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Cl spin-spin relaxation time T2 in Rb2znC14 studied by nuclear quadrupole resonance
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The "Cl spin-spin relaxation time T, of both the Goldstone and amplitude modes in Rb2ZnC14
was analytically calculated and verified experimentally. The theoretical approach shows that the
spin-spin relaxation time T2 behaves in a similar way to the spin-lattice relaxation time Tl as a
function of temperature. Experimental measurements were carried out at a "Cl nuclear site in

Rb2ZnC14 in the paraelectric, incommensurate, and commensurate phases. The results agree with

theoretical predictions.

I. INTRODUCTION

After almost a decade, incommensurate I systems, are
still the focus of a great deal of attention. Although a
considerable amount of work has been carried out in
these systems using resonance techniques, dynamical
studies are rather limited in the A 2BX4 type -(I)
systems. ' Previous nuclear-quadrupole-resonance-1,2

spectroscopy (NQR} studies by us and other groups3 of
spin-lattice relaxation time T] in Rb2ZnC14 at the anion
position, gave new results and explained open problems
for the pure and mixed systems and for both the ampli-
tude and the Goldstone modes of fluctuations, such as the
influence of impurities on T, and the behavior of the
chaotic region in the narrow soliton limit.

In contrast to the T, measurements, not enough infor-
mation is available for the spin-spin relaxation mecha-
nism. Our aim in this work is to examine the way that an
I system passes through the transition temperature Tz

I

from the paraelectric P ordered phase to the inhomogene-
ous frequency distribution in the I phase, and then to the
low-temperature commensurate C one through the transi-
tion temperature T, . One of the best ways to get this in-
formation is by investigating the spin-spin relaxation time
T2 as a function of temperature. As far as we know this
is the first time that spin-spin relaxation has been studied
in Rb2ZnC14 at a Cl nuclear site. For the sake of compar-
ison, the T& theoretical calculations and measurements
were repeated on the same sample in order to have con-
sistent results. Our measurements were done for both the
Goldstone mode and the amplitude mode.

II. THEORY

Our system can be described by the total Hamiltonian,

(la)

which is the sum of a quadrupolar term &,

%~=E
I [3I, I(I+1)]V„—+(I+I,+I,I+ )( V„, iV, )—+(I I, +I,I )( V„,+i V, )

+I2+ [—,'( V„„—V ) iV„»]—+I [—,'( V„„—V»»)+i V„»]],

where E =e QI41(21 —1), and a dipolar term & which is the sum of terms of the general form,

~D(i j} 3 ~2g2[[ 21(i)Iij)+ i (1(i)1(j)+1(i)1j())]F +(1(i)1(ji+1(i)1(j))(F iF

(lb)

+(I,"I'J'+I'"I,'J')(F,„+iF, )+I'+'I'g[(F„„F) 2iF„]+—I"I'J—'[(F„„F)+2iF„—]I . (lc)

Here the tensor F is equal to

F (ij )= r —3z

rF(i j)= .
rIPlF„(ij}= n, m =x,y, z (for the rest of the elements),
r

(id)

~=~+%,(t) =%~+%~+A~(t)+%, (t) . (2)

and r is the distance between two spins i,j.
This Hamiltonian can be separated into a static part %

and a perturbing time-dependent part &,(t), so Eq. (la) is
now equal to

Usually &~&&% so that the static dipolar term % in-

troduces, as we shall see later, negligible corrections to
the energy spectrum of the unperturbed Hamiltonian

Things are completely different for the time-
dependent dipolar term &, (t). Looking to our experi-
mental results we see that in the I region, the T& values
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are comparable to the values of T2. This indicates that
the contribution of the dipole-dipole interaction might be
comparable to the contribution of the quadrupolar in-
teraction in the relaxation processes. Having this in
mind we proceed as follows.

The theoretical treatment will be presented for only
one Cl nuclear site in RbzZnC14, namely the Cl(1} (Ref.
7), which lies in the mirror plane m~. The calculation
can be readily extended for other Cl sites of this system.
In this case the main dipolar interaction is produced from
Cl(2), Cl(3), and Cl(4) of the ZnC14 tetrahedra (the Zn nu-

cleus being even-even has spin I =0). In view of the fact
that the perturbing dipolar term contains four equal spinsI=—'„ the degenerate manifold of eigenstates of the
unperturbed Hamiltonian %& is taken to be
lm (1),m (2),m (3),m (4)), where m (i) takes the values,
m (i) =—', , —,', —

—,', —
—', . If we take into consideration that

(i} e QV„&)y fi F„and (ii) F„&)F;,where F, stands
for the rest of the tensor elements (a qualitative proof of
this will be discussed later), we may conclude that the
static dipolar part has little effect on the quadrupolar en-

ergy spectrum. Its main effect is the addition of small di-
agonal terms to the matrix representation of the unper-
turbed Hamiltonian in the extended 256-dimensional
outer product space. These small dipolar contributions
result only in the broadening of the two doubly degen-
erate quadrupolar energy levels E+»2, E+»2 and there-
fore can be neglected in the T2 calculations. This argu-
ment also indicates that, since only one pair of energy
levels exists, we have one single T2 relaxation mecha-
nism. Since in our treatment we irradiate the Cl(1) nu-
cleus selectively, we may suppose that Cl(2), Cl(3), and
Cl(4) remain in the ground state, and as a result, we ex-
amine only the l+—'„+—,', +—,', +—,

' ) -to-
l
k —,', +—,

'+
—,', +—,

' )
transitions.

Referring now to the spin-spin relaxation time T2 we
know that

and

2 g f e "dr(b l&&(t r)—lc)(cl&&(t)lb),
~b

(7)

where la ), lb ), and lc ) are the different eigenstates of
the unperturbed Hamiltonian %&, in our case a =+—,'
and b =+—,'.

It is possible again to separate the spin-spin relaxation
rate 1!T2 into a quadrupolar and a dipolar contribution,

1

T2

1 1

TQ TD (8)

Let us examine each one separately.

A. The quadrupolar contribution

Taking into consideration the local symmetry at the
nuclear site of Cl(1) (Ref. 9), the time-averaged quadru-
pole electric-field-gradient EFG tensor (Ref. 10} in the P
phase has the elements V„y ~yz Vzy Vyz 0 in view
of the m mirror symmetry. Therefore, for T & TI the

Cl EFG tensor in the crystal fixed frame xlla, yllb, zllc
has the form"

V (P) p V(0) p
vy

(9)

~«}=(al&(t)la ) —&b l)(t)lb ),
g f e '" dr(a l&&(t)lc )(c l&&(t r—)la ),

1 1 1 1 1+— +
T2 2 7a 7b

where

co tco t —cd~,
T fi2

(3)

(4)

Below TJ, because of the frozen-in soft-mode displace-
ments, the tensor elements V„and V, are different from
zero. ' If we expand the time-averaged EFG tensor in a
Taylor series in powers of the static nuclear displace-
ments u [y(z)] around the value V' ' which corresponds
to the average structure of the P phase, we can express
the tensor in the I phase in the form

V(I) p V(0)

(0)V,

V(0)
zz

0 + V„"'

0

V(2)

0 V'," A cosy+ 0
V(2)

p V(2)

V' ' 0 3 cos y .
p V(2)

(10)

» expression (10) we assume that u [y(z)]= A cosy(z) represents the frozen-in I distortion wave in the plane-wave-
model (PWM) limit. The quadrupolar part of the perturbing Hamiltonian ~~& has a form similar to Eq. (lb), i.e.,

% ) =E([3I, I(I+1)]EV„(t)+(—I+I,+I I+ )[b V„,(t) id V, (t)]+(I —I, +I I )[b V„,(t)+i g, V(t))

+I+ I
—'[~V (t} ~~yy(t}]—i&Vy(t)]+I' l ,'[AV„„(t) hV—(t)]+ih—V„(t)l ),
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where iI), V(t)= V(t) —V. In this case according to Eq. (4)
1/TP is equal to

J(&+„)= b V(„) 0 AV[*„) t e —' ' t LM=1, 2

=3Ez f i) V„(r)AV„(0)drT'Q QG

or

1 =3E J~
) (I =

—,
'

) .
2'

For the state a =+—,
'

1 = 12E ( J())+J(z) )
7 3/2

and for the state b =+—,
'

1 =12E (J(,)+J( 2) ),
7 I /2

where

(12)

(13)

(14a)

(14b)

are the spectral densities.
Finally, Eq. (3) can be rewritten with the the help of

Eqs. (13) and (14) as follows:

1

g
=6E ( —,'J(o)+J(~i)+J( ))+J(z)+J( z)) . (16)

TQ

Expanding now the time-dependent part of the EFG ten-
sor b, V(t) in a Taylor series of the Auctuating part of the
nuclear displacements of all the sites 5u(t), we arrive at
the following expression:

b, v =(V"'+V' 'A cos(}())~SU~+—,
' V' '~5u~z+

(17}

If we consider the one-phonon process for the relaxa-
tion mechanism, Eq. (17) transforms to

1/2

( V"'+ V(z) A cosy) g [P„k(t)cosp+P&&(t) sing],
k

(18)

where N is the number of unit cells, m is the mass of the Cl atom, and P„k,P&k are the amplitude and Goldstone mode
operators. In this case for the spectral density we get

J~= const~ V'"+ V' 'A cosy~ (cos q&J„+ sin (I)J&) . (19)

Here J„and J& are the spectral densities for the amplitude and phase fluctuations which in the PWM can be set equal
to

Jp=, P=A, Q
P (20)

(21a)

(21b)

we get, finally, for the quadrupolar contributions to the spin-spin relaxation time T2,

1 =12E I —,)(V,', )A cosy) + —,'[(V„'„'A cosy} +(V' 'A cosy) ]
2

where E is a constant, 6p the Goldstone mode-amplitude mode energy gap, and I
&

is the damping constant.
With the help of Eqs. (16) and (21) for (JP„)

J(~~)) = f [b, V„,(0)+id V,(0)][6V„,(t) id', (—t)]e*'"'dt

= f i(). V„,(0)i(), V„,(t)e '"'dt+ f —AV, (0)EV,(t)e '"'dt,

J(&+z) = f —,'[5V„„(0)—il, V„(0)+id V(0)][EV„„(t)—iI), V„(r) ihV„, (r)]e +—'"'dr-
=

—,
' f b V„„(0)AV„„(t)e+'"'dt+ —,

' f— b, V (0)AV (t)e '"'dt+ —,
' f —b, V~~(0)AV~~(t)e ''dt, —

+(V„', 'A cosy) +(V„'") +(V',") j(cos (pJ„+ sin (pJ&) . (22)

B. The dipolar contribution

We have three different dipolar contributions to the spin-spin relaxation at the Cl(1) site, from the Cl(2), Cl(3), and
Cl(4) neighbors of the ZnC14 tetrahedra (Zn has a zero dipole moment). The dipolar part of the perturbing Hamiltonian

&) thus takes the form

A, (t) =&, (1,2)(t)+%, (1,3)(t)+%, (1,4)(t),
where, according to Eq. (lc),

(23)
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&, (l, i)(t)= —'y—fi ([ ,'I—,"'I,"+,'(I—'+"I"+I'"I'+ )]bF„(l,i)(t)+(I," I'+ +I+"I,")[bF,'„"(t) i—bF, (l, i)(t)]

+(I,'"I"+I"I,'")[AF,„(l,i)(t)+iAF, (l, i)(t)]

+I+(I(+({[bF (1 i)(t) EF (1 i)(t)] 2ibF y(1 i)(t)

+I'"I"{[AF„(l,i)(t) —bF (l, i)(t)]+2ihF„(l, i)(t)I }, i =2, 3,4 (24)

and b F (t) =F ( t) F.—
In the P phase, taking into account that the Cl(1) and Cl(2) nuclei lie approximately on the xz plane, which passes

through the axis origin (0,0,0) at Cl(l), from relation (ld), we see that F„(1,2)=F „(1,2)=F~(1,2)=F~,(1,2)
=F„(1,2)=0 so that

F„'„'(1,2) 0 F„'(1,2)

F,', ', 0 0 0
F„','(1,2) 0 F,', '( l, 2)

(25)

Below TI in the I phase, due to the fact that the frozen-in nuclear displacements takes place in the y direction, we see
that F(1,2)(g)= F(1,2—}(q+n) for the xy, yz elements, and F(1,2)(p)=F(1,2)(q& +n) for the rest of the elements.
If we develop the tensor F(1,2) in powers of the nuclear displacements u [qHz)] around the value F' ' we get an expres-
sion similar to relation (10):

F,', '(1,2) 0 F„', '(1,2)

F( ((1 2)= 0 0 0

F„','(1,2) 0 F,', '(1,2)

F(2)(1,2)

+ F("(1,2)

0

F„','( l, 2)

F(( (( 1

F',"(1,2 ) A cosy

0

+ 0

F(2)(1,2)
Fyy

'(1,2 }

0 F(2)(1,2)

A cos y. (26)

For the Cl(1)-Cl(3) and Cl(1)-Cl(4) dipolar interactions, which do not lie on the xz plane, all the tensor elements in the
expansion are different from zero:

F~ '(l, n)=F, '(l, n)+F~"(l, n)A cosy+FJ '(l, n)A cos y, (27)

wherei, j =x,y, z and n =3,4.
According to relations (4) and (5), for each one of the three diff'erent dipolar contributions Cl(1)-C1(2), Cl(1)-C1(3), and

Cl(1)-C1(4), we get

y4fi~ f bF„(l—, i)(t)iF„(((l, i)(0)dt = ,'y R J(—o)(l,i), (28)
TP l, i 00

y fi f e—' '[bF,„(l,i)(t) +ibF~(l, i)(t)][bF (l, i)(0) ihF, (—l, i)(0)]dt= —', y A'~J((((l, i),
3n( l, i)

(29a)

y fi f e '—'[EF,„(l,i)(t)+ihF, (l, i)(t)][bF,„(l,i)(0)—ihF, (l, i)(0)]dt = ', y fi J( ()(l,i), (29—b)
, ~q( l, l )

where i =2, 3,4.
Using similar reasoning to that which leads to relation (19), we see that

J ( l, i) = const~F("( l, i)+F( '( l, i) A cosy~ (cos (I(J„+sin yJ&) . (30)

Finally, if we take into consideration the dipolar contribution to the spin-spin relaxation mechanism from all the Cl
neighbors, the dipolar spin-spin relaxation rate can be expressed as

4 Z

D
=—,'y A ([F,', '(1,2) A cosy&] +[F,',"(1,3)+F,', '(1,3) A cosy]

T

+[F,',"(1,4)+F,', '(l, 4) A cosy] +6{[F„','(1,2)A cosy] +[F~,"(1,2)] I

+6{[F„',"(1,3)+F„','(1,3)A cos(p] +[F',"(1,3)+F', '(1,3)A cos(I(] I

+6{[F„',"(1,4)+F„','(1,4) A cos((p] +[F',"(1,4)+F', '(1,4) A cos(p] I }(cosyJ„+ sin yJ&) . (31)
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Going back to the expression for the total spin-spin re-
laxation rate and using relations (8), (22), and (31) we
finally have

1 =(Co+C, A cosy
T2

+Cz A cos y)(cos y J„+sin q& J&), (32}
800

(33a)

El q=(Co+C, A +C~A ) (33b)

The phason gap 6& for a pure system without irnpuri-
ties is in the PWM temperature independent, ' therefore,
according to relation (34a), we expect that the T2& will

also be temperature independent. Near the critical tern-
perature T„ this model starts to break down, and the
phason-induced spin-spin relaxation time T2& becomes

temperature dependent. ' In a similar way, since
b, „=[2a (Tr —T)]', where a is a constant, we may say
that the amplitude mode —induced spin-spin relaxation
time T2„will be temperature dependent.

where Co, C], and C2 are constants depending on the
components of the two tensors V and F [Eqs. (9), (10),
(25), and (26)]. Keeping in mind the results obtained for
the spin-lattice relaxation time T, (Refs. 1 and 2), we may
conclude that the spin-spin relaxation time T2 in the I re-
gion T, & T & TI behaves in a similar way to the spin-
lattice relaxation time T, . We know that the edge singu-
larity v& of the inhomogeneous spectrum that corre-
sponds to cos$=0 is relaxing by phase fluctuations of the
modulation wave and the edge singularities vz, where

~
cosy~ =1 are relaxing mainly by amplitude fluctuations

of the modulation wave. ' According to relations (20)
and (32) we get the following expression for the spin-spin
relaxation rate 1/Tz at the v&(1/T2&) and v„(1/T2„)
edge singularities separately:

- 100 -80 -40 -20

I

I

1

I

I

Z Q ~0
T ('C)

FIG. 1. Temperature dependence of the 'Cl spin-spin relaxa-
tion time T2 in the P, I and C phase of Rb2ZnC14 at the singu-
larities v& (~} and v„[(X}and (~). Measurements were also
made on the commensurate (soliton) v, line (o).

kHz and not 500 kHz as for the other lines and gives a
higher signal-to-noise ratio. For the sake of comparison
and in order to have consistent results, the T, measure-
ments were repeated for this crystal.

As we can see from Fig. 1, T2 shows exactly the same
behavior as T, (Fig. 2) for the same nuclear site and when
measured on the same edge singularities. This is also in
agreement with the T2 measurements, which have been
made in Rb2ZnBr4 and Cs2HgBr4. As expected, T2 rap-
idly decreases and produces a sharp T2 minimum at TI.
In the I phase the relaxation times could be easily
separated and observed at the different edge singularities.
(i} At the v& edge singularity, T2 stays short and ternpera-
ture independent, in agreement with the T& measure-
ments. Close to the transition temperature T„T2 be-
comes temperature dependent and increases in the region
where the formation of the soliton lattice starts to be-
come observable and the phason excitation spectrum
splits into an acousticlike and opticlike branch. ' This

III. EXPERIMENTAL RESULTS AND DISCUSSION

All experimental work was performed on a pulsed
NQR spectrometer with a coherent pulse technique based
on the storage of the free-induction decay (FID) signals
and Fourier transformation. The spin-spin relaxation
time was measured using the rr/2 r rr Hahn pu—lse —se-
quence. Single crystals were grown by slow evaporation
of an aqueous solution of RbCl and ZnC12 in a 2:1 molar
mixture. The samples were cooled or heated in a special-
ly constructed oven and the temperature stabilization was
=—0. 1 K. Figure 1 shows the data at the edge singulari-
ties v„and v&. According to this theoretical treatment
the relaxation process is governed mainly by amplitude
modes for an edge singularity v~ and by Goldstone
modes for the singularity v&.

' The measurements were
made for only one Cl site, namely, the one with the
highest NQR frequency, on a nominally pure single crys-
tal of Rb2ZnC14. This choice was made because the
quasicontinuous I spectrum covers only a range of 100

1

2.
~ ~

p. I
P--~- -~-- -0- 4

-so

20 l

0

Vg

o o
0 o~

~

~

50 0
T (4C)

&c

FIG. 2. Temperature dependence of the "Cl spin lattice re-
laxation time T& in the I', I, and C phase of Rb2ZnC14 at
diferent edge singularities {from Ref. 3).
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singularity stops as predicted at T, . (ii) For the ampli-

tude mode relaxing edge singularities v~, T2 increases
with decreasing temperature over the whole I region, as
expected, and goes through T, without any discontinuity.
This, we believe, means that commensurate lines that ap-
pear in the multisoliton lattice region coincide with the

edge singularities. (iii) T2 of the commensurate fer-
roelectric line, which starts around the same temperature
at which the Goldstone mode T2 starts to increase, shows
the onset of the soliton region. This commensurate line
passes through T, in exactly the same way as T, , mea-
sured on the same line, without any discontinuity. This
line belongs to the opticlike branch of the Goldstone
mode. '3

We see that the theoretical model agrees very well with
the experimental results and describes accurately the
spin-spin relaxation process. Here we want to make the
following remark. The spin-lattice relaxation time T, is
known to be given by the relation

2( W, + 8'~ ) = +1 1

7~ 7b
(35)

so that

1 1

+a
(36)

According to relations (3), (8), and (36) we have

1 1 1 1

T2 T2 T 2TJ
(37)

where, with the help of relations (12), (18), and (22),

1 =3E ( V„'A cosy) (cos gJ„+ sin gJ~), (38a)

where 8', , and 8'2 are the transition probabilities for the
different eigenstates; for a Cl nucleus we have

1/T, =2(W, +8'2), (34) and relations (28) and (31)

1 ] 4 2=
—,'y R [[F,', '(1,2)A cosgr] +[F,',"(1,3)+F,', '(1,3)A cosy]

+[F,',"(1,4)+F,', '(1,4)A casque] I(cos yJ„+ sin qJ&) . (38b)

For the edge singularity v&, we know that coscp=0, and
since 1/Tz) =0 in this case, relation (37) becomes

1 1 1

T2~ T2~ 2T)~
(39}

(40)

so that

If we compare our experimental results for T,&
and T2&

we see that in the I region, close to the transition temper-
ature T

t

distance r between the Cl(1) and Cl(2), Cl(3), Cl(4) neigh-
bors has a larger z component so that the F„ tensor ele-
ment is much larger than the rest of the elements. From
this discussion and relations (22) and (31), we see that for
the edge singularity v&, the relaxation mechanism is
governed mainly by the dipolar interaction. For the am-
plitude mode at the v„singularities, where the EFG ten-
sor elements V„ take part in the calculation, the relaxa-
tion mechanism is governed mainly by the quadrupolar
interaction. A comparison between a rough estimate of
both tensor elements, V,', =e QV„=-8e Q/fir and

F,', =y AF„=y fi/ r,—shows that

1 1

T2$ 2 T2
(41)

Vzz 24 X 10

F,', 10
(42)

which shows that the dipolar contribution at this edge
singularity is at least of equal importance as the quadru-
polar contribution. This looks reasonable if we take into
consideration the following. (i) The main contribution to
the EFG tensor V probably comes from the neighboring
Zn ion and, since the Zn-Cl(1) bond lies on the z axis, the
dominant EFG tensor element is V„and Vy Vyz are
correspondingly small. Therefore, the quadrupolar con-
tribution to the spin-spin relaxation rate of the v& edge
singularity is small according to relation (22}. (ii) The

Since the tensor elements appear in the spin-spin relaxa-
tion rate formula to the second power, we see that the v~
edge singularity is relaxing almost solely through the
quadrupolar interaction.
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