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The energy spectrum, localization properties of eigenstates, and transmittance are calculated for a
one-dimensional incommensurate chain with a potential which is the absolute value of the cosine
potential used in the Aubry model. This nonanalytical potential, which has cusps, has previously
been proposed by Bardeen as a model for the effective pinning potential for the motion of charge-
density waves. Results show that, contrary to what happens in the Aubry model, a sharp mobility
edge exists for intermediate values of the modulation and separates extended low-energy states from
high-energy localized states. The first three terms in the Fourier expansion of the studied potential
correspond very closely to the Soukoulis-Economou potential. Compared to that later model, the
effect of the nonanalyticity in the Bardeen potential, represented by the infinite rest of the above-

mentioned Fourier expansion, is found to be small.

1. INTRODUCTION

An often used and highly idealized one-dimensional
model for incommensurate structures is a one-
dimensional tight-binding model with constant nearest-
neighbor hopping ¢ known as the Aubry' ~* model, where
the site potential is given by W cos(Qna) where
Q =27 /A is the modulation wave vector, a is the lattice
spacing, A is the wavelength, and W is the modulation
amplitude. Incommensurability is achieved by requiring
that a /A is an irrational number.

More recently there has been evidence that in some
problems the effective potential is not such an analytic
function.® Thus, Bardeen** has proposed that the poten-
tial — W|cos(Qna)| should be used instead to model the
effective incommensurate pinning potential for the
motion of charge-density waves (CDW’s). Our interest in
examining the eigenstates and localization properties of
single-electron states in such a potential stems not only
from this proposal, but also because the influence of
strong nonanalytic properties (here cusps in the potential)
can be examined.

It will be found that instead of having a sharp metal-
insulator transition at W =2[t| for all energies, as in the
Aubry model, a more physically reasonable behavior with
a mobility edge is obtained for moderate values of the
modulation amplitude. This separates extended low-
energy states from localized high-energy states.

The techniques used to study the problem are direct di-
agonalization by which the energy spectrum and wave
functions are examined and also the explicit calculation
of the transmission coefficient, through which the Lan-
dauer conductance can be inferred.® For this later calcu-
lation, we make use of the renormalization technique’°
for one-dimensional chains. In this calculation the ener-
gy must be confined to |E| <2[t| so that there is no sim-
ple one-to-one correspondence between the results of di-
agonalization and transmission coefficient. However, in
the energy range where the two can be compared, the re-
sults agree quite well. Calculation of transmission
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through quasiperiodic systems has earlier been studied by
several authors, both for electrons'® and light.!!

We give results for the eigenspectrum and wave func-
tions in Sec. IT and the transmittance results in Sec. III.
Results are discussed in Sec. IV.

II. EIGENENERGIES AND EIGENSTATES

The eigenspectrum and eigenstates are first calculated
by direct diagonalization for symmetric tridiagonal ma-
trices, the results of solving an eigenproblem of the form

e(n)ec(n)—tc(n+1)—tc(n —1)=Ec(n), (2.1

where €(n)= — W|cos(Qna)|, and energies are measured
in units of ¢ (t =1).

Free boundary conditions were used, and the calcula-
tion of the spectrum and wave functions was performed
for lengths of up to 2100 atoms. Both the normalized
second moment'? of the wave function and the inverse
participation ratio'>!* were examined.

The modulation wave vector Q is such that Qa =2mq
where g is now an irrational number. This irrational
number is selected here so that it can be expressed as a
continued fraction

g=q(p)=[ppu,...1=1/[utqp)], 2.2)

where p is a positive integer. Solving this second-order
equation gives

g(u)=[(u*+4)"2—ul/2 . (2.3)
We will mainly present results concerning the case p=3,
which means ¢ =(13'/2—3)/2=0.302776... . Results
for the eigenspectrum are shown in Fig. 1 for different
values of the modulation amplitude W. Compared to the
Aubry model, the energy spectrum is shifted towards
negative energies. To see the relation between the Bar-
deen potential and other studied potentials like the Au-
bry and the Soukoulis-Economou'* potentials it is useful
to make a Fourier expansion:
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FIG. 1. Energy spectrum for different values of the modula-
tion amplitude W. The length of the chain is 200. On both axes
the energies are measured in units of .

—|cos(Qx)|=(2/m)[—1—2/3 cos(2Qx)
+2/15 cos(4Qx)
—2/35cos(6Qx)+...], (2.4)

where the coefficients which multiply the terms
cos(Qmx) are given by 2( —1)"/2/(m?*—1) where m is an
even integer. The constant, negative, term in this expan-
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FIG. 2. (a) Normalized second moment Ax of all the wave
functions plotted as a function of the eigenenergy E. Values of
the order of 127!1/2=0.29 correspond to extended states. Note
that Ax is expressed in units of the lattice constant a. (b) In-
verse participation ratio (R) of all the wave functions plotted as
a function of the eigenenergy. In both (a) and (b) W =3t
Eigenenergies are expressed in units of ¢.
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sion explains the negative shift in the spectrum. The
second term is basically the Aubry potential, while the
second and the third terms together constitute a potential
which is similar to that of Soukoulis and Economou.

The study of the localization properties, in terms of the
second moment and the inverse participation ratio, is
given in Figs. 2(a) and 2(b), respectively, for the case
W =3t. It shows a clear mobility edge separating low-
energy extended states from high-energy localized states.
A rather large value of W of the order of 7¢ is needed to
localize all states. The appearance of this large value of
W is due to the fact that the absolute value in the Bar-
deen potential reduces the spread in the bare site ener-
gies. The result obtained with a mobility edge whose po-
sition is dependent on the amplitude modulation W is
consistent with this model being non-self-dual. It still
behaves as a rather ideal model in that just one mobility
edge appears for the approximate range 7t > W >2¢t. Its
low-energy states are extended also for values of W > 2t,
where the Aubry model e(n)= — W cos(Qna) only has lo-
calized states. For chains longer than 400 atoms, the mo-
bility edge already appears to be quite sharp. In order to
study the effect of the length of the studied incommensu-
rate chain we show in Figs. 3(a) and 3(b) the logarithm of
the inverse participation ratio (R) of all the eigenstates in
a system of length 400 and 2101, respectively. It is clear-
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FIG. 3. (a) The natural logarithm of R vs eigenenergy for an
incommensurate chain of length 400. (b) The natural logarithm
of R vs eigenenergy for a chain of length 2101. Note that only
the low-energy part (corresponding to extended states) is drasti-
cally changed when compared to (a). W =3t in both (a) and (b).
Eigenenergies are expressed in units of ¢.
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ly seen that only the positions of the states with negative
energies are different in the two figures. Since R behaves
as the inverse of the number of the sites mainly occupied
by the specific eigenstate considered,'? this is consistent
with the findings that the eigenstates with positive ener-
gies are localized and those with negative energies ex-
tended. From Fig. 2(b) it can be seen that R varies in this
case between approximately 0.04 and 0.5 for the positive
eigenstates for W =3t. This means that these eigenstates
are located on between 2 and 25 atoms.

The only way a model with the — W|cos(Qna)| poten-
tial can be made self-dual is to retain appropriate matrix
elements for the second- fourth-, sixth-, etc. nearest-
neighbor interactions. This emerges on making a Fourier
transform

c(n)=7 b(m)exp(inmQa) (2.5)

so that the Hamiltonian has the same general form in real
and reciprocal space.

III. TRANSMISSION COEFFICIENT

The first step in calculating the transmission coefficient
is to decimate all intermediate sites of a chain of length N
(i =0, ...,N) which is located between two semi-infinite
pure chains representing perfect leads. After this de-
cimation only two effective sites (0 and N) remain, con-
nected by an effective hopping interaction. Both the
effective site energies and the effective hopping are then
energy dependent. To the left of site O and to the right of
site N, one still retains the semi-infinite periodic chains
with hopping matrix element ¢ and site energies set equal
to zero. The decimation procedure can either be used to
eliminate every second site at a time or any given site at a
time (one-by-one procedure). Here we use the second
procedure always eliminating the site immediately to the
right of site 0. The relevant iteration equations for the
effective hopping and effective site energies, when site 7 is
eliminated, are given by

tin—1,n)t(n,n+1)

t'n—1,n+1)= (E —en)] ,

en—1)= en—1)+t(n—1,n)t(n,n —1)
[E —¢e(n)] ’

gen+1)+et(n+1,n)t(n,n+1)

gn+1)= [E —c(n)]

In the next step the next surviving site is labeled n and
the iteration is repeated until all intermediate sites have
been decimated. The ‘“‘one step at a time” decimation
procedure, although slower, has the advantage of allow-
ing one to start from any arbitrary length of chain.

The second step is to match a plane wave exp(ikna)
moving rightwards and a reflected wave r exp(—ikna)
moving leftwards along the semi-infinite portion of the
periodic leads to the probability amplitudes ¢(0) and
c(—1) on the left-hand side of the decimated chain.
Thus, one has, for example,
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FIG. 4. (a) Transmission coefficient T vs energy E for an in-
commensurate chain with N =400, and the value of the modula-
tion amplitude W =0.1¢. (b) Same as in (a) but with W =¢. (¢)
Same as in (a) but with W =2z. (d) Same as in (a) but with
W =3t. Eigenenergies are expressed in units of .
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c(0)=1+r,
(3.2a)
c(—1)=exp(—ika)+rexplika) .

Similarly a transmitted wave ¢ exp(ikna) can be matched
to the probability amplitudes ¢(N) and ¢ (N +1) on the
right-hand side of the decimated chain, giving

c(N)=texpl(ikNa) ,
c(N+1)=texp[ik(N +1)a].

(3.2b)

Finally two effective tight-binding equations relate these
four amplitudes. Hence, two equations with two un-
knowns can be solved for r and ¢, so that the transmission
coefficient T =1t * can be calculated.

Results are shown in Figs 4(a)-4(d) for N =400 and for
various values of W. Because the plane waves along the
ordered sections have energy E (k)= —2¢cos(ka)
the energy range is limited to —2t<E
< 2t. This chain is really infinite so that there is no one-
to-one correspondence with the finite chain of the previ-
ous section.

The results show, however, that in the relevant energy
range, the gaps evident in the transmission coefficient
coincide quite well with the gaps obtained in the eigen-
spectrum. Also T =0 at the higher range of energies be-
cause of the leftmost shift of the spectrum and because of
the localizing effect of the modulation on the higher-
energy eigenstates.

IV. DISCUSSION

The model is similar to that of Soukoulis and
Economou'® in that the first three terms of the Fourier
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expansion (2.2) can be considered to be similar to their
model, with the rest of the terms dropping off roughly as
1/m?. It is definitely not self-dual.

The model localizes at high eigenenergies for W > 2¢,
but leads to more extended states, i.e., extended states at
low eigenenergies also for W > 2¢, than the Aubry model
does. At first it would seem that adding on more
cos(Qma) terms to the Aubry potential would simply
provide a greater number of pathways in |k) space,
thereby increasing localization in real space. To see why
this is not always true, one should consider that propaga-
tions through different pathways may interfere with each
other. For example, a pathway going from |0) to |4Q)
may interfere with another going from |0) to [2Q ) and
from |2Q) to |4Q ). When this happens there is more lo-
calization in |k ) space and therefore greater extension in
real space. Several authors have shown both for quasi-
periodic systems'> and disordered systems'>!® that add-
ing second-nearest-neighbor interaction in real-space
problems sometimes leads to more localized states rather
than to more extended ones, presumably through this in-
terference effect.
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