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We develop a systematic procedure for studying a doped antiferromagnet in the intermediate-

coupling regime. Starting with the Hartree-Fock (HF) solution to the Hubbard model in the half-

filled-band case, we obtain the spin-wave spectrum and find that in the strong-coupling limit the
spin-wave mode is identical to that obtained from the corresponding spin-2 Heisenberg model. We

self-consistently evaluate the one-loop correction to the sublattice magnetization due to spin-wave

excitations and in the U/t ~ 00 limit find that the sublattice magnetization is reduced to 0.6, i.e., to
60% of its HF or saturation value. As a first step toward applying this systematic procedure to a

doped antiferromagnetic, we numerically study in detail the HF ground state with few holes, which

become self-consistently trapped by the self-induced spin polarization, resulting in the spin-bag

ground state. We find that for U/t (20 the transverse terms in the HF Hamiltonian iterate toward
zero. We examine the nature of collective excitations in the spin-bag ground state in a 10X10 lat-
tice system for U/t =5, which is representative of the intermediate-coupling regime. We explicitly
show that the spin-bag state admits to a stable Goldstone mode, confirming the local stability of
this HF state. We analytically examine the self-consistent HF state, obtained in the rigid-band ap-
proximation, of a system with finite hole density. We find that, although self-consistent, this HF
state is unstable with respect to collective excitations toward the formation of a two-dimensional in-

commensurate structure with a wave vector proportional to the linear hole density.

I. INTRODUCTION

The classical problem of holes doped into an antiferro-
magnetic system, discussed first in some detail by Brink-
man and Rice, ' has recently attracted renewed interest in
an effort to understand the physical properties of the su-
perconducting copper oxides. The parent copper oxides
exhibit, in most cases, antiferromagnetic ground states,
and the onset of the superconducting ground state upon
doping seems to be related to the destruction of antiferro-
magnetic long-range order. While it was this association
that initially motivated a search for possible mechanisms
of superconductivity involving some bosonic excitation of
magnetic origin, the problem of holes doped in an antifer-
romagnet has since proven to be of suScient richness in
itself as evidenced by the variety of unconventional
ground states that have been proposed.

Recent progress in the theoretical understanding of
low-dimensional antiferromagnetism, specifically on the
issue of long-range order in two dimensions, has provided
a good starting point to study the consequences of doping
by holes (or electrons). The destruction of antiferromag-
netic long-range order by doping, observed in the layer
copper oxides with just a few percent concentration of
holes, is therefore the next important issue that has to be
resolved in developing a progressive understanding to-
wards the metallic phase and eventually the supercon-
ducting phase itself. %'hile frustration of the copper-
copper antiferromagnetic bonds through the direct ex-
change interaction of copper spins with spin of the hole
residing on the intervening oxygen atoms has been pro-
posed as a possible mechanism, there has been extensive
effort to explore whether there is any instability within

the single-band model itself, originating from an inherent
frustration induced by the doped holes, that might play
an important role in the destruction of long-range order
of the antiferromagnetic ground state.

As has been the case quite generally with the history of
magnetism, both localized spin as well as itinerant-
electron models have been taken as starting points for the
study of holes doped in an antiferromagnet. In the t-J
and t-t'-J models, " the interaction between copper
spins is taken to be of the Heisenberg exchange form. In
the itinerant model studied first by Schrieffer et al. ,

' the
spin correlation arise from the Hubbard interaction term
which is treated within the Hartree-Fock approximation.
In this case the added hole is self-consistently trapped by
the spin polarization it induces, and this results in the
formation of the spin bag. We shall refer to the self-
consistent HF state containing the spin bag as the spin-
bag ground state.

The Heisenberg model can be canonically obtained
from the Hubbard model when U/t is large, so that it
provides an accurate description of the electronic correla-
tion effects in the "strong-coupling" limit. On the other
hand, the Hartree-Fock approximation is a good one for
small U/t when Auctuation effects are small, and there-
fore does well in the "weak-coupling" limit. Experimen-
tally, as well as from the band-structure calculations, the
electronic correlation energy is found to be of the same
order as the band width in two dimensions, and therefore
one is really in an "intermediate-coupling" limit. One
therefore needs a systematic method to approach and
study the behavior of the system in this intermediate-
coupling regime, and to develop this is precisely the in-
tent of this paper.
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Here we have developed a formulation to incorporate,
in a systematic and self-consistent fashion, the effects of
quantum fluctuation (represented by the low-lying collec-
tive~odes) about the self-consistent Hartree-Fock state
of the Hubbard Hamiltonian. Within the random phase
approximation (RPA), for example, in a half-filled-band
system the lowest-lying excitations, represented by poles
in the transverse spin susceptibility, are the collective
spin-wave modes that significantly renormalize the sub-
lattice magnetization and the ground-state energy. In
fact, thermally excited spin waves destroy long-range or-
der completely in a two-dimensional ferromagnetic sys-
tern. Even at zero temperature there exist quantum
zero-point fluctuations in an antiferromagnet, so much so
that in one dimension such fluctuations completely des-
troy long-range order. '

In Sec. III we develop the formalism in the sublattice-
basis representation and present our results regarding the
nature and spectrum of the spin-wave modes in a half-
filled-band system. In Sec. IV we self-consistently incorp-
orate the quantum fluctuations about the HF state of the
half-filled-band system. We find that, to one-loop order,
the self-energy corrections due to spin-wave excitations
lead to a reduction in the sublattice magnetization from
its Hartree-Fock value of 1 in the large U/t limit to 0.6,
i.e., to about 60% of its saturation value. This value, be-
ing in excellent agreement with the exact result recently
obtained by Monte Carlo studies' and the linear spin-
wave analysis of the Heisenberg model, suggests that the
one-loop correction, done self-consistently, provides
surprisingly good results just as the first-order term in a
—,'S expansion. ' '

The self-consistent treatment of quantum fluctuations
evidently works well for the half-filled-band system. As a
first step toward applying it to the doped system, we
study, in Sec. V the nature of the low-lying bosonic col-
lective modes in the self-consistent spin-bag ground state
with precisely one hole. We explicitly show that the
spin-bag ground state admits to a stable Goldstone mode.
We also numerically obtain the wave functions of the
low-lying collective modes and compare with the spin-
wave modes of the half-filled-band system.

Section VI deals with a particular self-consistent
state —the commensurate spin-density-wave state ob-
tained in the rigid-band approximation —of a system
with a finite fraction of holes. We show that the Gold-
stone mode is unstable in this case and that, due to fluc-
tuations, the system develops an instability toward an in-
commensurate structure. We present this state as an ex-
ample of a perfectly self-consistent state, which nonethe-
less does not represent a local minimum in the free ener-

The nature of the spin-bag ground state itself is dis-
cussed in detail in Sec. II for a wide range of the interac-
tion strength. In the following we introduce the concept
of the spin-bag ground state. This concept has been orig-
inally introduced in Ref. 12.

Consider that an 1-spin hole in a localized state is in-
troduced in a certain region of the Fermi sea of a half-
filled-band antiferromagnetic system. The resulting local
depletion in the f -spin electronic density results in a

lower Hartree-Fock potential term locally for the J, -spin
electrons which, therefore, pile up in this region. An 1-
spin hole thus effectively attracts 1-spin electrons. The
bump in the 1-spin density profile leads to a potential hill
for f-spin electrons but a potential valley for the 1 hole.
The hole is, therefore, self-consistently trapped in the re-
gion with a localized wave function. In terms of the mac-
roscopic gap parameter 5, the hole reduces the sublattice
magnetization and hence 6 around itself. This leads to a
reduction in the energy gap around the hole, which, in
turn, traps the hole. This self-consistent, localized state
for a hole in an antiferroinagnetic background is referred
to as the spin-bag or the spin-polaron state. It should be
stressed, however, that the particle that is trapped is not
distinct from the particles providing the potential for it,
and in this respect this problem is different from the clas-
sical problem of polarons in a lattice.

The formation of a localized spin-polaron state is close-
ly tied in with the presence of the spin-density-wave
(SDW) structure in the antiferromagnet. In a paramag-
netic system, the local spin-density polarization formed
by the introduction of a hole in a localized state amounts
to a local spin-density fluctuation which decays rapidly
(unless the system is very close to a magnetic instability).
In the antiferromagnetic state, however, the SDW struc-
ture, which is responsible for lowering the ground-state
energy, resists being reduced globally and forces a local
reduction in the gap parameter. Another way of putting
this is that the electrons in an itinerant antiferromagnet
are tried up in forming the SDW structure, and the local-
ized hole state that lies in the energy gap cannot couple
strongly to the superposed plane-wave states and thereby
decay.

In the weak-coupling limit an estimate for the size g of
the spin bag can be made by minimizing, with respect to
g, the total energy of the system, which is considered to
consist of the occupied lower band and the hole. As al-
ready discussed, the localized 1-spin hole introduces per-
turbations in the local electronic densities around the
spin-bag site. These perturbations, denoted by 5n t i(r),
also decay exponentially with the characteristic length
scale g, and affect the band energy and the energy of the
hole. Treating U5n t i(r) as a perturbation, we evaluate
the first-order energy correction to each quasiparticle
state, and thus to the lower band. For the f-spin band,
for example, the energy correction to the occupied band
is 65n i(0)g, where we have made use of the fact that
5n t'"(r) have opposite sign on the two sublattices. Using
a localized wave function for the 1-spin hole, with
nonzero amplitudes only on the 1'-spin sublattice, the in-
crease in the hole energy is similarly given by U5n i(0).
Now, we consider 6n

&
as arising from a response to a

"field, " Un&~, over a length scale g, due to a depletion in
1-spin density equal to the hole density nl, The susce.pti-
bility over a length scale ( is =(I/t)ln( Therefore. , us-
ing ni, = I/g, required by normalization, we have

5n i(0)=( U/t)(1/g)in/ .

The total change in the energy of the band plus hole sys-
tem is therefore given by
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oE„,= U—in/+ U—,1

where in the second term, we have retained only the
leading-order term in 5n (0). Minimizing this energy
with respect to g, we see that the spin-bag size g is given
by g = t lh, which is essentially the spin-correlation
length.

II. SEI.F-CONSISTENT STUDY
OF THE SPIN-BAG GROUND STATE

In this section we describe the numerical self-
consistent calculations with the Hubbard Hamiltonian in
the Hartree-Fock (HF) approximation for a system that
has one electron less (or one hole more) than required for
half-filling. The added hole goes into a self-consistently
localized state which lies within the band gap leading to
the formation of the spin bag. We discuss the nature of
the resulting spin-bag ground state in several regimes of
the interaction strength. We start with a Hartree-Fock
approximation in which all possible linearizations of the
Hubbard term are considered, as shown below:

Hz = U g a;&a, &a;&a;&

= U y((a;ta;$ )a;$a;$+ (a;$a;$ )a;$a;$ (2)

H = —y(atat )

5;'—n; U

—6;'—n; U

a, t

where n; =(n; + n; )/2 is the local spin-averaged density,
2b; =(n;~ n;t ) U, and—

(b, ,
+)"=b, ; = U(a;)a, t ) .

Separating the spin and charge operators, we can write
this as

HP"= —g cr; 8; + U g n; a, , (5)

where

a;&

is the local electronic spin operator in terms of the Pauli
spin matrix;

a

is the local charge operator and 8, is given in terms of
the longitudinal and transverse components 6' and 6, .

The full Hamiltonian that we consider for the self-

—a;t(a;ta;&)a;& —a;t(a, &a;t)a;&) .

In terms of the expectation values of the spin-density
operators and the spin-lowering and spin-raising opera-
tors, we obtain

consistent calculation is

H "= t—g (a a +a a )+H
(ij )o

which represents the motion of particles in a spin-
dependent potential, determined self-consistently and
representing an effective field due to all the particles. The
self-consistent procedure consists of (i) diagonalizing H
(which is constructed initially from the spin densities and
a "seed' for the transverse terms around the spin-bag site)
to obtain the eigenfunctions [ ~P&) ), (ii) evaluating the
spin densities and the transverse terms, 6, , using the
eigenfunctions and (iii) reiterating to obtain self-
consistency. The spin densities and the transverse (spin-
(lip) terms are evaluated using

n, = g ((t )(P);,
E, &E

We use the unrestricted Hartree-Fock method in

which both spins are treated simultaneously. This dou-
bles the size of the Hamiltonian matrix and our study is
limited to lattice system sizes of up to 10X10. We use
periodic boundary conditions in both directions. At zero
temperature the sum is to be done over all states with en-
ergies less than the Fermi energy. Since the diagonaliza-
tion routine arranges the eigensolutions in increasing or-
der of eigen values, the sum contains the lower

I+=N "+Nt =N —I states, N being the total number of
lattice sites.

In the absence of any transverse component the field
term that couples to the spin operator is due to the sub-
lattice magnetization and is only in the z direction. The
presence of a transverse field term in the effective Hamil-
tonian is significant in that it allows the spin vector to tilt
out of the z direction. This is important in the large Uit
limit because the stiffness against such angular distortions
decreases inversely with the interaction strength. In this
situation it becomes energetically favorable to obtain the
magnetization profile in the spin bag by tilting the spin
vector rather than by decreasing its magnitude. In the
strong-coupling limit, we do see evidence of this tendency
of the local spin vector to tilt in the vicinity of the spin
bag. However, for U/t&20 zero spin-flip terms is the
fixed point. All this is discussed in more detail later. We
first discuss the results of the self-consistent calculation in
the U/t&20 range, without the spin-flip terms. The
Hamiltonian in this case is diagonal in spin, nonetheless
the diagonalizations were done in the expanded basis in-
volving both spins simultaneously.

The results for the self-consistent t-spin densities on
the sites of the 10X10 lattice system for U/t=5 are
shown in Table I. For this case we have 49 l-spin and 50
l-spin electrons. The spin bag is seen to have the C4
symmetry around the spin-bag site. For much smaller
values of the interaction strength, we find self-consistent
solutions with two distinct symmetries, both with nearly
equal energies. The cigar shaped spin bag lies along one
of the diagonals of the lattice and this solution has been
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TABLE I. f-spin densities on lattice sites in the HF spin-bag ground state for Ult= 5 with an f -spin hole localized near the lattice
center. The nearly equal f-spin densities near the spin-bag site allow delocalization of $-spin electrons leading to the formation of
the ferromagnetic core.

Sites

1

2
3
4
5

6
7
8
9

10

0.114
0.886
0.114
0.886
0.114
0.886
0.114
0.886
0.114
0.886

0.886
0.114
0.886
0.114
0.886
0.114
0.886
0.114
0.886
0.114

0.114
0.885
0.114
0.885
0.114
0.885
0.114
0.885
0.114
0.886

0.886
0.114
0.881
0.113
0.881
0.113
0.881
0.114
0.886
0.114

0.114
0.885
0.113
0.843
0.122
0.843
0.113
0.885
0.114
0.886

0.886
0.114
0.881
0.122
0.093
0.122
0.881
0.114
0.886
0.114

0.114
0.885
0.113
0.843
0.122
0.843
0.113
0.885
0.114
0.886

0.886
0.114
0.881
0.113
0.881
0.113
0.881
0.114
0.886
0.114

0.114
0.885
0.114
0.885
0.114
0.885
0.114
0.885
0.114
0.886

10

0.886
0.114
0.886
0.114
0.886
0.114
0.886
0.114
0.886
0.114

discussed earlier by Su. ' ' There is, however, another
solution that energetically does better than the cigar
shaped one. Though marginal at U/t=2, the difference
in energy becomes increasingly pronounced with increas-
ing U/t

At U/t=2, this other solution actually shows two
identical centers (with the maximum depression in nr)
situated on the diagonal, one in the center of the lattice
(by choice) and a secondary one at the corner, and each
having a local C4 symmetry around itself. With increas-
ing interaction strength, the secondary spin bag at the
corner becomes less distinct and eventually loses identity.
Also the size of the spin bag shrinks with increasing in-
teraction strength and as shown in Table I, already for
U/t= 5, the hole is almost completely site localized. Spin
bags with the C4 symmetry has been discussed by Choi
and Mele. '

A study of the spectrum of eigenvalues for the case
U/t=5 shows two sites inside the gap (at energies 1.5t
and 2t), corresponding respectively to the localized 1-
spin and j,-spin hole states, which appear due to the for-
mation of the spin bag. The reason for the J, -spin state at
2t (and another one at 2t, slightly b—elow the bottom
edge of the lower band), has to do with the formation of a
ferromagnetic core near the spin-bag site, and is dis-
cussed in detail below. The t'-spin hole state is precisely
the one created by the removal of one 1-spin electron
from the half-filled band. This t'-spin hole is, as discussed
before, self-consistently localized (trapped) due to its
binding with the excess 1-spin electron density at the
spin-bag site which is, in turn, induced by its presence.
The energy separation between the top of the valence
band and the energy of this 1 hole, thus corresponds to
its binding energy.

We now discuss the nature of the E-spin electron states
in the spin-bag ground state in the strong-coupling limit.

0
0

0 —t 0
0 —

E 0

Hcore
—t —t 0 —t —t

0 —t 0
0 —t 0

The five eigenvalues, in units of t, are —2, 2, and three
zeroes. These two isolated states with energies 2 and —2
are precisely the ones seen outstanding in the spectrum.
The other three states merge in the lower band centered
around zero. The corresponding wave functions are

As we shall show, the energy states seen in the spectrum
at 2t and—2t arise from a delocalization of l-spin elec-
trons in a ferromagnetic core around the spin bag. Since
in the large U/t limit the 1-spin hole is almost site local-
ized, the 1-spin density on the spin-bag site is vanishingly
small. Also the f-spin densities are similarly small on the
four nearest-neighboring sites belong to the 1-spin sublat-
tice. Therefore, a 1-spin electron feels the same Hartree-
Fock potential ( =0), due to the 1-spin densities, on every
one of the five sites in the core, consisting of the spin-bag
site and the four nearest-neighbor sites that are connect-
ed to it via the hopping terms. (That this is indeed the
case even when U/t=5 can be seen from Table I which
shows that the f-spin densities on the five sites of the
core are small and all roughly equal. ) Furthermore, the
1-spin density on the sites surrounding the core is almost
1. Therefore, the 1-spin electrons in the core feel a huge
barrier surrounding the core but can move freely among
the five core sites.

The Hamiltonian for the 1-spin electrons within the
core can be represented as a 5 X 5 matrix in which the
central site is connected to all four surrounding sites with
matrix elements —t and all other matrix elements are
zero.

1 1
1 2, — —2

1

2&2 2&2
1 1

1

—1
1 0
2

1



618 AVINASH SINGH AND ZLATKO TESANOVIC 41

Since the four l-spin electrons in the core fill up the
lower four of thees five states, the total l-spin density on
the central spin-bag site is —,. This explains why a l-spin
density close to a half is seen on the central site in the
large U/t limit within the self-consistent calculation.
Also, it is the l-spin density of = —,

' which completes the
ferromagnetic core together with the neighboring four
sites, each having a l-spin density of =—', .

We make two observations at this point. The first is
concerned with the charge-density depression present in
the HF state around the spin-bag site. This charge-
density depression, arising from the delocalization al-
ready discussed, is an important feature of the HF
ground state, considering that the energy gained from
delocalization happens to be the total HF ground state en-

ergy in the strong-coupling limit. The second is that the
situation can be consistently viewed as well in terms of
holes. The two holes of opposite spin on the spin-bag
site, resulting from the removal of the f-spin electron, re-
pel each other. The g-spin hole can delocalize to the
nearest-neighboring sites (resulting in the J-spin electron
density at the spin-bag site), however, the l'-spin hole
cannot do so because there are l'-spin holes already
present on these four sites.

Study of the total HF ground-state energy for the sys-
tem with one hole shows that it approaches —2t as U/t
increases. Considering the narrowing of the bands with
increasing U/t and that the lower, occupied band is cen-
tered at zero, this suggests that all of the ground-state en-
ergy is coming from the delocalization of the l-spin elec-
trons in the core. The core itself is distinctly ferromag-
netic in nature and, in fact, represents the seed for a fer-
romagnetic phase which is the true ground state in the
limit U/t~~. The delocalization energy increases
from —2t for the five-site core eventually to —4t as the
size of the ferromagnetic core becomes infinite. In a
Hartree-Fock study where the number of f- and g-spin
electrons is conserved individually (that is no spin-flip
terms are present) the antiferromagnetic and the fer-
romagnetic phase lie in disjoint subspaces and one can
never go from one to the other. If the spin-flip terms are
present, however, a relentless growth in the spin-flip
terms is a possible indication of an instability of the anti-
ferromagnetic state toward the ferromagnetic one.

This analysis of delocalization of $-spin electrons in
the strong-coupling limit can be carried further to study
the interaction between holes. Consider first the interac-
tion between parallel-spin holes that are trapped on two
sites belonging to the same sublattice. If the two holes
are not next-nearest neighbors, then the ferromagnetic
cores due to each do not overlap. The delocalization en-
ergy gained in this case is —2t per hole. If, however, the
two holes are next-nearest neighbors then the individual
cores due to each hole overlap resulting in an enlarged
ferromagnetic core containing nine sites or eight sites de-
pending on whether the two holes are separated by 2a or
&2a, respectively. The electrons of opposite spin are
therefore delocalized to a greater extent, and the lowest
eigenvalue in this case is indeed lower than —2t. But
when the total energy is evaluated by summing over the
occupied states, the result is slightly higher than —4t.

Parallel-spin holes therefore marginally repeal each other
in the strong-coupling limit.

Consider now the interaction between two holes of op-
posite spins. If a l-spin hole is to be placed in the vicini-
ty of the l-spin hole, it has to go in the highest occupied
of the l-spin states formed due to delocalization among
the five sites in the ferromagnetic core. Placing it in one
of three degenerate states with energy 0 leaves the tota!
system energy unchanged at —2t. On the other hand, if
the $-spin hole is introduced locally on any site that is
not a nearest neighboring of the $-spin hole, then an ad-
ditional energy of —2t is gained by the delocalization of
the surrounding I-spin electrons. Hence in the strong-
coupling limit holes with opposite spin repel strongly
when they are in the vicinity of each other. By numeri-
cally studying the total energies in the self-consistent
states with two holes, we find that even for the case of
U/t= 5 the repulsion is present between holes with paral-
le1 or antiparallel spins.

We now discuss the results of the self-consistent calcu-
lation with the spin-flip terms present in the Hartree-
Fock Hamiltonian. The presence of the spin-flip term

on a site merely reflects, as mentioned before, that the
local magnetization vector is not pointing in the z direc-
tion; rather it is tilted with respect to it. As we shall
show in the following, the results indicate that for large
U/t, the self-consistent ground state in which only the di-
agonal spin-density terms are present develops an insta-
bility. This instability is towards a state in which the lo-
cal magnetization vectors in the vicinity of the spin bag
develop a tilt with respect to the z direction. The natural
question that arises is why this tilting of spins in the vi-
cinity of the spin bag should energetically favor the
ground state. A simplified argument in terms of a Lan-
dau free energy functional-type picture is given in the fol-
lowing.

The presence of a spin bag locally induces a dip in the
magnetization (or the S, profile). This, one may expect,
is associated with a ~b,S, ~ type gradient term in the free
energy. Now there two ways in which the given S,
profile across the system may be achieved. One is to sirn-

ply have the magnitude of the spin vectors follow the
profile, while keeping them all aligned in the z direction,
as turns out to be case for U/t (20. The other possibility
is to have the spin vectors in the vicinity of the spin-bag
tilt with respect to the z direction, yielding the required
profile in the projection on the z axis. In this situation
the characteristic energy scale would be associated with
angular distortion (rather than amplitude distortion as in
the first case). But this energy scale associated with an-
gular distortion is just the spin-wave stifFness, which goes
as =4t /U in the strong-coupling limit. For large U/t,
it is therefore energetically favorable for the system to ac-
commodate the spin bag by having angular distortion in
the local spin vectors.

In order to find the onset of this instability towards an-
gular distortion, we start with a set of sma11 seed values
for the off-diagonal, spin-Hip terms 6, '+ around the
spin-bag site in the Hartree-Fock Hamiltonian. As de-
scribed earlier, we then iterate the procedure of diagonal-
ization and evaluation of the spin-diagonal and off-
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diagonal densities seeking self-consistency. We find two
distinct behaviors as we iterate (up to 50 times) depend-
ing on the interaction strength. For U/t & 20, with itera-
tions the spin-Aip terms slowly decrease towards zero, the
rate itself slowing down as Ult approaches 20. This is
accompanied with the total system energy, obtained by
adding up the quasiparticle energies of the occupied
states, approaching, from below, the energy of the self-
consistent HF state with no spin-Qip terms. However, for
U/r) 20, the spin-flip terms keep on increasing relent-
lessly, while the total energy goes on decreasing with
iterations. This behavior of the total energy as a function
of iteration is shown in Fig. 1.

The interaction strength U/t =20, therefore, is a criti-
cal value at which the self-consistent spin-diagonal HF
state of the 8 X 8 lattice system with one hole develops an
instability toward a state in which the spin vectors in the
vicinity of the spin bag are tilted with respect to the z
axis.

The half filled band a-ntiferromagnetic state We. first
brieAy review the characteristics of the antiferromagnetic
state for a half-filled-band system obtained within the
Hartree-Fock approximation. The Hartree-Fock Hamil-
tonian can be represented in the basis formed by the two
sublattices as

(12)

a& and b& are interchanged in the J, -spin wave function.
The components az and bz are given by

2

Q

ei, +(Ek+5)
b&=1 —ak .2 2

(13)

The sublattice magnetization m can be obtained from the
difference in the spin densities on a site:

m =—g (a„b„)—=—2 2 2 —2

N E„(~F
" N E„(FF (g +eq)

This leads to the self-consistency condition

and the gap parameter, h. The —/+ spin is associated
with k states lying inside/outside the magnetic Brillouin
zone (MBZ). The gap parameter is related to the sublat-
tice magnetization m by 2h=nU. The sublattice mag-
netization is de6ned as the average over one sublattice of
the expectation value of the z component of the spin
operator, S,'=a, a,a;. The quasiparticle wave functions
are linear superposition of plane waves on the two sublat-
tices A and 8; the superposition amplitudes, ak, b& on
the two sublattices are given by the eigenvectors of H:

1/2
2 g (ai,e'"'5„A+bqe'"'5„~ )

r

The eigenvalues yield the quasiparticle energies

E t, i —+(g2+e2)l/2
k — k

1 1 1

U N ~ (g2+&2)1/2
F~ & EF

(15)

in terms of the free-particle band energies

ek= —2t[cos(k„a)+cos(k a)]

The gap parameter can be obtained by inverting this rela-
tionship of U on 6, from which the sublattice magnetiza-
tion can be determined as a function of U. Figure 2
shows a plot of the sublattice magnetization obtained in
this manner.

—2.1 I ~ I ) I I ~ I ) I I I I ) ~ ~

2%2

J ~ ~ I I
f

~ ~ ~ I
/

I I I I
/

I ~ I I ) ~10
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& —2.3
41 0.6 (U/t~~) ~

—2.4 0.4

—2.5 ~ ~ I I ~ I I I I I I ~ I I ~ I

0.2

10 20 30
iteration

FIG. 1. Total system energy with iteration steps in the HF
procedure when the spin flip are terms are present. When
U/t & 20 the spin-flip terms iterate to zero and the total energy
approaches the HF ground-state energy with no spin-flip terms
(indicated by arrows on the right margin). When U/t& 20 the
spin-flip terms grow slowly with iterations accompanied with a
decreasing total energy.

0.0 8 I I I I I I I ~

0 5
I I I ~ I I I ~ I I ~ I I I~
io 15 20

FIG. 2. Sublattice magnetization as a function of the interac-
tion strength for a half-61led-band system in the HF approxima-
tion. The arrow indicates the value of the sublattice magnetiza-
tion in the U/t~ ~ limit when quantum fluctuations are self-
consistently treated at the one-loop level.
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The relationship between particle and hole amplitudes,
used in the following sections, are given here:

(a)+, )'=(b„)',
(b+ )2 (o

—
)2

where the superscripts —and + refer to particle (lower
band) and hole (upper band) states, respectively.

III. SPIN WAUES
IN A HALF-FILLED-BAND SYSTEM

Within the RPA or the ladder approximation for the
transverse susceptibility, we formally have

Xp

1 —Uyo
+

and the spin-wave modes are obtained from

l —Uyo +=0 .

(17)

The zeroth-order term in the susceptibility, go, is eval-
uated with respect to the antiferromagnetic ground state

Spin waves are the lowest-lying collective excitations
that represent transverse spin fluctuations about the anti-
ferromagnetic ground state. The spin-wave mode shows
up in the form of a pole in the dynamical transverse spin
susceptibility evaluated in the antiferromagnetic ground
state. The transverse spin susceptibility is defined in
terms of the spin raising and lowering operators as given
in the following. The retarded two-particle Green's func-
tion of interest can be obtained from the corresponding
time-ordered one,

y +(r, t;r', t')

=ie(t —t')(%~ F~[o (r, t), o+(r', t')]~%'„„) . (16)

and is given, in terms of one-particle Green s functions,
by

+ (X)

gp (r, r'; (p) =i G, , (t0')G, ,(t0' —t0) ~

2F
(19)

xo+ ~+(Q, (p) —ig (r—r')

& g 1 —Uyp +(Q, co)
(20)

Indicated by the subscripts, the appropriate matrix ele-
ment to be taken in the right-hand side of the preceding
equation is determined from the sublattices that r and r'
belong to. The RPA form is thus clearly retained in the
sublattice basis, and this is a distinct advantage of our
matrix formulation in which the spin susceptibility,
Green's function, self-energy, etc., are 2 X 2 matrices.

Equation (18) for the spin-wave mode is, therefore,
really an eigenvalue equation. If ))(, ,„(Q,tp} denotes the
bigger of the two eigenvalues, then the spin-wave mode is
obtained from

1 —UA, ,„(Q,co) =0 . (21)

We now discuss in detail the evaluation of the suscepti-
bility matrix, [yp (Q, c()}],and also the inverse Fourier
transform. If we write the Green's functions in Eq. (19}
in terms of the quasiparticle wave functions and energies,
we obtain the sublattice basis

Because translational symmetry is reduced by the sublat-
tice magnetization, (gp ), , in the antiferromagnetic
state depends on the sublattices that r and r' belong to.
(yp

+ ), , can hence be represented as a 2 X 2 matrix, each
component of which still depends only on r —r'. Fourier
transformation of each component can therefore be done
keeping r and r' belonging to a fixed pair of sublattices
yielding the 2 X 2 matrix [yp

+ ](Q, t0) in the sublattice
basis. As we shall show in the following, the full RPA
susceptibility of Eq. (17} can be inverse Fourier
transformed:

[y + ](r,r'; to)

[yp
+(r —r'; p) ) ]= N k~, a~b] a] b~.

r

ash~a~. b),

b),a2 2 )e
((k' —)r) (r —r')

(22)

where

D (k, k', co) = e(E,—E'„)e(E„',—E, ) e(E,—E„',)e(E„' —E, )
'

(E), E),+co)—(E)t, Eq~. —co)— (23)

Using the following property of Fourier transform on sublattices,

5„,+5„., red/B, r'~~/8
5~()—5~, rE A/8, r'CB/A,

r —r'
(24)

we obtain
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[Xo +{Q~)]—:g [Xo +(r—r')]exp[&Q {r—r')] (25)

2 2
akbk

XN E,E akbkak-Qbk-Q

akbkak —Qbk —Q
2 2bkak-Q

2 2

2 bkak —Q+-
kbk k —Qbk —Q

akbkak-Qbk-Q
2 2akbk

Here the sign to be taken for the quasiparticle energies with momenta k and k —Q are explicitly shown as superscripts.
The two 5-function terms in Eq. (24) effectively render the condition in Eq. (23) redundant that one of the momenta lie
outside the magnetic Brillouin zone. This is because if k lies inside the MBZ then one and only one of k —Q or
k Q—+m always lies outside. Therefore the sum over k inside the MBZ can be done without any further restriction. In
obtaining Eq. (26) we have also taken az to carry the sign of ez [Eq. (13)] so that az q+ = —az q. This cancels the

sign coming from the second 5-function term in the Fourier transform for the off-diagonal elements.
These same properties are used, perhaps a little more obviously, in obtaining the inverse Fourier transformation.

One obtains

(27)

where [go (Q, co)] is as defined in Eq. (26). This can be checked explicitly by Fourier transforming both sides of Eq.
(27) and using the following property of the susceptibility matrix:

[Xo '(Q+~ ~)]=a3[ro '(Q ~)]a3 (28)

At this stage we also note the following property of the inverse Fourier transform of product of two matrices,

g, A (r, r~)B {r~,r ), the elements of which exhibit translational symmetry within the 2X2 sublattice basis:
I

g 3 (r, r, )B (r, , r') = — g [ A (Q)], , [B(Q')], , e ' e
r& Q, Q', rl

'2

X I [ ~ (Q)B (Q) L,r'+ [ ~ (Q)a3B (Q)a3]r, r'I e
. 'Q

(29)

(30)

In view of the way in which [yo (Q, co)] transforms under momentum translation by n, and using the property just
derived, we can now easily inverse Fourier transform the full RPA susceptibility

e
—iQ.{r —r')

We now proceed with the evaluation of go +(Q, co). Since Ez+ q Ez in Eq. (26—) is (5 +ek &)' +(6 +ek)'
which is at least 2b„we can expand the energy denominators in powers of co/(E„q —Ek ) when the frequency is small
compared to the energy gap. Since the off-diagonal terms in the two matrices in Eq. (26) are identical, they cancel when
taken with odd powers of co. This cancellation of the linear in e terms in the off-diagonal elements is significant as it en-
sures that the eigenvalues depend only quadratically on ~. Keeping terms up to second order in m, we see that
[yo +(Q, co) ] can be written in the following form:

A —aco

A +ace (32)

where A and contain the O(co } terms. To O(cu ),

A. ,„=A+(X +a co )'

the larger one of the two eigenvalues of this matrix can be written as

„=A+IXI+ 2%
(33)

In order to obtain the spin-wave velocity, we now study the response when the momentum transfer Q is very close to
{vr,n ). Setting Q=n —q, where qa « 1, we expand A and S to second order in qa and co/b, to obtain
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a
A. ,„=(A +8)p+ 13+

2
tel Pg a (34)

where P and y are, respectively, the coefficients of the co and the q a terms in the expansion ofA+ ~$~. Since we can
neglect terms of order co q, all the coefficients are evaluated with co,q~0. The results for the various coefficients, for
all values of U/t are

1 1 1

2 2 i/2=(g2+ &2 )1/2
(35)

1 1 1 x
(g2+e2)3/2 4

E~ 'EF

1 ~ 1 =—'hx
2 2 3/2 —

2
E (E (b, +s),}

1 2 2 1 1

(g2+ &2 )1/2

(36)

(37)

(38)

2
sin k„(1—3ez/2E& ) ——,'cos k„——,'cosk„cosky=2t—

(g2+ E2 )3/2
E~ 'EF

(39)

where the spin-wave velocity, vsw, is given below in
terms of the quantities defined in Eqs. (35}through (39)

' 1/22JSpl

,
2$(@+a

(41)vsw = a.

The spin-wave velocity, as obtained from the preceding
expression, is plotted in Fig. 3 as a function of the in-
teraction strength U/t. To get an idea of the magnitude
of the spin-wave velocity, we have evaluated the scale fac-

1,0 g

0.8—

0.6

0
Q
N

E

X
CO

g

Q

The value 1/U of the eigenvalue at to, q=0 leads to the
cancellation of O(1) terms which ensures a gapless spin-
wave spectrum. Substituting the result for the eigenvalue
into Eq. (21), we obtain the spectrum of the low-lying,
collective excitations:

(40)

Usw =3/2~tt (42)

where J =4t /U is the nearest-neighbor exchange term
obtained in the spin- —, Heisenberg Hamiltonian to which
the Hubbard model can be canonically mapped in the
strong-coupling limit. In fact, the quantization of antifer-
romagnons in the Heisenberg model of localized spins
leads to precisely the same value for the spin-wave veloci-
ty within the linear approximation. ' The spin-wave
velocity in the strong-coupling limit is also shown in Fig.
3. Comparison with the general result shows that the
discrepancy is about 15%%uo at Ult=8, where the interac-
tion strength is equal to the free-particle bandwidth.

The full Q dependence of the spin-wave mode can be
obtained in the large Ult limit if we retain terms only up
to order 1/b, in the quantities A, %, and a. We obtain

0
tor for ta = 1 eV A, which is shown on the right margin of
the plot. From their neutron scattering studies, Shirane
et al. ' have reported Usw &0.4 eVA, so that supposing
U/t =5, our results are somewhat larger than the sug-
gested lower bound.

%e now obtain the spin-wave energy in the strong cou-
pling limit (U/t »1). In this limit 2b, = U, so we can
neglect sz in comparison with b, in Eqs. (35) through (39)
and we obtain x = I/2h, 2$p=2t /b, , and y =t /4b .
Substituting these in Eq. (41) for the spin-wave velocity,
we obtain

0.4
I a s I ( s i s I

5 10
U

2
1 1 Ck qA= ———
U X E E 2A'

(43)

(44.)

FIG. 3. Spin-wave velocity as a function of the interaction
strength with the right-hand scale showing in m/sec for ta=1
eV A.

1

4A
(45)
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Evaluation of the sum over states is easily done and
yields

k —Q,u —0

and

S=(t /2b, )(cosg„a+cosg a) . k,u

Substituting the eigenvalue,

A, =A +[S + (aco) ]'

into Eq. (21) for the spin-wave mode, we obtain

to
—2J(1—y )~~

where

(46)

y& =(—,
' )(cosg„a +costa) .

This expression for the full Q dependence of the spin-
wave energy in the strong-coupling limit is also in agree-
ment with the result obtained starting with the Heisen-
berg model of localized spins. ' ' We should note that
results obtained by Schrieffer et al. for the spin-wave
velocity in the strong-coupling limit differ from ours by a
factor of 2. We have also obtained the spin-wave velocity
numerically, as described in the following section, and
find it to be in agreement with our result just given.

k,u k —Q,u —0 k,u

(b)

FIG. 4. (aj Diagrammatic representation for the self-energy
correction at the one-loop level due to transverse spin fluctua-
tions. (b) This may be viewed as arising from virtual emission
and absorption of a spin-wave boson (spin 1) accompanied by
spin flips.

IV. QUANTUM FLUCTUATIONS
IN AN ANTIFERROMAGNET

The sublattice magnetization (or the gap parameter) is,
among other properties of the antiferrornagnet obtained
in the Hartree-Fock approximation, sensitive to quantum
fluctuations about the Hartree-Fock ground state. The
lowest-lying quantum fluctuations are the collective
spin-wave modes that represent transverse spin fluctua-
tions. These transverse spin fluctuations involve spin-flip
processes and therefore necessarily affect the spin densi-
ties and hence the magnetization that was obtained in the
Hartree-Fock ground state. Figure 4(a) diagrammatically
shows the self-energy correction from transverse spin
fluctuations. This one-loop process may be viewed as
representing correction to a quasiparticle state arising
from the virtual emission and absorption of a spin-wave
boson (spin 1) accompanied by spin flips [Fig. 4(b}]. The
spin-wave propagator is thus related to the effective in-
teraction in the antiparallel-spin channel. Since the
spin-wave stiffness, and hence the characteristic energy
scale for the spin-wave excitations, decreases inversely
with U in the large U/t limit, we expect the effect of spin
fluctuations to become more and more pronounced with
increasing U/t.

There are, in addition, other virtual processes in which
the spin is not flipped and which involve an effective in-
teraction in the parallel-spin channel. The effective in-
teraction in the parallel-spin channel involves go (Q, co),
which does not admit to a low-lying spin-wave mode. In
the large U/t limit such processes contribute only to or-
der (t/U} and are, therefore, not important.

We consider the one-loop correction to the sublattice

magnetization (or the gap parameter) arising from trans-
verse spin fluctuations. In terms of the self-energy
corrections, the one-particle Green's function is

G (k, to)= 1

[GHp(k, co)] ' —X (k, co)

Since

[GHF(k ~}] ' —~—&HF

(47)

+cr3[U,s(Q, Q)G (k —Q+n;co —Q)]o3 .

(49)

The matrix [Uts~G ) in Eq. (49) is obtained by multi-

plying, element by element, the two matrices [U,s ] and

the self-energy correction effectively renormalizes the HF
Hamiltonian. We now study the self-energy correction
due to the transverse spin fluctuations. This self-energy
correction arises from the amplitude for a particle in the
occupied band to undergo a virtual spin-flip transition
into, and back from, the upper hole band, accompanied
with the emission and reabsorption of a spin wave. In
real space we have

Xs„(r,r', co)= . Uts (r, r', Q)G (r, r';co —II), (48)
dQ

&l

where Uts(r, r';0) is the effective interaction in the
antiparallel-spin channel. Fourier transformation, with r
and r' belonging to a fixed pair of sublattices, leads to the
self-energy matrix, Xsz(k, co) in the sublattice basis,

Xs„(k;co)=—g I . [Uts. (Q, Q)G (k —Q;co —0)]1 dQ
N q 2m
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[G ], i.e.,

In the sublattice basis, [U,s((Q, Q)], the effective interac-
tion in the antiparallel-spin channel, is given by

(50)

In Eq. (49) if the self-energy correction is to a particle
state, then the intermediate state represented by
G (k —Q;co —II) should be a hole state and vice versa.
This is because the self-energy is derived from the trans-
verse susceptibility which is a particle-hole propagator.
That the intermediate state should lie on the opposite
side of the Fermi surface is, therefore, merely a conse-

quence of the Pauli exclusion principle. Now for any
value of Q, one and only one of k —Q or k —Q+m lies on
one particular side of the MBZ. Furthermore, owing to
the manner in which the Green's function transforms un-
der translation by m, the matrix elements are identical
whether the residue is obtained from G (k —Q, co —II)
or G (k —Q —n. , co —0). The net result is that the sum
over Q can be done without any restriction.

We briefly sketch out the evaluation of the self-energy
at the one-loop level in the strong-coupling limit as this
can be done without taking recourse to numerically
evaluating the sums over states. In this limit the band-
width is negligible in comparison to the band gap and the
energy denominators ~Ez &

E—
I,+~=25 can be taken

outside the sum over Q.
In the strong-coupling limit, the full RPA susceptibili-

ty can be written as

1 1

II —2J(1—
y )'

3'Q Q

(51)

Xtt= —g —1 b, =(J —1)b, ,sF ~ (1 2 )1/2 2

Q VQ

(52)

where following Anderson, ' we have used J2 to denote
the two-dimensional sum

=1.393 . (53)

Similarly the self-energy correction for an 1'-spin electron
on the 1-spin sublattice (co=6, ) is determined. This
represents the self-energy correction for a hole state and
therefore the intermediate 1-spin state must be a particle

In this form the spin susceptibility represents a propaga-
tor with advanced and retarded components. The pole
with positive spin-wave energy represents rotation in spin
space of an electron sitting on the right sublattice. For
hole states which represent electrons sitting on the wrong
sublattice, rotation of spin leads to a lowering of energy.
Such collective modes are represented by the pole with
negative spin-wave energy.

Since G (k —Q, co —II) is diagonal in the strong-
coupling limit, in view of Eq. (48) the self-energy matrix
is also diagonal. Consider the self-energy correction for
t'-spin particle states at the top of the occupied band
(co= —b, ). In this case G t(k —Q —n, m —II), which must
represent a 1-spin hole state, has an amplitude 1 on the
f-spin sublattice only, with an energy denominator of
—2h. This intermediate state arises from rotating the
spin of a 1-electron the right sublattice. In the integra-
tion over 0, contribution therefore comes from the pole
with a positive spin-wave energy. For the self-energy
component on the 1-spin sublattice we obtain

The gap parameter is thus reduced due to the transverse
spin fluctuations by an amount equal to (Jz —1) times the
HF value. In fact, in D dimensions the fractional reduc-
tion will be (JD —1 ), which vanishes as D ~ ao,

confirming that the HF result is exact in infinite dimen-
sions.

Adding the self-energy correction to the HF Hamil-
tonian, the renormalized gap parameter, As„, in two di-
mensions is simply given by hs„/5„„=(2—Jz). And,
therefore, the renormalized sublattice magnetization,
msF, related to the gap parameter by 26s„=ms„U, is
given by

mHF
=(2—J2) =0.607 . (55)

The sublattice magnetization is therefore reduced by
about 60% of its HF or saturation value by the zero
point, quantum spin fluctuations. This result for the sub-
lattice magnetization is in very good agreement with the
recent Monte Carlo studies, ' and in exact agreement
with the spin-wave analysis results' ' and the mean-field
result within the Schwinger boson theory, of the
Heisenberg model. This indicates significantly that HF
together with the zero-point spin fluctuations due to spin
waves is able to account for the physics of the Hubbard
model even in the strong-coupling limit.

state. Rotation of an 1-spin on the |,-spin sublattice leads
to a lowering in the energy and therefore in the 0 in-
tegration we pick the pole with a negative spin-wave en-

ergy. We obtain

(54)
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V. COLLECTIVE EXCITATIONS
IN THE SPIN-BAG GROUND STATE

Spin ~aves are the low-lying collective excitations
about the Hartree-Fock ground state of a half-filled-band
antiferromagnet, and in the last two sections we discussed
their nature and consequences on the sublattice magneti-
zation. In an effort to understand the properties of a
doped antiferromagnet, we start, in this section, with the
spin-bag ground state with precisely one hole, the nature
of which has been discussed in detail in Sec. II, and study
the nature of collective excitations about this self-
consistent ground state. We explicitly establish that the
spin-bag ground state admits to the Goldstone mode and
show that the single hole appreciably reduces the energy
of some collective modes by mixing the modes of the
half-filled-band system.

That the spin-bag state admits to a Goldstone mode is
significant because it is not necessarily true that a self-
consistent solution should represent a ground state. In
fact, as we show in the last section, within the rigid-band
approximation, a system with a finite density of holes has
a commensurate spin-density-wave solution which is
self-consistent, but nonetheless has no stable Goldstone
mode. The static susceptibility in this state actually
diverges for a small Q indicating an instability towards
an incommensurate structure. The commensurate spin-
density-wave state must, therefore, represent an unstable
saddle point solution of the free energy.

We start by evaluating the zeroth-order transverse spin
susceptibility matrix in the spin-bag ground state using
the numerically obtained wave functions and energy ei-
genvalues, [ ~P& ),E& j, representing the self-consistent
solution of the Hartree-Fock Hamiltonian. The pro-
cedure used in the unrestricted Hartree-Fock method de-
scribed earlier in Sec. II. This section addresses the
intermediate-coupling limit wherein the interaction
strength is of the same order as the bandwidth. There-
fore, as determined in Sec. II, for U/t (20, we only need
to consider the spin-diagonal terms in the Hartree-Fock
Hamiltonian. The Hamiltonian matrix is thus real, sym-
metric and yields real eigenfunctions. Using i,j to refer
to two sites in the system, the matrix element [go +(co)];J.
is obtained from

Xo
E, &E Eit Emt

E &EF E t E&t+m—(56)

The particle-hole (Stoner-type) excitations are explicitly
given by the poles in the preceding expression. For ex-
ample, the pole at E&&

—E
&

—co=0 represents a spin-flip
excitation of a $-spin electron across the Fermi level.
The second term similarly represents an emission (deexci-
tation) process.

The full susceptibility at the RPA level is then given, in
matrix form, by

Xo +(~)
+(ar)=

1 —Uyo +(co)

The matrix expression on the right-hand side can be ex-
panded in terms of the eigenvalues and eigenvectors of
yo +(co) and we obtain,

I@ ( ))&& ( )I

1-U~. (58)

cosO; /2
5-

i sinO, . /2 (60)

The difference in the densities of the two components
of a spinor yields for the z component S,cosO;, consistent
with the classical picture of a spin tilted by an angle O;

with respect to the z axis. Now the amplitude of the col-
lective mode,

~ @z), at site i is simply the expectation
value of the spin lowering (or raising) operator because a

The preceding form is nothing but a propagator represen-
tation for the transverse spin excitations. All the infor-
mation regarding the nature of these collective excita-
tions about the ground state is contained in the eigensolu-
tions [ ~4&(to) ),A(to) j. In fact, the eigenfunctions, ~&b„),
represent the wave functions of the collective modes,
while the collective-modes energies are given by the poles
at 1 —UA(to)=0. By looking at the nature of these
modes in the spin-bag ground state, and by comparing
with the modes present in the half-filled-band case, we are
able to determine how the collective modes are affected
by the presence of the spin bag.

In the following we discuss our results for the nature of
the collective excitation modes, as given by the eigensolu-
tions, [ ~4&(to)), k(co) j, obtained in the spin-bag ground
state on a 10X 10 lattice system for U/t =5—a situation
representative of the intermediate-coupling regime. In
the static limit (co=0), we find that the largest eigenvalue
(in units of t) is precisely —,. This implies that, as for the
half-filled-band case, the spectrum of the collective exci-
tations in the spin-bag ground state remains perfectly
gapless. Also the mode represented by this largest eigen-
value is actually a Goldstone mode, corresponding to a
rigid rotation of the magnetization direction, and there-
fore costing no energy. We now explicitly show that the
nature of ~4z (0)), the mode corresponding to this

max

largest eigenvalue, is indeed consistent with its interpreta-
tion as a Goldstone mode.

We start by defining local spin vectors, S, , at every site
as the ground-state expectation value of the Pauli-spin
operator

S, =&+,~a,'„~„~,,~e, ) .

When there are only spin-diagonal terms in the Hartree-
Fock Hamiltonian (as for U/t=5), all the local spin vec-
tors are directed along the z axis, with their magnitudes
equal to the difference in the local electronic spin densi-
ties. We now describe these local spins using a spinor
representation —(o) for a spin pointing up and (

~
) for a

spin pointing down, both with an am amplitude of QS;
to give the appropriate magnitude. Now a spin-wave
mode being a transverse excitation will result in a rota-
tion in spin space of every individual spinor, which can
then be expressed in terms of rotation angles,
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spin-wave boson with up (or down) spin is actually creat-
ed by this operator. Therefore, ~4i ) is just the product
{p,'&.y;& which, from Eq. (60), is proportional to S;sin0;.
In Figs. 5(a) through (e) we have shown, the collective-
mode amplitude ~4i ) and the ratio, 4'i, /S, , of this ampli-
tude to the local magnetization, on each lattice site, re-
spectively, in terms of size and orientation of arrows (rel-
ative to the vertical), with fixed scale factors.

We observe that for the collective mode corresponding
to the largest eigenvalue (energy=0), this ratio, 4'i /S;,

max

is independentof the site i Th.is is clearly seen in Fig. 5(a)
which shows that though the amplitude itself of this wave
function (arrow sizes) decreases in the vicinity of the spin
bag near the lattice center, its ratio to the local magneti-
zation (arrow orientations) remains constant. This estab-
lishes that the rotation angles are identical for every site
and, therefore, that the collective mode represented by
the largest eigenvalue is indeed a Goldstone mode.

Before discussing the nature of the other wave func-
tions, we digress a little and consider the half-filled-band
case first. The eigenfunctions of the zeroth-order suscep-
tibility matrix, [go (co)], can be expressed in the follow-

ing form in the sublattice basis
' 1/2

k

@k(r)= — ~ e (61)

4i( —r)= —4i(r) . (62)

These odd-parity modes in the spin-bag ground state
di6'er, in structure as mell as energy, rather substantially
from the sine modes of the half-filled-band system which
they replace.

From the preceding discussion given in terms of rota-
tion angles, the collective-mode amplitude at a site is pro-
portional to the local magnetization times the sine of the
rotation angle at that site. Since the local magnetization
on sites r and —r are identical, both sites being on the
same sublattice, the difference in sign of the collective-
mode amplitudes translates into the two rotation angles

It is straightforward to verify that 4i,(r) is indeed an

eigenfunction of yo
+ provided (&") is an eigenvector of

go +(k). The spin-wave amplitude in the half-filled case
is, therefore, simply given by a superposition of plane
waves, just like the eigenfunctions of the HF Hamiltonian
itself. In a finite system with periodic boundary condi-
tions, the spatial dependence will be given by
cos(k„x +k»y) and sin(k„x +k»y), with k„and k» given
by multiplies of +ir/L.

A general feature of the wave functions, 4&, is that
they come in two distinct parity states. States with even
parity have wave functions symmetric with respect to in-
version about the spin-bag site. By comparison with the
half-filled-band case, also studied for a 10X 10 lattice sys-
tem with periodic boundary condition, we find that the
nature and energy of these modes are essentially un-
changed from the above-mentioned cosine modes for the
half-filled-band system. There also exist, in the spin-bag
ground state, modes with odd parity with change sign un-
der inversion with respect to the spin-bag site

having opposite sign. Odd-parity collective modes, there-
fore, correspond to excitations in the system which result
in nearby local spins on the same sublattice being tilted in
opposite directions.

Figure 5(b) shows one of the two degenerate eigenfunc-
tions which correspond to the second largest eigenvalue
and is representative of the odd-parity state already dis-
cussed. As is clearly evident, there exists a vertical
domain boundary passing through the spin-bag site
which separates regions of opposite tilt. Thus as one
crosses the domain boundary from left to right, there is
an abrupt change in the direction of orientation of the lo-
cal spins brought about by this mode. In the other
symmetrical member of this state the domain boundary is
horizontal. These two states appear in the spin-bag
ground state in place of the sine wave functions of the
half-filled-band system. The two states shown in Figs.
5(c) and (d), which are examples of even parity states and
which correspond to the next two (nearly equal) eigenval-
ues (in decreasing order), are essentially unchanged in na-
ture and in their energies from the cosine states of the
half-filled-band system.

We next look at the energy of this collective mode (cor-
responding to the second largest eigenvalue) which is the
energy for which 1 —UA. (co)=0 is satisfied. This energy
corresponds to the lowest excitation energy in the spec-
trum of the collective modes. For U/t=5 and for the
10X10 lattice system, we find co'~„„„„„,=0.35t. For a
half-filled-band, 10X 10 lattice system with U /t =5, on
the other hand, we find the lowest excitation energy of
the spin wave to be 047t, which is, for Qa {or
Q»a) =2'/10, Q»a (or Q„a)=0, consistent with our
analytical result using a spin-wave velocity of 0.8ta at
U/t=5 from Fig. 3. Thus a single hole causes consider-
able softening of the collective-excitation spectrum, mak-
ing the system more susceptible to quantum Auctuation
effects.

The wave function itself for this first collective excita-
tion is shown in Fig. 5(e). Two features are noteworthy.
The amplitude of this collective mode is localized near
the spin-bag site with the maximum amplitude on two
nearest-neighbor sites on opposite sides. Moreover, this
mode has an odd parity, so that the sign of the ampli-
tudes are opposite on these two sites (belonging to the
same sublattice). In the other member of the degenerate
pair, the wave function is identical except for a rigid rota-
tion by a right angle. Recalling that opposite signs
translate into opposite tilts of the local spin vectors, if we
take an appropriate combination of these two degenerate
modes, we are led to a picture wherein this collective
mode induces, in the ground state, a twist in the spin
directions about the spin-bag site.

In view of the substantial softening, by a single spin
bag, of the collective-excitation spectrum of odd-parity
modes, it should be of great interest to see how the ener-

gy of these modes scales with increasing system size and
increasing hole number. The scaling with size should go
as 1/L, just as for the modes in the half-filled-band case
for which the energy of low-lying modes goes as

Q = sr/L. If for a fixed system size the energy decreases
linearly with increasing hole number, which should be
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(c)

(e)

FIG. 5. (a)—(e) The collective-mode amplitudes, 4z, and the ratio, 4&/S„of this amplitude to the total magnetization on each lat-
tice site, shown respectively in terms of arrow size and orientation (with respect to vertical) with fixed scale factors.
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reasonable for small hole concentrations, then for a Pxed
hole concentration, the energy will scale as 1/L . This
drastic reduction in the energy of the low-lying, odd-
parity collective modes, compared with the correspond-
ing energies in the half-filled-band system, will lead to
enhanced quantum fluctuations to the extent that long-
range commensurate antiferromagnetic order may be
wiped out. This issue of scaling with system size and hole
number is presently under investigation.

1 1 1
X

E~ &E~
(63}

There is, however, a difference from the half-filled-band
case in that the preceding condition is not satisfied for ar-
bitrarily small values of U. If the Fermi level is within
the lower band, the right-hand side of the preceding
equation never diverges, rather it is bounded from above
roughly by I/~ Ez ~, the inverse of the free-particle energy

F
on the Fermi surface. Therefore, a self-consistent solu-
tion with a nonzero sublattice magnetization is not possi-
ble if U is much smaller than ~E& ~. In terms of the dop-

F

ing x =1—n which represents the deviation from half
filling and is related to c.k byF

x ln (64)

the critical interaction strength, U, /t =x.

VI. FINITE DENSITY OF HOLES:
THE RIGID-BAND APPROXIMATION

As we pointed out in the previous section, a self-
consistent solution does not necessarily represent a local
minimum in the free energy. It represents rather an ex-
tremum and the only way to determine whether the ex-
tremum corresponds to a maximum or a minimum is to
examine the nature of excitations around the self-
consistent state. We present, in this final section, a com-
mensurate spin-density-wave solution as an example of a
self-consistent solution for a finite fraction of holes which
actually represents a maximum and exhibits an instability
towards an incommensurate structure.

In this section we study the nature of excitations in a
system which has a finite fraction of holes. We shall
work in the "rigid-band approximation" in which the
band structure is assumed to be similar to that obtained
in the half-filled-band case. It should be pointed out,
however, that it is the gap parameter for this system with
a finite fraction of holes, which, obtained self-
consistently, is used to obtain the bands. The Fermi lev-

el, in this case, will lie inside the lower band to account
for the less-than-half filling. The added holes are, there-
fore, effectively assumed to be in quasiparticle states of
the system with a commensurate spin-density-wave struc-
ture and occupy states in the lower band that lie above
the Fermi level. That such a state is indeed self-
consistent can be shown easily. As long as the total elec-
tronic density on every site is constant, the analysis for
the half-filled-band case can be carried through and one
arrives at the same self-consistency condition

1 1 ~k —Q+ ~k ~k —Q ~k
I,;„„,(Q, co =0)=——g

~k —Q ~k ~k —Q+ ~k
(66)

where gz' indicates that the sum is over all k such that
E„(E~,E„&&E~, and k —Q lies between the Fermi
surface and the surface obtained by shifting the Fermi
surface by m. [see Fig. 6]. We have also used
EQ Q Eg ( EQ Q Ej()/2b which is valid for ez F
i.e., when the Fermi surface is very close to the top of the
band (low density of holes). In the limit Q~O, the
second eigenvalue vanishes and the first one is obtained in
terms of N(e~), the free-particle density of states at the
Fermi level

2E,p
A. ,'„„,(Q~O, co=0)= N(E~) . (67}

The eigenvectors are, respectively, (2 ')'~ (', ) and
(2 ')'~2 (

'
&). In view of the only logarithmically diverg-

ing density of states as cF~0, the eigenvalue vanishes as
cF~0, or as the doping x ~0. This physically means the
amplitude for intraband I particle- l hole excitations
across the Fermi level vanishes as c.+~0. This is because
as the Fermi level approaches the top of the valence

Since the Fermi level now lies inside the band (instead
of in the middle of the band gap as in the half-filled-band
case), we expect there to be intraband processes present
as well as the interband ones in the spin susceptibility.
The intraband processes also include particle-hole excita-
tions across the Fermi level —these excitations being
represented by poles in the zeroth-order spin susceptibili-
ty. These particle-hole excitations are analogous to the
Stoner excitations in a ferromagnet. Within our rigid-
band approximation with a finite fraction of holes, these
p-h excitations will form the gapless branch correspond-
ing to intraband excitations within the lower band itself.
In this section we shall, however, focus on the collective
excitations arising from the intraband plus the interband
processes. A particularly relevant issue is the stability of
the self-consistent HF ground state against these collec-
tive excitations.

Inverse Fourier transformation of y +(r, r', co) explic-
itly leads to intraband and interband pieces in the total
spin susceptibility

+(r, r';co)

=—g[x...',.(Q, ~)+x;.'„(Q~))e ' " "1

Q

where y;„,+„,(Q, co) and g;„t,+,(Q, co) are given by expres-
sions similar to Eq. (26) with the condition that the quasi-
particle energies for momentum k —Q are to be taken
with +/ —sign in the interband/intraband susceptibili-
ties, explicitly (and implicitly in the quasiparticle ampli-
tudes). Owing to the antisymmetry of the energy denomi-
nators, the condition that k —Q be outside the Fermi sur-
face can be overlooked in the intraband piece. We first
study the static limit of the intraband susceptibility. Sub-
stituting the quasiparticle amplitudes in the expression
for the susceptibility, we obtain the two eigenvalues,
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ky

- k„ (70)

small compared to y.
Substituting the eigenvalue for small Qa, obtained

above in the limit a+~0, in the RPA expression for the
full spin susceptibility, we find that the static susceptibili-
ty diverges at a new wave vector, Q(x), which depends
on the hole concentration x and is given by .

' 1/2
2eFN (e~)

Q(x)= a

FIG. 6. The Brillouin zone showing the Fermi surface inside
the lower band for a system with a finite density of hales in the
self-consistent state within the rigid-band approximation.

band, the quasiparticle amplitudes for valence-band
states very close to the Fermi level tend to vanish on one
or the other sublattice, depending on the spin.

For the static interband susceptibility itself, in the
Q~O limit we find the eigenvalues as before,

1 1 b,
)(,;„„,(Q~O, a) =0)=—g 1, (68)

Np (E Eif

Since the free-particle density of states, N(ez), diverges
as ln(t/sz), in view of Eq. (64), we find that [Q(x)a] is
proportional to x.

The self-consistent commensurate SDW state within
the rigid-band approximation is thus unstable with
respect to collective excitations toward the formation of a
two-dimensional incommensurate structure. The wave
vector of this incommensurate structure, as projected
from the instability in the commensurate SDW state, is
proportional to the linear hole density. Whether this in-
commensurate state is a true HF ground state remains to
be seen explicitly (see Ref. 6 for study of various self-
consistent incommensurate HF states). In Ref. 4 it is ar-
gued that, for a finite concentration of holes, a 1D incom-
mensurate state has a lower HF energy relative to both
the commensurate SDW state and an incommensurate
2D state. The argument against the 2D incommensu-
rate structure relies on weak coupling and needs to be
reexamined for arbitrary U/t.

with the same eigenvectors respectively as before. Using
the self-consistency condition, the larger eigenvalue cor-
responding to the eigenvector (2 ')'~2 (', ) is simply 1/U.
The total eigenvalue, corresponding to this common
eigenvector, of the spin susceptibility is, therefore, the
sum

2F-F
A.(Q-+O, co=0)=—+ N(s ) .

U b,
(69)

Substituting this value in the RPA expression for the
spin susceptibility, we immediately note the absence of a
stable Goldstone mode. In fact, the susceptibility comes
out to be negative (diamagnetic), already an indication
that the HF state we were working with may actually not
be the true ground state but rather a saddle point corre-
sponding to a local maximum in the free energy. A slight
perturbation via an external magnetic field, for example,
or due to internal quantum fluctuations, is suScient to
topple the system from this unstable saddle point to a
state with lower magnetization —and hence the negative
susceptibility.

To examine the nature of the instability in the static
limit, we study the spin response for a small, nonzero Q.
For small doping concentrations we do not expect
significant changes in the interband piece of the spin sus-
ceptibility from the half-filled case studied earlier. We
found, as discussed in Sec. III [Eq. (34)], that in the static
limit the larger eigenvalue goes as 1/U —yQ a, with y
given in Eq. (39). The intraband piece will also have a Q
dependence which, however, can be neglected in compar-
ison to that of the interband piece provided e+N(ez)h is

VII. CONCLUSIONS

In this paper we have developed a systematic pro-
cedure for studying the consequences of holes doped in
an antiferromagnet in the intermediate coupling regime.
Starting with the half-filled-band case, we have developed
a matrix formulation in the sublattice-basis representa-
tion, which has the advantage that the RPA forms for all
expressions are retained. We have obtained the spectrum
of the collective spin-wave excitations about the HF
ground state for all values of U/t and find that in the
strong-coupling limit, the full Q dependence of the spin-
wave energy is exactly identical to the result obtained
from the corresponding spin- —,

' Heisenberg model of lo-

calized spins (to which the Hubbard model can be
mapped in this limit with a nearest-neighbor exchange
term ofJ=4t /U).

We have also evaluated the one-loop correction to the
sublattice magnetization representing the effects of quan-
tum spin fluctuations about the HF state due to virtual
emission and absorption of spin waves. In the limit of
U/t~ ao we find that the sublattice magnetization is re-
duced to 0.6. The zero-point quantum spin Auctuations
therefore reduce the sublattice magnetization to 60% of
its HF or saturation value, a result which is in excellent
agreement with the Monte Carlo studies and linear spin-
wave analysis of the Heisenberg model. This indicates
that HF plus a self-consistent treatment of the transverse
spin fluctuations is able to account for the physics of the
half-filled-band Hubbard model even in the strong-
coupling limit.

As a first step toward applying this systematic pro-
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cedure to the problem of holes doped in an antiferromag-
net, we have made a detailed numerical study of the HF
ground state with precisely one hole which gets self-
consistently trapped by the spin polarization it induces.
At the HF level translational symmetry is thus spontane-
ously broken by the localized hole. The question of how
the hole may become mobile when quantum fluctuations
(via the self-energy) are incorporated is presently under
investigation. We have shown that in the intermediate-
and strong-coupling limits, an important role in the sta-
bilization of the spin-bag ground state with, say, one ('-

spin hole is played by the delocalization of J, -spin elec-
trons in the vicinity of the spin bag, leading to the forma-
tion of a five-site ferromagnetic core.

When the spin-flip terms (arising from the most general
linearization of the Hubbard term) are included in the
one-particle HF Hamiltonian, our self-consistent study
shows that, starting with a seed for the spin-flip terms
around the spin bag, the spin-flip terms iterate toward
zero when U/t & 20, whereas they grow slowly but relent-
lessly for U/t&20. This instability of the spin-diagonal
HF ground state indicates an onset, at U/r =20, of a ten-
dency towards angular fluctuations in the local spin
directions around the spin-bag site.

We have also examined the nature and energies of the
collective excitations about the self-consistent spin-bag
ground state with precisely one hole in a 10X10 lattice
system for U/t=5 which is representative of the
intermediate-coupling regime. We explicitly show that
this spin-bag state admits to a stable Goldstone mode
confirming the local stability of the HF state. We find
that the nature and energy of the even-parity modes
(symmetric under inversion about the spin-bag site) are
essentially unchanged from the corresponding cosine
modes of the half-filled-band system. On the other hand,
odd-parity modes (which replace the sine modes of the
half-filled-band system) are strongly affected, both in
their nature as well as in energy, by the single hole. The
energy of the first collective excitation, for example, is re-
duced by about 30%%uo relative to the corresponding energy
in the half-filled-band case. Also the wave function of
this collective excitation is localized around the spin-bag
site and represents a mode that induces a twist in the lo-
cal spin directions about the spin-bag site.

Finally, going to a finite density of holes, we have ex-
amined the self-consistent HF state obtained in the rigid-
band approximation. In this state the holes occupy
quasiparticle states from the top of the valence band of a
half-filled-band system, with the gap parameter being
self-consistently determined from the finite hole-density
system. We find that this self-consistent HF ground state
within the rigid-band approximation is unstable with
respect to collective excitations toward the formation of a

two-dimensional incommensurate structure.
In view of the instability of the commensurate SDW

state with extended holes, we have initiated an investiga-
tion of the self-consistent state with many holes in order
to determine the nature of the HF ground state at finite
hole density. As a first step we have studied the interac-
tion between two holes. For U/t=5, which is represen-
tative of the intermediate-coupling regime, we find that
the interaction between two holes is repulsive irrespective
of their spins. Together with our result in the strong-
coupling regime, discussed in Sec. II, the interaction is
therefore repulsive all the way down to the intermediate-
coupling regime.

This suggests that in the intermediate-coupling regime
the spin bags will tend to form a lattice arrangement to
minimize the interaction energy. Furthermore, we find
that for U/t=5 the HF ground-state energy with two
parallel-spin holes is slightly smaller than that with two
antiparallel-spin holes. At the HF level the picture which
emerges for the ground state is therefore one in which
spin bags due to parallel-spin holes are arranged in a reg-
ular lattice. The commensurate SDW is thus spoiled to
some extent not only by modulations in the SDW ampli-
tude but also due to presence of the ferromagnetic cores.
Naturally, the next step is to study quantum fluctuations
around such a mean-field state. This should shed some
light on the way in which the physics of the Hubbard
model evolves as one goes from weak to strong coupling,
and also possibly result in a quantitatively useful calcula-
tional scheme in the intermediate coupling regime. The
results presented in this paper indicate that the HF solu-
tion and the concept of the spin bag plus self-consistent
quantum fluctuations provide a useful tool in this quest,
as originally proposed by Schrieffer, Wen and Zhang. '
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