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Cu Knight shifts in the supercontiucting state of YBazCu3Q7 b (T, =90 K)
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The authors have used ' Y NMR to measure the internal magnetic field of a sample of
YBa:Cu30& z (T, =90 K) in the superconducting state to correct for the effects of the Meissner
shielding currents. They used this information to separate the magnetic-shift tensor into orbital
(chemical-shift) and spin (Knight-shift) contributions. They find that the temperature dependence
of the chain Cu Knight shift fits the classic Yosida function of weak-coupling, orbital-s-state, spin-
singlet BCS theory. For the planes, the Knight shift also requires a spin singlet, but with a strong-
coupling Yosida function. The best fit is for an orbital s state, but an orbital d state is also possible.
They find a zero-temperature gap b(0) of 1.76k& T, for the chains. For the planes, 6(0) can range
from 1.9k8T, to 3.lk~T, .

I. INTRODUCTION

It is well known that the nuclear-magnetic-resonance
(NMR) Knight shift E, can be used to measure the
electron-spin susceptibility as a function of temperature
in the superconducting state g ( T)] relative to the
normal-state spin susceptibility b' (T ) T, )] in a super-
conductor. ' In close analogy to the theory of superfluid
He, the functional form of g (T) can be used to distin-

guish between different possible types of spin- and
orbital-pairing states. It is clearly of great interest to
measure E ( T) in the superconducting state of the recent-
ly discovered high-T, superconductors in order to calcu-
late g (T) and derive information about the type of spin-
pairing state and the character of the energy gap in these
new materials.

We report measurements of the Cu Knight shift in
YBa2Cu307 s (T, =90 K) in the superconducting state,
using a uniaxially aligned powder sample. Due to demag-
netizing currents, the magnetic field inside a type-II su-
perconductor in the superconducting state is not equal to
the applied field. Therefore, an essential step in obtaining
accurate measurements of E(T}is determining the mag-
netic field inside the sample. We find that the difference
between the fields inside (B;„,} and outside (Ho) the sam-
ple are substantial. At 4.2 K, 8;„, is 0.05% lower than
Ho when Hormic, and 0.02% lower when Hole. We obtain
high precision and reliability by using the Y resonance
frequency to measure the internal field of the sample
directly. This is possible because the Y Knight shift is
known to be very small on the scale of the Cu shifts,
as we discuss below. The measurements are dificult be-
cause the Y spin-lattice relaxation times are long and
the gyromagnetic ratio, yz, is small, but we have found
means to carry them out with high precision.

We find that the Cu(l) (chain} y (T) follows the con-
ventional weak coupling Bar-deen-Cooper-Schrieffer (BCS)
form for an s-state singlet (the Yosida function ) with the

low-temperature gap given by 2h( T =0)=3.52k3 T„
where T, is the superconducting transition temperature.
The Cu(2) (plane) y ( T},on the other hand, can be fit by
an s-wave or d-wave spin-singlet strong-coupling Yosida
function assuming energy gaps which are larger than the
weak-coupling value.

Takigawa et al. were the first to measure the
Cu Knight shifts in the super conducting state

YBa2Cu307 z. They corrected for the demagnetizing
effects mentioned above by measuring the resonant fre-
quency and magnetization M versus the applied field at 7
K. From these measurements they deduced the relation-
ship between the internal field correction and M at this
temperature. They then measured M at each new tem-
perature, and used this relationship to calculate the cor-
responding internal field correction. They point out that
there is uncertainty in their diamagnetic correction and
warn that one feature of their corrected data is probably
spurious. We have made the determination of the Cu
Knight shifts versus temperature, E (T), reported here
because knowledge of E ( T) is of fundamental importance
and because our use of the Y NMR to make the inter-
nal field correction is expected to be very reliable. Our
results for the Cu Knight shifts differ substantially from
those of Takigawa et al. in both the zero-temperature
values and temperature dependences.

II. EXPERIMENT

Our YBa2Cu307 & sample was prepared by thoroughly
mixing and grinding BaCO3, Yz03, and CuO powders
(99.999% pure) in a dry nitrogen atmosphere and react-
ing the mixture in air at 950'C for 24 h, with two inter-
mediate grindings. The powder was then placed on a pla-
tinum sheet and treated in a stream of pure oxygen at
900'C for 24 h and slowly cooled to room temperature at
a rate of 12'C/h. The Meissner effect is shown as the in-
set of Fig. 1. The procedure used to align the crystallites
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was essentially that of Farrell et al. A sample holder
was devised which allowed the sample to have a well-
defined orientation with respect to the field. The
YBa2Cu307 & sample powder was passed through a No.
400 mesh screen, so that the crystallites used were all
smaller than 38 pm in diameter. Next, 1.98 g of the re-
sulting YBazCu307 s powder was stirred into epoxy (Sty-
cast 1266) with an approximate packing fraction of 0.1 by
volume. This mixture was placed in the sample holder
and cured in a 8.1-T field. The c axes were well aligned
along the field direction, as confirmed by the sharp
features in the Cu NMR spectrum. Figure 1 shows the
normal-state NMR spectrum taken at 100 K with Ho~~a

and Hole with the transition frequencies observed in our
earlier studies of an oriented single crystal indicated for
comparison. '

In making this aligned powder sample, we found that
passing the powder through the mesh resulted in more
complete alignment, possibly because small particles of
powder are more likely to be single crystallites, or be-
cause small particles rotate in the epoxy with less resis-
tance under the torque applied by the magnetic field dur-
ing the cure.

A key aspect of this experiment is the use of the Y
NMR to measure the field inside the sample. Measure-
ment of the Y resonance line is diScult both because y~
is low and because at low temperatures the spin-lattice re-
laxation time is long. We have used two techniques
which make it possible to observe the Y NMR at low
temperatures.

The first is to use a Carr-Purcell-Meiboom-Gill se-
quence to collect data. " We have previously used this
method to speed data collection of Nb in NbSe3 (Ref. 12)
and ' 0 in CO on surfaces. ' In an ordinary spin echo
(two pulses plus one echo), the magnetization is des-
troyed. One must then wait for a time comparable to the
spin-lattice relaxation time to be able to record a second
echo. In a Carr-Purcell sequence, one repeatedly re-
focuses the nuclear magnetization observing multiple
echoes before one must refresh the nuclear magnetiza-
tion. The pulse sequence we use starts with a 90, pulse,
followed at time ~ by a 180 . The echo that forms at ~
after the 180 pulse is recorded. One then repeats the
wait time of v, the 180 pulse, and records the echo
formed ~ after the 180 pulse. Thus, the sequence to
record n echoes is

0-

90„(r 180——r——record echo)„.

In our case we found we could go up to n =16 in the su-

perconducting state. When we add the echoes together
we enhance the signal-to-noise ratio by
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FIG. 1. Inset: the magnetization of the sample powder (see
text) vs temperature in 16 Oe for field cooled (open squares), and
zero-field cooled (open circles) showing a sharp superconducting
transition at 90 K and complete magnetic shielding. Main
figure: the upper curve is the Cu NMR line shape of the
aligned sample at 100 K with HOIIc. The lower curve is the line
shape with Hole. The arrows above both curves indicate the
positions of the single-crystal lines measured previously (Ref.
10). The two broad (unlabeled) peaks at the low-frequency end
of the upper curve are the 'Cu(1) + 2, +—,

' transitions.
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FIG. 2. The ' Y NMR line shape of the aligned sample at 4.2
K for (a) Hole and (b} Ho~Ic. The solid lines are the Cxaussians
found by the least-squares method where the center frequency,
amplitude, and width are adjusted to optimize the fit to the
data.
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where (S/N)c is the signal-to-noise ratio of the first echo,
n is the number of echoes, and r is the ratio of consecu-
tive echo amplitudes in the Carr-Purcell train. In this
case, (S/N) =2.5(S/N)o, or equivalently, with Carr-
Purcell we can get a given (S/N) in about one-sixth the
time it would take with single-spin echoes.

The second technique used is also called for because
the low-temperature Y spin-lattice relaxation time is so
long. In the superconducting state, the Y line is too
broad relative to the strength of the alternating field H &,

to be reliably measured by Fourier transform of the spin
echo. Thus, we must record the Y line point by point.
By using a sufficiently small HI, one can excite one re-
gion of the line without perturbing other regions. We
thus divide the Y line into three frequency intervals.
We collect an echo in region 1, then in region 2, lastly in
region 3. By the time one finishes the third point, the
magnetization has recovered near the first point. Now
one repeats the cycle for new frequencies first in region 1,
then in region 2, finally in region 3. This approach makes
efficient use of the time one has to wait for the spins to
become polarized along Ho. Figure 2 shows the Y line

shapes at 4.2 K for H{)~~c and H lc.

(3)fv =[1+Kv(T)] B;„, ,

where Kv(T) is the ' Y magnetic shift and yv is the
gyromagnetic ratio by Y. Uncertainties in fv and Kv
will both lead to an uncertainty in B;„,. Figure 4 shows

inside the sample, and an initial guess for the value of I(.
The calculated frequency is then compared to that mea-
sured. This procedure is repeated, adjusting E at each
iteration, until the calculated and measured frequencies
agree. Explicitly, at each temperature we need four
quantities to determine K: (1) and (2) the two indepen-
dent parameters of the EFG tensor, (3) the internal mag-
netic field, and (4) the measured resonance frequency.
We now consider each of these in turn.

We have assumed that the EFG tensor retains its 100-
K anistropy but that the magnitude of each component
has a small, linear temperature dependence as indicated
by the temperature dependence of the nuclear quadruple
resonance frequency. '

We use the Y NMR line to give the magnitude of the
internal field. At any temperature, the Y resonant fre-

quency, fv, will be given by

III. DATA ANALYSIS

The features seen in the 100-K Cu line shape (Fig. 1)
can also be seen in the superconducting state line shapes.
Figure 3(a) [Fig. 3(b)] shows the s3Cu line shape at 4.2 K
for Ho~~c (H{)lc).

Our procedure for determining K(T} is as follows: At
each temperature and field orientation, the resonance fre-
quency of each site [Cu(1} and Cu(2)] is calculated by ex-
act diagonalization of the Hamiltonian using the electric
field gradient (EFG), the magnitude of the magnetic field
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FIG. 3. The 'Cu line shape at 4.2 K with {a) Ho)~c and {b)
Hole.

FIG. 4. The ' Y line at 20 K with Ho~~c. The data points,
which are the integral of the sum of Carr-Purcell-Meiboom-Gill
spin echoes vs the oscillator frequency, are the same in all three
figures. The solid line in (a) is the Gaussian found by the
method of least squares where the center frequency, amplitude,
and width are adjusted to optimize the fit to the data. The solid
line in (b) [(c)] is the Gaussian found by the method of least
squares where the amplitude and width are adjusted to optimize
the fit to the data given that the center frequency is offset by —1

kHz (+ 1 kHz) from the optimal value. The fits in (b) and (c) are
the limits of what can be called a reasonable fit to the data and
we take these to be the limits of our uncertainty in frequency.
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that we can measure fv to within about +0.006%. Fig-
ure 4(a) shows the data (solid circles) and the Gaussian
found by the method of least squares adjusting the ampli-
tude width, and center frequency; Figs. 4(b) and 4(c) show
the same data with Gaussians found by the method of
least squares adjusting the amplitude and width given
that the center frequency is offset from the optimal value
by —1 and +1 kHz, respectively. It is clear that the true
center frequency of the data is between these limits.

Before we proceed with the data analysis, it is interest-
ing to consider the shape of the Y line. In these experi-
ments, the sample is in the mixed state and Ho is well
above H„. We estimate that the fluxoids are on the order
of 200 A apart.

It is well known that the fluxoids through a single, flat,
uniform piece of type-II superconductor in the mixed
state with Ho perpendicular to the flat face can form a
regular two-dimensional (2D) pattern. This pattern, or
lattice of fluxoids, leads to a characteristic field distribu-
tion throughout the sample. ' One might have expected
to see such structure in our Y lines. We do not. As can
be seen in Figs. 2 and 4, our Y lines are Gaussians. It is
important to keep in mind, however, that in our sample
we also expect two random sources of broadening to be
important. First, there is a spread in demagnetizing fac-
tors for various particle shapes. Second, a particle can
experience additional randomly oriented fields due to the
magnetic moments of neighboring particles. One can
show that these effects may be comparable to the
broadening due to fluxoids. At any rate, we conclude
from the fact that our Y NMR lines are Gaussian, that
either the random sources of broadening completely ob-
scure any characteristic line shape due to a particular flux
lattice, or the fluxoids are not in a regular array to begin
with.

We also need to know what value of I( Y to use at each
temperature. We know EY quite well in the normal
state. We have measured it to be —150 ppm (

—95 ppm)
relative to YC13 when Ho~~c (Hole). These values agree
with those previously measured by other groups. The
decomposition of the normal-state shift into orbital
(chemical-shift} and hyperfine (Knight-shift) components
is the subject of work by several groups. Balakrishnan et
al. show that typical chemical shifts of Y in various in-
sulating oxides is 120-230 ppm relative to YC13, making
the Knight shift in YBa2Cu307 —250——350 ppm. Al-

loul et al. plot + 1/T, T versus shift for YBa2Cu306+„
for x between 0.41 and 1. Extrapolating their data to
Ql/T, T =0 gives a Knight shift between —300 and—400 ppm ( —0.03——0.04%). Throughout the rest of
this paper we will take the value of Ev (T = 100 K) to be
( —0.030+0.005 %).

Because we expect the Knight-shift part of I( z will be
reduced in the superconducting state, we must assume a
functional form of the Y Knight shift versus tempera-
ture. The Y nuclei in the normal state appear to be in
an environment very much like that of a metal with near-
ly independent (weakly interacting) conduction electrons.
The Y spin-lattice relaxation rate (1/T, ) is very accu-
rately proportional to the temperature. ' ' Therefore, we
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FIG. 5. A demonstration of how the low-temperature lines
are fit with the broadened 100-K data. The points are the mea-
sured line shape at 4.2 K with Ho~~c. The solid and dashed lines
are the broadened and shifted 100-K line shapes of the ap-
propriate peaks. The broadening used is Gaussian with a width
implied by the measured Y linewidth. Because this broaden-
ing accounts for most (or all) of the low-temperature linewidth,
the low-temperature broadening represents a distribution of
magnetic fields throughout the sample.

will assume the Y Knight shift is given in the supercon-
ducting state by the standard Yosida function.

We point out that the uncertainty in Ez at any tern-
perature is small (about +0.005%). It is also important
to note that our assumed functional form of ICv( T) is tlat
from 0 to about 30 K. It is very unlikely that our choice
will have any effect on the temperature dependence of
Kc„(T) at low temperatures.

We next need to accurately measure the Cu resonant
frequencies at low temperatures. The low-temperature

Cu lines are broadened by the same distribution in B;„,
discussed above in relation to the Y line. Therefore, we
scale the Y line breadth in frequency by the ratio of the
gyromagnetic ratios (yc„/yv) to get the Cu Gaussian
broadening function in frequency. We then convolute
this with a particular feature in the observed 100-K Cu
line shape, and determine the frequency shift needed to
superpose that broadened line on the data of the super-
conducting phase. Figure 5 shows such a fit at 4.2 K for
the chain [Cu(l)] and plane [Cu(2)] nuclei with Hp~~c.
With the relative shift between the superconducting state
and the T =100-K lines, and our single-crystal measure-
ments of the frequencies of the various lines in the nor-
mal state, ' we can get precise values for the frequencies
of the low-temperature lines

In this procedure we discovered an extra broadening of
the Cu(2} line at low temperature when H&&lc. Figure 6
shows the comparison of the 100-K line broadened by the
amount implied by the Y line (dashed line) with the
measured Cu(2) (open circles) at 4.2 K, with Hole. The
experimental line is seen to be several times broader than
the line predicted by scaling the Y line.

Assuming that the extra broadening does not lead to a
net shift in the Cu(2} line, we proceed with the data
analysis by convoluting an additional broadening with
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the already broadened 100-K Cu line (see the solid line
in Fig. 6) and then determining the relative frequency
shift. The total magnetic shift K(T) determined by this
procedure is shown in Fig. 7. We will give a detailed dis-
cussion in Sec. IV of the data in Fig. 7.

We investigated several possible sources of the addi-
tional broadening of the Cu(2) line in the superconduct-
ing state with Hole. By comparing the Cu and Cu
central transitions at 4.2 K, we have shown that the extra
line breadth arises from magnetic and not electric quad-
rupole effects. Measurement of the Cu satellite line
ruled out the possibility that either (K„-ir.'») or (v„-v»)
had become large enough at low temperatures to account
for the extra broadening. We also measured the Cu(2)
Hole line again, using a recovery time between successive
echoes (T„~)of 10 sec. The new T„~ was 33 times longer
than the original T„.This new line shape had the same
shape and width as the original line shape, and we get

about the same size signal for the planes in both the Ho~~c

and the Hole orientations. These two results showed
that we had not missed a long T, component of the sig-
nal, ruling out another possible explanation of the mea-
sured line breadth.

We obtained the best fit to the data when we convolut-
ed a Lorentzian of half-width 8 with the 100-K data
broadened by the Y Gaussian. The extra broadening
necessary to fit the Cu(2) data follows a Neel temperature
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FIG. 9. The 6 Cu(1) resonance lines with Ho~~a (higher fre-

quency) and Ho~~b (lower frequency) in the multi-single-crystal
sample described in the text at (a) 100 K and {b) 4.2 K. In this
sample the field is either along the a or b axis of any given
untwinned region in each of the crystals. The fact that the sepa-
ration between these peaks is approximately the same at both
these temperatures is consistent with our finding (from measure-

ments made on the uniaxially aligned sample) that the Cu(1)
Knight shift is roughly isotropic.
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dependence of the form

4.29 K MHz
T+34.29 K

(4)

quite well between 4.2 and 60 K, as is shown in Fig. 8.
In an effort to improve the precision of data when

Hole, where the chain line shapes are restricted powder
patterns, we made a sample consisting of some 50 tiny
single crystals of YBa2Cu307 &. The c axes of the crys-
tals were aligned by placing their broad face on a Rat
plexiglass surface, then the a-b axes were oriented by ro-
tating each crystal under a cross-polarized light micro-
scope (see Ref. 10). With this array of single crystals we
could observe the Cu resonances in both the normal and
superconducting states. Data for the chains with 00
along a and b at 100 and 4.2 K are shown in Fig. 9.
These measurements are consistent with our finding in
the powder sample that [K,(100)—K„(4.2)] and

[Kbb(100)—Kbb(4. 2)] are very nearly the same. This
single-crystal sample also confirms the presence of the
anomalous broadening of the Cu(2), Hole line.

IV. THE SHIFTS: GENERAL ASPECTS

In the original BCS theory, the superconducting wave
function involved pairing of electrons into states which
are spin singlets with orbital-angular-momentum zero (s-
state, spin-singlet pairing). But pairings are possible in-
volving spin triplets, as well as other orbital angular
momentum states (spin singlets involve even-1 orbital an-
gular momentum, spin triplets involve odd-1 orbital angu-
lar momentum). These matters are treated extensively in
the review article of Leggett on Fermi liquids. There it
is shown that one expects to find that the spin susceptibil-
ity, g in the superconducting state is either unaffected by
the transition

X Xn

where y„ is the susceptibility in the normal state, or

X'=Y)(T)X.

(5)

(6)

where Yi(T) is some function which depends on the an-
gular momentuin I involved in the pairing. [Ordinarily
Eq. (6) holds for all three components of the susceptibili-
ty, or Eq. (5) holds for two components and Eq. (6) for
the third. The so-called planar state is the only example
we know of where Eq. (5) holds for one component and
Eq. (6) holds for the other two. ] An example of YI( T} is
the 1=0 function for spin singlets named after Yosida.
The temperature dependence of Y&(T) as T approaches
zero depends on 1 and the pairing state. For a system
with no nodes, YI(T) has zero slope at T=0. For a d
wave, YI(T) varies linearly with T as T~O. These
matters are discussed by Monien and Pines. '

The results of our data analysis are shown in Fig. 7 as
plots of total magnetic shift versus temperature. The
magnetic shifts E (T) shown in Fig. 7 are made up of
two parts:

K (T)=K +K (T),

(O~L..~
n}(n ~L,.yr'~0)

K =2P g + c.c.
n n 0

(8a)

(8b)

(8c)

where a=a, b, c are the conventional crystal axes (which
are also the principal axes of the orbital shift) and y is
orbital contribution to the magnetic susceptibility. If the
d-shell hole extends onto neighboring atoms, one must go
back to (8a) to see exactly how to evaluate (8b).

We can evaluate Eq. (8) for both the Cu(2} and the
Cu(1) sites. We define (x,y, z) =(a, b, c). Consider first
the Cu(2) site. The crystal field is axially symmetric
about the z axis. For a hole in the x -y d shell, and
defining the energy of the that state as zero, one finds

TABLE I. The total magnetic shift K and the change in K
between T=100 and 4.2 K, hK.

E(T=100 K)' E(T=4.2 K)

Cu(1) Hormic

Cu(1) Hoiia
Cu(l) Hoi[b
Cu(2) Hormic

Cu(2) Hole

0.588
1.323
0.561
1.267
0.580

0.25+0.01
1.08+0.04
0.27+0.04
1.28+0.01
0.28+0.02

0.33+0.01
0.25+0.04
0.29+0.04

—0.01+0.01
0.30+0.02

'We do not include limits of error on the normal-state values of
K because the procedure for finding the superconducting-state
values uses the 100-K values as given.
These are the results assuming the '9Y Knight shift is —300

ppm.

where K is the orbital (chemical) shift, and K (T) is the
spin (Knight) shift. In a BCS picture with a singlet-

pairing state, one expects that pairing will lead to a van-

ishing spin susceptibility at T =0, and consequently
K (T =0)=0. This has been demonstrated experimen-
tally in Al by Hammond et al. ' The measurements of
the Knight shift of mercury in the superconducting state
by Reif and the subsequent theoretical description by
Anderson' demonstrate, however, that this picture is
modified in the presence of strong spin-orbit coupling
which occurs for heavy elements such as mercury and tin.
The simple BCS picture is expected to hold for Cu, where
spin-orbit coupling is less strong. We will assume

K~ (T=O)=0, and investigate the consequences for
K . The temperature-independent chemical shift (K )

is then all the remains of the total magnetic shift K ( T) at
absolute zero. Thus, K =K(4.2 K). From the data
shown in Fig. 7 we have determined the shift tensor K
(a=a, b, c) at 4.2 K and b,K, the difference between the
shift tensors at 100 and 4.2 K. These are given in Table
I.

As discussed by Pennington et al. ' in the approxima-
tion that the Cu++ is an ion with a hole in its d shell and
a permanent electron spin moment, the orbital contribu-
tion (chemical shift) is given by
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(9)

K,~ &4KL =4KbLb for the planes [Cu(2)],
K~ &4Kbtb =4K„ for the chains [Cu(1)],

(10)

where the equality corresponds to the case that the excit-
ed d states xy and yz (yz, xz) are degenerate for the Cu(2)
[Cu(1)]. This ionic permanent moment model describes
very well the behavior of the Cu atoms in the normal
state.

From Table I we see that

Eyy for axial symmetry

For axial symmetry, one expects Ey E y The calcula-
tion for the Cu(1) site is analogous, except the crystal
field is now axially symmetric about the x axis (a axis).
Thus we find

(T, ), T(K ) =
2

Xe

4trktt y'„
4

where I{ is the Knight shift, kz is the Boltzmann con-
stant, and 8 is a factor introduced by Pines to take into

tial (the expected form) for over two decades of signal
strength. The time constant of this decay is (T, )NQR.

Figure 11 shows (1/T, )NQa versus T. We see that
(1/T, )NQR is proportional to T with very great precision
from 100 to 150 K, and that even at 180 K the deviation
is only about 5%%uo. For higher temperatures, (1/T, )NQR

deviates from linearity with T. Evidently, at higher tem-
peratures another relaxation mechanism becomes impor-
tant.

We want to compare the linear component of
(1/T, )NQR with the magnitude of the Knight shift. The
Korringa relation, for nuclei relaxed by electrons in a
conduction band, is

E =454K = =1 14
Eyz Ezz

cc ' aa l.o-

for the Cu(2) nuclei, and

E =4 24K =3 94I{)' =0.99, = 1.07
yz yz

for the Cu{1) nuclei. The fact that these ratios agree
with Eq. (10) strongly supports our assumption that
K~( T =0)=0. Consequently, we may now interpret
b,K, which is the diff'erence between the total shift at
100 and 4.2 K, as the Knight shift at 100 K, K (100 K)
(see Table I). We now turn to an analysis of these data,
first for the Cu(1) and then the Cu(2) sites.

V. THE CHAINS

We see that to a good approximation Ks( 100 K) is iso-
tropic for the Cu(1) site (=0.29+0.04go). The Knight
shift with Ho~~a appears to be somewhat smaller than that
with Ho~~b; however, these are the most difficult lines to
measure at low temperature and thus there is uncertainty
in their shift values. The single-crystal data shown in
Fig. 9 are consistent with K (100 K) being, to a good ap-
proximation, isotropic.

Pennington et al. measured the spin-lattice relaxation
rate coeScients, with the field along each axis at 100 K,
and found (W& ) of (1.1+0.1, 0.9+0.1, 0.8+0. 1 msec ')
where a =a, b, c which are likewise, to a good approxima-
tion, isotropic. ' Various workers have measured the
spin-lattice relaxation time of the Cu(1) nuclei. ' '' We
have measured it in an unoriented powder of our
YBa2Cu307 & material using nuclear quadrupole reso-
nance (NQR). At each temperature we measured the re-
laxation curve using the inversion recovery method. Fig-
ure 10 shows the relaxation curves at two temperatures.
Plotted is logto[S{ ao ) —S(t)] versus t, where S(t) is the
signal observed in a spin echo applied at time t after the
inversion pulse. The data are seen to fit a single exponen-

O.OI

]

0 0.4 0.8 l.2 l.6 2.0 2 4 2.8
~ (msec)

FIG. 10. The spin-lattice relaxation curves at T=103 K
(open circles), and T =160 K (solid circles) measured by inver-
sion recovery. Plotted is [S(ao)—S(t)]/S(co ), where S is the
size of the spin echo and t is the time between a 180 inversion
pulse and the 6rst pulse of the 90 -~-180' spin-echo pulse se-
quence. The expected form of the decay is a single exponential
such as is shown by the solid lines, the slope of which is 1/T, .
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FIG. 11. The spin-lattice relaxation rate (1/T&) (determined
as described in Fig. 10) vs temperature T. The fact that the rate
is accurately proportional to T from 100 to 150 K is an indica-
tion that the relaxation is due to interaction with electrons in a
conduction band. The deviation from linearity for T & 150 K
probably represents another relaxation mechanism.

account many-body effects. If spin- —,
' systems such as

Cu and Cu had no electric quadrupole splittings so
that we have solely Zeeman splittings, the spin-lattice re-
laxation would be exponential with a time constant we
denote as ( T, ), such that ( 1/T, ), =—', W„so that from
our previous relaxation data for the Cu(1) site, '

(1/T, ), =0.62 msec ', or (T, ), =1.61 msec. Equation
(11) is satisfied with K =0.29%, (T, ), =1.61 msec, and
B =0.36 (B =1.0 for noninteracting conduction elec-
trons or holes). A B of 0.36 would imply some antiferro-
magnetic interaction between the conduction electrons,
but is essentially in the weak-coupling limit.

The most precise chain data, Ks(T), fit a standard
weak-coupling BCS Yosida function extremely well, as is
shown in Fig. 12. The Yosida function was calculated as-
suming s-wave pairing, and it reflects the decrease in the
conduction electron density of states at the Fermi level as
a gap is opened. The curves for K„(T) and Kgb(T) are
less clear, but it is important to keep in mind that there is
more uncertainty in those measurements. The crystallites
in our sample are aligned along their c axes, their a and b
axes are randomly distributed in the plane perpendicular

1.2

0.8
C)

0.6

I- 0 4-

0.2-

0.0 z

-0.2 I

0.2 0.4 0.6 0.8 1.0 1.2 1.4

T/Tc

FIG. 12. The normalized Knight shift of the Cu(1) nuclei.
The points are the data determined as described in the text. The
solid line is the Yosida function as calculated for BCS, weak-
coupling, spin-singlet, I =0 pairing (Ref. 7).

to the c axes. As a result, the resonance frequencies cor-
responding to the cases Ho~(a and Ho~~b for the Cu(1) site
are most difficult to locate with a powder pattern (see Fig.
1). The data for Hole may also be fit by a weak-coupling,
s-wave Yosida function but with much larger scatter.

In summary, the Cu(1) data have the following charac-
teristics: (1}Ks and W, at 100 K are essentially isotro-
pic, (2) T, T=const from 100 to about 160 K, (3} the
Knight shift and T, T values satisfy the Korringa relation
essentially in the weak-interaction limit, and (4) K (T) in
the superconducting state is fit by the weak-coupling Yo-
sida function.

In our earlier paper we postulated that Cu(1) T~ arose
from transferred hyperfine coupling to a hole in the con-
duction band formed by the chain and bridge oxygen
atoms. This coupling would explain all four of the exper-
imental facts listed above provided that the oxygen hole
band is a weakly interacting conduction band, or Fermi
liquid, and that the Cu(1) shift and relaxation are deter-
mined by the coupling to that band.

Since the chemical shift and EFG tensors of the Cu(1)
atoms correspond to a single hole in the Cu(1) 3d 2

JP Z

state, we still assume that Cu(1) atoms have a net electron
spin of —,'. The fact that this net spin does not contribute
to the Knight shift or the Cu(1) nuclear T& requires that
the electron spin be rapidly scattered, perhaps by the 0
hole, and that its spin susceptibility must be very small.
This implies that the temperature dependence of the
chain Knight shift K ( T) is due to the temperature
dependence of the y"( T) alone, since the shift arises from
chain holes.

One possible model for the transferred hyperfine cou-
pling involves states at the top of the oxygen-hole band.
These states are made up of O(1) and O(4) (chain and
bridge) 2p orbitals, whose symmetry relative to the
Cu(l) sites is nearly the same as that of the Cu(1) (y —z )
orbitals. Such states are shown in Fig. 13. Because the
bridge oxygens are closer to the Cu(1) atom than the
chain oxygens are, the overlap of the 0 2p orbitals with
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(4)

~ Cu(l )

If ~g(0)~E =a~/(0)gs, then for a=0. 1, p, (EF)=1.25

eV ', for a=0. 3, p, (E~)=0.42 eV '. Since the chain
Cu is Cu + whereas

~ P(0) ~4s corresponds to a neutral Cu,
the use of ~f(0) ~~s will underestimate the hyperfine cou-

pling arising from a given degree of overlap with 0 2p
wave functions. Mila and Rice estimate the charge
effect gives a factor of 2 enchancement.

Even the largest value of Bw which results from this
simple model is smaller than that in a typical metal.
However, we do not yet have a firm theoretical under-
standing of the nature of the oxygen holes in this materi-
al.

FIG. 13. A schematic illustration of how the 3p orbitals of
the four neighboring oxygen atoms can mix with the 4s orbital
of the Cu(1) atom leading to the transferred hyper6ne coupling
described in the text.

the Cu(1) atom is larger for the bridge oxygens than for
the chain oxygens. Thus, the oxygen-band wave function
acting at the Cu(1) nucleus contains some Cu 4s wave
function which leads to the isotropic nature of W, and
E(T). If this model is correct, the Knight shift for the
Cu(l), E, is proportional to y", the susceptibility of the
0 holes.

The above analysis does not depend on the detailed
model describing the chain oxygen holes. We now ex-
plore a particular model in which we describe the oxygen
holes by a one-dimensional conduction band of width

Bw. In such a model, the Pauli susceptibility of the holes
1s

y =2P pi(EF) (12)

where P is the Bohr magneton, and p, (EF) the density of
states of one spin orientation at the Fermi energy EF.

In a one-dimensional band, the density of states has an
integrable infinity at the top and bottom of the band. If
one represents the qualitative k dependence of the energy
by

VI. THE PLANES

The data for the Cu(2) site have several distinctive
features. The most obvious is the absolute flatness of the
E„(T)data from 100 to 4.2 K. In addition, K„(T) [or
Kbb( T)] has a much steeper slope around T = T, than the
weak-coupling s-wave Yosida function. In the weak-
coupling limit, the Yosida functions for higher angular-
momentum pairing states lie above the Yosida function
for an s-wave paring state. Thus, the simplest BCS mod-
el, which worked well for the chains, is not appropriate
for the planes. We present a simple model which is con-
sistent with the data, but may not be the only possibility.

We will employ the analysis developed by Monien,
Pines, and Slichter (MPS). It represents a generaliza-
tion of our earlier analysis by including an extra term in
the Hamiltonian, an extra term in the shift, and using
data from the antiferromagnetic state of reduced oxygen
crystals. We first consider the hyperfine coupling to
Cu(2) spins. Like Pennington et a/. , MPS treat the Cu(2)
as having a single hole in the 3d 2 2 state, an electron

x —y
spin of —,', and a permanent electron-spin magnetic mo-

ment. The electron spin couples to its own nucleus
through the hyperfine tensor A . Following Mila and
Rice, MPS also include a coupling between the nuclear
spin and the electron spin of the nearest-neighbor Cu(2)
atoms through an isotropic transferred hyperfine cou-
pling of strength 8, . Thus, the Hamiltonian becomes

&w
E(k )= (1—cosk bo), (13)

where bp 1s the lattice period, with the band edges being
k =Oand k ho=+

k, a
I„A S„+B,g (I„Q~ ) (a=x,y, z),

pi(E(k)) =2/(@Bid,sink bo) (14)

Qs
~ Q(0) ~2 ~h

~4(0)~kepi«F ) . (15)

For a free Cu atom —", n ~g(0)~4S =0.45X10+ (Ref. 21)
corresponding to

normalized per Cu(1) atom. The minimum value of p(E)
is thus (2/nBii, ), the maximum value is infinite.

The Knight shift is

where I is the nuclear-spin operator, S is the electron-
spin operator, and g, is the sum over the four nearest
neighbors of the nucleus k. Mila and Rice also include a
transferred hyperfine coupling to the chain Cu. We
neglect that term for simplicity. Expressing the coupling
as a magnetic field acting on nucleus k with components
h, we then have

1
A„Sk +B, gS

and the time-average mean-square field
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h = (A +48 )
1

4(y „fi)
(18)

( W, ), =—,'(y„) (h +hk )ro, (19}

where i,j,k =a, b, c and cyclic permutations and the mea-
sured ( W, ) 's, we find that

or

A, =7.8+1.0
h,

(20)

if we can set correlations such as (Sk+~~) =0 for kAj,
where the brackets ( ) signify thermal average of the ex-
pectation value. Utilizing the relations of Pennington et
aI '.for the spin-lattice relaxation rate ( W, ):

the planar holes.
Examination of the Cu(2) data shows (1) that E„ is

within experimental error independent of T, but (2}
K„=Kbb is strongly temperature dependent. The ques-
tion naturally arises whether the fact that K„(T) is in-

dependent of T is the result of its components each being
temperature independent or the result of an accidental
cancellation of two temperature-dependent terms. This is
important because if each component is temperature in-
dependent, then y„would be temperature independent
and this would have important consequences for the na-
ture of the pairing state.

We first consider the possibility that B g"=0, perhaps
because either g" or B" is small. If this is true, then
( A„+48, )y„must be independent of temperature. One
way this can happen is if

' 1/2

=2.8+0.2
( A„+48' )=0,

which means

(23a)

which puts a constraint on the values of A and B,.
Thus, we can write, using Eq. (17), the electron-spin con-
tribution to the Cu(2) Knight shift

A„ = —1
4B)

But from (18) and (20) we know that

(23b)

(A +48, )
K ac, cU—,Xaa (21) h, 4(A„/48, ) +1

=(7.8+1.0) .
4(A„/48') +1

where g is the Cu(2) electron-spin susceptibility. Taki-
gawa et a/. postulated that, in addition, the Cu(2) had a
positive Knight-shift contribution from oxygen holes.
The MPS analysis follows this approach, adding an iso-
tropic 8 "g" term to the Cu(2) Knight shift. We know
such a shift occurs for the Cu(1) (see Sec. V) from admix-
ture of Cu 4s states. Examination of the bridge O(4) wave
function shows it should also induce Cu 4s density at the
Cu(2) nucleus. The total spin contribution to the shift is
then

(A +48, )y +8"y"
7 (22)

where y" is the spin susceptibility of the oxygen band and
the B" is the hyperfine coupling constant. We have.
neglected the contribution of this term to spin-lattice re-
laxation at this point, but discuss it later in this paper.

One naturally might wonder if there is also a coupling
to holes on the oxygen of the Cu(2) plane. Simple sym-
metry arguments appear to rule out a coupling of such
holes to Cu(2) s states at least for holes near the top of the
0 band. As one gets away from the top, such terms are
permitted. Another possibility arises from the necessity
that the planar 0 hole functions be orthogona1ized to the
Cu(2) x —y hole state. The orthogonalization will

effectively mix some Cu(2) x —y function into the 0
band. In the analysis below we neglect such effects be-
cause usually effects involving Cu 4s states dominate
when they are present. Such effects are already included
in Eq. (22). An alternative would be to assume that
effects involving Cu 4s states are absent and that the term
8"y" we encounter below should be replaced by an aniso-
tropic term proportional to y, the spin susceptibility of

If ( A„l48, )= —1, this gives us

h

4( A„l48 i ) + 1
(25}

which has a maximum value of five (when A„vanishes),
and thus conflicts with the experimental ratio of (20).
Hence, we can rule out A„+4B

&
=0.

According to Monien and Pines, the other possibility,
that y„ is independent of temperature, but y„=ebb is
temperature dependent would, in the BCS theory, corre-
spond to the so-called planar state. At T=O for this
state g„(0)=—g3„( T)=g b(b0). Examination of Fig. 7

shows that this would require that K„(0) and Ebb(0) be
negative for the Cu(2)'s, a circumstance ruled out by Eq.
(8).

We therefore conclude 8"y"%0. We have then

( A„+48, }y„+8"y"
(26a)

( A„+48,}y„+8"y"

r, r.&'
(26b)

The data indicate that both y„(T) and ebb(T) obey Eq.
(6}. The general arguments given by Leggett (coupled
with the rejection of the planar state as a possibility) re-
quire y„(T) to obey Eq. (6) as well. Thus, all three com-
ponents of y ( T) have the same temperature depen-
dence.

For simplicity, we take y (100) to be isotropic. If this
is not the case, the values for the coupling constants
would change, but our results, which depend on the prod-
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ucts of the coupling constants and y ( T), do not.
We can eliminate 8"y" in Eq. (26) by subtracting K„

from E„
Ks (T) K—s(T) =( A„—A„)its(T) (27a)

or

K„(T) K„—(T)=(K„K„)—+(A„—A„)y (T) .

(27b)

We have subtracted the K„(T) data from the K„(T)
data and normalized the result (taking the data at 4.2 K
as being the zero). The result is plotted in Fig. 14. Fig-
ures 14(a) and 14(b) show the same data with different
theoretical curves which we will explain below. It is im-
portant to note that the Y Knight shift is eliminated
from this plot, since it occurs equally in K„and K„.

1.0

o 08-
1

co p 6-

p4.
ED

0.2

(a)

00

1.0

0.8
CO
C)

0.6
0)

04.
V)

-0.2 I I I I

0.2 0.4 0.6 0.8 1.0 1.2 1.4

T/Tc

FIG. 14. The points are the difference between K„(T) and
K„(T) for the Cu(2) atoms. These points should represent the
contribution to the Knight shift from the Cu(2) electron mo-
ments. The two solid lines in (a) overlap. The first is a strong-
coupling Yosida function derived by Monien assuming an s-
wave pairing state with a 2b ( T =0)=3.8k~ T, value for the
zero-temperature gap. The second is a strong-coupling Yosida
function derived by Monien assuming an anisotropic s-wave
pairing state with a 26(T=O),„=4.3k&T, value for the zero-
temperature gap. The solid line in (b) is a strong-coupling Yosi-
da function derived by Monien assuming a d-wave pairing state
with a 2A( T =0),„=29.34k& T, value for the zero-temperature
gap. The dashed line in (b) is a strong-coupling Yosida function
derived by Monien assuming a d-wave plus higher-I-term pair-
ing state with a 26(T=O),„=6.26k~T, value for the zero-
temperature gap.

The standard weak-coupling Yosida function which
works so well for the Cu(1) E(T) lies well above these
data.

In thinking about these data, it is helpful to keep in
mind a simple picture of the Fermi surface. We do not
assert it is precise, but it provides a useful means of con-
sidering one theoretical limit. Several groups have calcu-
lated the band structure in the limit that the Cu atoms
are treated in a band picture. However, we find that in
the normal state, the Cu atoms behave as though they
have permanent moments. Then the oxygen holes may
be thought of in a simple manner as consisting of a two-
dimensional band associated with the plane oxygens, and
a one-dimensional band associated with the chain and
bridge oxygens. The former give approximately cylindri-
cal Fermi surfaces with the cylinder axis perpendicular to
the k„,k plane. The latter give planar Fermi surfaces
normal to the k direction.

In conjunction with our colleagues Monien and Pines,
we have explored various means of fitting these data.
The Yosida function Y(T) which describes both the
Knight shift and the spin susceptibility is given by Leg-
gett as

Y(T)= f N(E) — dE, (28)

where N(E) is the superconducting density of states. It
varies with temperature because the gap is temperature
dependent. One can use Eq. (28) therefore to calculate
Y(T) for various assumptions about the gap and its tem-
perature dependence. Monien and Pines' found that a
strong-coupling version of the s-state singlet gave a good
fit. [See Fig. 14(a).]

Monien and Pines have analyzed spin-lattice relaxation
times as well as Knight shifts. It is well known that there
is an enhancement of the spin-lattice relaxation rate im-
mediately below 7", for s-state BCS superconductors.
The size of the enhancement depends on the energy level
width and the anisotropy of the energy gap. Accord-
ingly, Monien and Pines consider various energy gap an-
isotropies by making the energy gap for the planes de-
pend on the angle (t about the axis of the cylindrical por-
tion of the Fermi surface. They consider s-wave spin-
singlet pairing with and without gap anisotropy, and d-
wave spin-singlet pairing both with a single d wave (gap
proportional to cosP) and a d wave containing higher
harmonics. The different assumptions have substantial
effects on the spin-lattice relaxation times because of their
effect on the enhancement. For the Knight shifts, the
two s-wave cases are indistinguishable graphically, and
the two d-wave cases are barely distinguishable. Indeed,
their difference is much smaller than the experimental er-
rors of our data.

In Fig. 14(a) the solid curve results from the s-wave
calculation, and in Fig. 14(b) the solid curve results from
the d-wave calculation. For the s wave 6(0) (the energy
gap at T=0 K) is 1.90k&T, for the isotropic gap. For
the s-wave anisotropic gap 6(0),„=2.16k& T, .

For the single d wave b(0),„=14.67k+ T, whereas
for their function containing higher harmonics 5(0)



6294 S. E. BARREI I et al. 41

=3.13k~ T, .
The best looking fits are for the s-wave states, although

we cannot rule out the d-wave fits. The isotropic d-wave
fit has a very large value for the gap and is thus more
suspect than the anisotropic d wave. Whichever I-pairing
fit we use, the gap needed is larger than the BCS value.
We note, however, that the values obtained for these gaps
are quite sensitive to small changes in the data.

VII. THE NORMAL STATE

A„

y, y„fi r

A„
y, y„A r

4 6 8
K A, +

7 7E„, E

2 11K+
7 7 E,

(29)

Monien, Pines, and Slichter have extended our model to
include B, and B"g" as well as a relationship from NMR
in the antiferromagnetic state of the 06 1:2:3compound
(in kG)

( A„4Bi )2(S, )—= —160
y„A

(30)

which uses the measured antiferromagnetic resonance fre-
quency. Using the measured values of shift at 4.2 and
100 K, and the measured ( W, ) 's, we can obtain many
parameters of the normal state. If we assume the reason-
able values for three parameters ~=0.28, A, = —0.088
eV= —710 cm ', 2(S, ) =0.6, then we can use an MPS-
type analysis supplemented with an iterative procedure
leading to self-consistent values. We can calculate for the
Cu(2) all of the following quantities:

A„=—427 kG,

A, =38 kG,

B, =76 kG,

(1/r ) =6.0 a. u. ,

E =2.72 eV, E,=3.08 eV,

y =12.2X10

y„=15.8 X 10 emu/Cu(2),

X =3.5X10

y„,=20.0X 10

so=1.1X10 ' sec .

In our earlier work' we showed that the Cu(2)'s could
be understood in terms of a model in which the Cu(2) had
a single hole in the x —y orbit and a net electron spin —,'.
At that time we did not include the possibility of a
transferred hyperfine interaction B, nor an explicit hole
contribution B"y" in Eqs. (23) or (26). Now that we have
a more complete set of Cu(2) electronic parameters, we
can make more theoretical progress. In addition to Eqs.
(8) and (20)—(22), we utilize the expressions of
Bleaney et al.
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FIG. 15. (1/Tl )NQR for the Cu(2) nuclei vs T. The relaxation
rate seems to have a linear temperature dependence as pointed
out by Yasuoka et al. (Ref. 30). We have extended the data to
higher temperatures and we find that the linear term persists.

These values are typical of Cu + ions. g„, is the powder
average of the total susceptibility per Cu(2) atom and
may be compared with the value 27X10 emu/Cu de-
duced from the measured susceptibility by Junod, Ben-
zinge, and Muller. The fact that we get such a good ac-
count of so many features of the data lends strong sup-
port to the picture of Cu(2) in the normal state as being
close to the permanent moment limit.

Recently Yasuoka et al. have reported NQR relaxa-
tion studies of the Cu(2) nuclei in a number of high-T,
and related metallic oxides. They conclude that in a
number of them the spin-lattice relaxation rate
(I /T) )NQa has a component which is linear in tempera-
ture above about 200 K. In YBazCu306» they get, for
this component, (1/T, )&Q&=4.5T (sec '). The term
B"y" in our analysis implies an associated relaxation
mechanism. Since B"y" is from the oxygen-hole band, its
contribution to the relaxation will be linear in T. Using
the self-consistent calculation above, we estimate the
magnitude of the relaxation component due to B"y" to be
(1/T, )NQR=1. 0T (sec 'K '), less than one-fourth the
value of Yasuoka et al. As a check of the Imai experi-
mental result, we have measured the Cu(2) (1/T, )NQR
from 100 to 500 K. Figure 15 shows our ( I /T~ )NQR data
versus temperature. The data above 200 K appear to
have a linear component with a slope steeper than our es-
timate; however, there is no way to be sure that there is
not another temperature-dependent component also
present in this temperature range. Note that (1/T, )NQR
increases by 30%%uo between 100 and 200 K due to some
non-Korringa mechanism. This could be the contribu-
tion from the oxygen holes in the plane. Exploration of
this possibility is beyond the scope of this paper.
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VIII. SUMMARY AND CONCLUSIONS

At this point, using the data reported in this paper and
that reported previously, we can summarize our findings
and viewpoint as follows. The symmetries and tempera-
ture dependences of the shifts, as discussed in the text,
appear to rule out the planar state, and support the view
that the spin contribution to the shift vanishes at 0 K.

Interpreting the shift at 0 K as being solely orbital in
nature makes the orbital shifts at both Cu(1) and Cu(2)
very similar in magnitude and anisotropy, with the Cu(1)
axial about the a axis, the Cu(2} axial about the c axis, as
expected. These data then fit in well with the electric-
field-gradient data to support a model in which both
Cu(1) and Cu(2) are close to Cu + with a single hole in
the y —z or x —y orbits, respectively.

Assumption of only two numbers [typical values for
the Cu(2) spin-orbit coupling A, and for the core-
polarization parameter a] is sufficient, when applied to
experimental data (the measured (S, ) from neutron
diffraction of YBa2Cu306 in the antiferromagnetic state,
our data on spin and orbital contributions to the shifts,
and our measurement of the anisotropy of W& to enable
us to calculate ( 1/r ), the energies to the excited states,
and the various hyperfine coupling constants. The resul-
tant values fall right in the range expected theoretically
for a Cu + having an electron spin of —,

' and a permanent
electron-spin moment.

Since, as pointed out above, the chemical-shift and
electric-field-gradient data strongly support the concept
that the Cu(1) and Cu(2) atoms are very similar, we ex-
pect that if the Cu(2} has a permanent electron-spin mo-
ment, as it appears to, most likely the Cu(1) does as well.

The Cu(2) spin-lattice relaxation can be understood in
terms of fluctuations of the hyperfine field arising from
fiuctuations of the orientations of the Cu(2) spin mo-
ments, but the physical origin of the correlation time 'Tp

and of its temperature dependences in both normal and
superconducting states is a matter of conjecture.

For the Cu(1), the spin contribution to the shift, the
isotropy of the spin shift and of the spin-lattice relaxation
rate, W„ the temperature dependence of W&, and the nu-
merical size of the Korringa product (K ) T/W, make it
highly likely that the shift and spin-lattice relaxation
arise from coupling of the Cu(1} nuclei to a conduction
band (or Fermi liquid) of weakly interacting carriers via a
transferred hyperfine coupling to the Cu(1) 4s wave func-
tion.

There appears to be no sign of the Cu(1) 3d hole elec-
tron spin in the angular dependence of either the Knight
shift or 8, . We speculate that the spin must be scattered
at very high rate, making the corresponding correlation
time very short.

Below T„ the Cu(1) Knight shift obeys a BCS spin-
singlet, l =0 weak-coupling [26(0)=3.52k~ T, ) Yosida
function. It is therefore surprising that the Cu(1) 8 t,
does not appear to fit the corresponding BCS exponential
temperature dependence at low temperatures, since both
measurements essentially measure thermal excitations
across the energy gap. As 8'& becomes smaller, however,
one must keep in mind the possibility that another mech-

anism comes to dominate the relaxation.
Below T„ the Cu(2) Knight-shift data can be fit with

BCS strong-coupling expressions for spin singlet with ei-
ther 1=0 or 2 pairing. Our best data seem to favor the
1=0 pairing state, but do not rule out the 1=2 pairing
state. In either case, the strong coupling is manifested
both in the precipitous drop of y just below T, and in
the large energy gap which is implied by the data.

The existence of two energy gaps, one at 3.5k~ T„ the
other 5-6k& T, have been detected by Tsai ' in tunneling
experiments involving oriented films. These numbers
seem to match the two gaps needed for our data, associat-
ed with the chain and plane portion of the Fermi surface.
Warren et al. ' also deduced two energy gaps of roughly
these magnitudes from their early work on NQR spin-
lattice relaxation.

Up to this point we have described the Cu(2) 3d hole as
if it was local, permanent moment above T, and part of a
conduction band below T, . This is the most straightfor-
ward way to describe the data in both regimes. However,
it seems to us quite unreasonable to think that the Cu(2)
could really have gone from a strong-correlation Hub-
bard limit to a weak-correlation Hubbard limit at 90 K.
Rather, there must be something much subtler happen-
ing. We note that there is a similar situation in another
problem, the Kondo effect. With respect to that prob-
lem, sometimes it was written that the magnetic atom
"loses its moment" at low temperature. This is mislead-
ing because the Kondo problem is described by the same
Hamiltonian, which assumes a permanent moment, at all
temperatures. The proper description is that the cou-
pling of the permanent moment to the conduction elec-
trons cause its susceptibility to fall below its Curie law
value at low temperatures.

In a similar way, we believe that it may be useful to
consider how the Cu(2) permanent moment can take on,
as far as spin polarization is concerned, the character of a
(strong-coupling) conduction band described in the super-
conducting state by the generalized BCS theory.

Here it may be significant that the 1:2:3 materials of
depleted oxygen, which are insulators, are antiferromag-
nets. The existence of charge carriers seems to prevent
the antiferromagnetic transition from occurring in the
90-K material even though, as we know from NMR,
there is still a strong Cu(2)-Cu(2) antiferromagnetic spin
coupling in the normal state. The suggestion that ex-
change coupling between planar holes and Cu(2) spins
suppresses the antiferromagnetic coupling is well known.
Moreover, as Hammel et al. have shown, the planar 0
nuclei obey the conduction electron (Fermi liquid) law

TI T =const in the normal state, lending support to the
view of the planar holes in the normal state as being in a
conduction band. Thus, if the Cu(2) Knight shift in the
superconducting state suggests singlet-spin pairing, one
naturally wonders whether the planar 0 holes are pair-
ing, and whether, when paired, the 0 holes are as
effective in preventing the Cu(2) antiferromagnetism as
they are in the normal state. Thus, as the 0 spins pair,
some form of Cu spin pairing expressing antiferromagne-
tism may be favored. Since the antiferromagnetic state of
the 06 material is fixed in space, but spin pairing of con-
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duction electrons runs through space, one would be
surprised to see a simple antiferromagnetic state appear
for the 90-K material when there was spin pairing of 0
holes. However, there still might be some way that an
antiferromagnetic benefit for the Cu(2)'s from pairing of
0 holes creates some form of Cu(2)-Cu(2) spin correla-
tion.

No doubt the above speculations are crude and overly
simplistic. We present them in the spirit, however that it
seems remarkable that the Cu(2) which appears to be de-
scribed so satisfactorily as possessing a permanent spin
moment above T, seems to take on the character of
itinerant charge carrier below T, at least as far as spin
polarizability is concerned. One naturally wonders

whether that resolution of this mystery lies close to the
explanation of the mechanism of superconductivity.
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