enhancement becomes ineffective at low tem-
peratures where the Yosida function is small. For the d
wave [Figs. 3(b) —3(e)] states the density of states is pro-
portional to the energy at low energies so that we expect

TABLE I. Upper part: Optimal Parameters for the Cu(2) Knight shift measured by Takigawa et al.
(Ref. 4). Lower part: Optimal Parameters for the Cu(2) Knight shift measured by Barrett et al. (Ref.
5).

Pairing state

S
d'

%eak coupling
5( T =0)/kq T,

2.13
1.93

AC/C

0.95
1.17

Optimal fit
A(T =0)/kg T,

2.44
1.74

AC/C

1.97
2.36

S

d
d'

1.76
2.10
2.13
1.93

1.43
1.27
0.95
1.17

1.90
2.16

14.7
3.13

2.77
2.49
1.76
2.14
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FIG. 4. (a) Fit to the experimental Cu(2) spin-relaxation rate
of Imai et al. (Ref. 2), with d-wave pairing state with
6=5.12kT„(EC/C) =1.89. (b) Calculated Knight shift for
Cu(2) nuclei, using d-wave pairing state, with b, =5.12 kT„
b C/C =1.89.

TABLE II. d-wave pairing parameters chosen to fit the Cu(2)
relaxation rate measured by Imai et al. (Ref. 2).

Pairing state 5( T =0)/k~ T,

5.12 1.89

We further note that a Fermi-liquid description (but
with a somewhat different quasiparticle interaction) can
be used to analyze the T, and Knight-shift data for the
chain sites in YBazCu307. In Fig. 5 we show the optimal
fit to the Cu(1) Knight-shift data of Barrett et al. , with
the Yosida function calculated for the two s-wave states.
We obtain an excellent fit to the Knight shift with the pa-
rameter values for the zero-temperature gap and the
specific-heat jump given in Table I. We emphasize that
the results of Barrett et al. demonstrate that the pairing
states for chain pairs are not identical to those for planar
pairs. As may be seen in Table III, even though it is pos-
sible that one can describe both plane and chain Knight
shifts with anisotropic s-state pairs, the gap parameters
and specific-heat jumps for the chain and plane quasipar-
ticles are different.

A second way in which chains and planes differ is in
the temperature dependence of the spin-lattice relaxation
rate. We are not able to explain the temperature depen-
dence of the Cu(1) relaxation in the superconducting state
by using values of the pairing parameters which fit the
Knight-shift experiments. As may be seen in Fig. 6, our
calculated values do not agree with the experimental
values of Yasuoka et al. , with or without antiferromag-
netic enhancement.

Hammel et a/. ' find that the spin-lattice relaxation of
the ' 0 planar sites below T, follows the same tempera-
ture dependence as that of the Cu(2) nuclei for T)40 K,
while if one calculates the temperature dependence of the
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FIG. 5. Fit to the experimental Cu(1) Knight-shift data of
Barrett et al. (Ref. 5) normalized to the normal-state value in

the superconducting state with the Yosida function calculated
for the s-wave pairing states.
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reduced ' 0 Knight shift in the superconducting state
from the experiment of Horavtic et al. ,

' one obtains a
result close to that found for the corresponding value for
y, (T) from the experimental data of Barrett et a!. Thus
it is possible that in the superconducting state the same
planar excitations are responsible for the Knight shift
and T, for both the Cu(2) and ' 0 planar sites.

We would like to emphasize that although the agree-
ment between our calculated values and experiment is
quite good it depends only on the energy dependence of
the density of states which is quite insensitive to the
structure of the gap except for the topology of the zeroes.
Although we do not claim that we can determine the
structure of the gap, it seems that the interpretation of
two experiments, the Knight-shift measurement of Taki-
gawa et a!. and the Raman scattering experiment, re-
quire a gap with a line of nodes on the Fermi surface,
while the Cu(2) Knight shift of Barrett et a!. can be
fitted with either s- or d-wave states and the O(2) Knight
shift of Horavtic et al. ' require an anisotropic s-wave
state with a spatially varying, but everywhere finite, ener-

gy gap
In summary, we find that a simple Fermi-liquid-BCS

approach, in which appropriately chosen energy gaps are
combined with a moderate antiferromagnetic interaction,
is sufficient to explain why the temperature dependence
of the Knight shift and the relaxation rate of the Cu(2)
nuclei are different from those of the Cu(l) nuclei in the
superconducting state. We further note that the depar-
ture of the gap function from a constant, combined with

FIG. 6. The spin-relaxation rate calculated normalized to the
normal-state value for an anisotropic s-wave state is shown in
comparison with experimental data for the Cu(1) spin-relaxation
rate of Yasuoka et al. (Ref. 2). The notation is the same as in
Fig. 4.

the antiferromagnetic interaction, is sufficient to elimi-
nate any sizable coherence peak for spin-lattice relaxation
near T, . On the other hand, measurements of the tem-
perature dependence of the penetration depth at low tem-
peratures' are consistent with a finite energy gap every-
where on the Fermi surface, a result which is at first sight
in contradiction with the use of d-wave pairing states.
Obviously this apparent conflict needs to be resolved;
here we would like to point out that the penetration
depth for an anisotropic superconductor looks very much
like the s-wave case if experimental conditions are such
that the current which responds to the external magnetic
field involves quasiparticles in a region on the Fermi sur-
face where the gap is large. ' The gap function (d) shows
that even for an anisotropic superconductor the gap can
be quite substantial in a large area of the Fermi surface,
so that the presence of a line of nodes may not be detect-
able in a penetration depth experiment.

In carrying out the calculations described here, we ex-
amined the role played by a temperature-dependent anti-
ferromagnetic enhancement factor because of the promise
it offered to reduce substantially the coherence peak

TABLE III. Optimal Parameters for the Cu(1) Knight shift measured by Barrett et al. (Ref. 5).

Pairing state

s
s

Weak coupling
6( T =0)/k~ T,

1.76
2.10

hC/C

1.43
1.27

Optimal fit
b ( T =0)/k~ T,

1.50
1.71

AC/C

1.71
1.55
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found for s-state pairing, and to reconcile the best-fit
values of the Knight-shift experiments with the experi-
mental results for ( 1 /T, ). However, the experimental re-
sults of Hammel et al. ' demonstrate in a one-component
model of planar excitations that while considerable anti-
ferromagnetic enhancement is required to explain the
magnitude of the measured values of the Cu(2) relaxation
rate, in the normal state, that enhancement must be in
dependent of temperature below T„since only in this way
can one understand the measured constant ratio of the
O(2) relaxation rate to the Cu(2) relaxation rate over the
range rate, T, /4 5 T S T, [F.or a phenomenological
description of the role played by a temperature-
dependent antiferromagnetic correlation in the normal
state, we refer the interested reader to a forthcoming pa-
per by Millis, Monien, and Pines. J We conclude there-
fore that absent temperature-dependent feedback effects
(vertex) corrections which, in the superconducting state,
mimic our phenomenological temperature-dependent an-
tiferromagnetic enhancement factor, the measured values

of ( l/T, ) in the superconducting state would seem to re-
quire d-wave pairing, with an energy gap and strong-
coupling corrections comparable to those given in Table
II.
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