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The total energy in tight-binding theory is obtained to second order in the ratio of the width of
the bonding band to the bonding-antibonding splitting. This is the reciprocal of the expansion pa-
rameter appropriate to metals. No other important approximation on the minimal-basis, nearest-

neighbor, tight-binding Hamiltonian is required for the periodic lattice. This leads to a simple
theory of covalent bonding that is more accurate and much more general than bond-orbital
methods. The lowest-order term is a bonding term that is a square root of a sum over neighbors
performed at each atom. Writing the total bonding energy as a sum of such terms evaluated locally
becomes an approximation in nonperiodic systems, but gives the total-energy estimate directly in

terms of local interactions. The interesting second-order term, a chemical "grip, " is a sum over
pairs of neighbors to each atom, depending upon the angle they subtend. A radial overlap repulsion
of the form A/d'+8/d' is added, and fitted to the observed equilibrium spacing and bulk
modulus. The resulting form is used for a number of covalent systems to predict spacings and rela-
tive energies in competing structures. The bonding term always favors high coordination, but the

grip, larger for small atoms and nonpolar systems, determines the tetrahedral structure for semicon-
ductors and the graphite structure for carbon. An elastic shear constant in the tetrahedral structure
is also obtained. The method generalizes directly to other systems such as transition-metal com-

pounds and SiOz. I~ also gives directly short-ranged interatomic forces, which could be used in

molecular dynamics.

I. INTRODUCTION

In metals it has proven possible, using pseudopotential
perturbation theory, to calculate the total energy of the
metal and transform the result so that it was given in
terms of two-body interatomic interactions. ' The form
of the result is quite surprising. In the simplest approxi-
mation (Fermi-Thomas screening) it is given by a simple
repulsion Vo(d)=Z e cosh (ar, )e ' /d in terms of the
internuclear distance d. The parameter ~ is the Fermi-
Thomas screening parameter and r, is the empty
core—pseudopotential core radius. These repulsions are
balanced in pseudopotential theory by a volume-
dependent energy. In a more complete theory this
volume-dependent energy would be replaced by a compli-
cated many-body interaction but that interaction appears
to have so little structure that in most systems it is ab-
sorbed in the boundary conditions, or in systems with
gross inhomogeneities it could be included by calculating
the two-body repulsions locally.

One could not have anticipated, without pseudopoten-
tial theory, that the form of the interaction would be
purely repulsive, and all of the usual phenomenological
models (Lennard-Jones, etc.) had attractive regions near
the equilibrium spacing. The fact that the system was
not in equilibrium under the radial interactions of pseu-
dopotential theory alone explained the observed devia-
tions from the Cauchy relations; such deviations did not
arise, as had been anticipated, from angular three-body
forces. Thus in the case of simple metals the microscopic
theory suggested interatomic interactions of a totally

different form than those which had been anticipated in-
tuitively.

It has not seemed possible to make the corresponding
first-principles calculation of the total energy for covalent
systems in the form of interatomic interactions. It could
not be meaningfully done in terms of pseudopotential
perturbation theory since the small quantity, the ap-
propriate expansion parameter, was the kinetic energy,
not the pseudopotential. Because of a crossing and re-
population of levels in the formation of the covalent
solid, the extrapolation from the free-electron gas impli-
cit in the perturbation theory is qualitatively incorrect.
The same qualitative statement can be made in the tight-
binding framework: we cannot proceed with perturba-
tion theory based upon localized atomiclike states since a
transformation to bondlike states is required; interatomic
interactions cannot be treated as the expansion parame-
ter.

Here we utihze an alternative expansion parameter, the
width of the occupied band of states, which would seem
to be appropriate for any insulating or semiconducting
system. We may again expect a repulsion similar to the
Vo given above for metals, which was a repulsion be-
tween overlapping "pseudoatoms, " but the attractive in-
teraction, and particularly the structure-dependent part,
will be found to be quite different from the volume-
dependent term of the theory of metals.

Our formulation is in terms of tight-binding atomic
states, though in principle it could be done in terms of
pseudopotentials, and the total energy is obtained using a
moments method. If we expanded the resulting energy
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in the interatomic interactions, it would be appropriate
for metals, but for covalent solids we must expand in the
bandwidth, which in the atomic context is from the split-
ting between the atomic s and p states. That is exactly
the expansion made in bond-orbital methods in which the
covalent energy, representing the coupling between sp
hybrids and causing the bonding-antibonding splitting, is
regarded as large and the metallic energy, arising from
the sp splitting, is treated in perturbation theory. The
new feature is the more accurate evaluation of the total
energy and the independence of the formulation upon a
specific structure, such as the diamond structure. The
most essential feature of the method is not the use of mo-
ments; in fact an essentially equivalent formulation could
be made in terms of the special-points method for ob-
taining average band energies. For that reason we would
prefer to call the method the band-width expansion
method, rather than a moments method.

In tight-binding theory of sp-bonded systems the elec-
tronic eigenstates are written in terms of a minimal basis
set consisting of a single s state and three p states on each
atom. The corresponding one-electron eigenvalues are
then obtained by diagonalizing an NXN Harniltonian
matrix based upon these N orbitals. A principal contri-
bution to the total energy is the sum of the eigenvalues of
the occupied states. In all of the eight-electron AB com-
pounds which we shall consider this consists of the lowest
half of the eigenvalues. We shall see that this generalizes
directly to systems such as Si02 and transition-metal sys-
terns. Thus we seek the average of the lower half of the
eigenvalues, as measured from the average of all of the ei-
genvalues. A simple, but crude, estimate can be taken as
the square root of the second moment of the eigenvalues
(again with eigenvalues measured from the average over
all). If, in fact, the true eigenvalues had the same magni-
tude, with half positive and half negative, this estimate
would be exact. Thus we take this as the lowest-order es-
timate and shall then correct for the efFect of the spread
in the upper and lower values using the fourth moment.

To obtain the total energy we must add an overlap
repulsion which in the tight-bonding context arises prin-
cipally from nonorthogonality of neighboring orbitals
and which is expected to be additive. We shall see that
the interaction given above for metals is approximately
correct for silicon, which is perhaps not so surprising; the
band structure of silicon is su5ciently free-electron-like
that this gross feature might carry over. We shall find,
however, that if we directly take the formula, with previ-
ously determined core radius r„an equilibrium spacing
small by some 9% is predicted. Since we need to make
an adjustment in any case, it seemed best to use one of
the algebraic forms used earlier. These also have some
theoretical justification and have proven successful be-
fore. The simplest form is A/d, with d the internu-
clear distance and A adjusted such that the total energy
is at a minimum at the observed spacing. Then all prop-
erties are calculated in terms of the observed internuclear
distance. We shall use this form for interpreting our pre-
dictions in Sec. VI. For quantitative predictions in Sec.
V, we use the form suggested by Bechstedt and Har-
rison, the form A/d +8/d', with 2 and 8 adjusted

to give the correct internuclear distance and bulk
modulus. To be useful for molecular dynamics, the
A/d term would need truncation; here we include the
repulsion only for nearest neighbors.

II. ESTIMATING THE AVERAGE BAND ENERGY

ge, = gH„H, , (2)

This equality holds because the trace of a matrix is in-

W

cb

FIG. 1. A schematic representation of the density of elec-
tronic states as a function of energy, measured from the average
of all, in a covalent solid. The upper band, of average energy c,b,
is empty. The lower, of average energy —Eb, is full. An average
bandwidth W is defined in terms of the second moments of the
individual bands. The approach used here obtains the sum over
occupied states as an expansion in 8'/2cb, carried to second or-
der.

We consider a distribution of eigenvalues, as illustrated
in Fig. 1. It consists of an antibonding band above, and a
bonding band below, the zero of energy, taken as the
average of all eigenvalues. Thus the average energy of
the lower band is equal to the negative of the average en-

ergy of the upper band, cb. It is the value of that aver-

age,

eb =(2/N) g e;,
i)0

which we seek. Here we have indexed the eigenvalues
with positive i for the N/2 eigenvalues in the upper band
and negative i for the lower band.

In order to estimate this average we calculate the sum
of the squares of all of the eigenvalues of the Hamiltonian
matrix:
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variant under a unitary transformation and such a trans-
formation could be used to diagonalize the squared ma-
trix, gk H;kHkj, the matrix which has eigenvalues equal
to the square of each eigenvalue of the Hamiltonian ma-
trix. Similarly we calculate the sum of the fourth power
of the eigenvalues,

gc;= g H; HkHklHI; .
i,j,k, l

(3)

i&0 i)0 i)0
The corresponding expression for the sum of eigenvalues
to the fourth power can also be written. It has
coefficients N/2, 4, 6, 4, and 1. Both can be checked by
expanding the terms and canceling. The term linear in

c;—cb vanishes in both equations by the definition, Eq.
(1), of eb In th.e expression for the sum of eigenvalues to
the fourth, we also drop the terms of third and fourth or-
der in c, —cb. These terms are of higher order in the
bandwidth 8'defined by

8"=(2/N) g (e; —eb)'
i )0

(5)

and thus are to be neglected.
The only remaining sums in Eq. (4) and the corre-

sponding fourth-power expression are of the form of Eq.
(5). Thus we can add the corresponding sum (with the
square of differences from the average over the lower
band) and let W represent the average of the upper and
lower bandwidths. The second and fourth moments be-
come

A convenient way to proceed is to write the expressions
in terms of c.b. The sum over the upper band of the
squared eigenvalues becomes

g e,'=(N/2)e2b+2eb g (e, —eb)+ g (s, —eb) . (4)

and then turn to the evaluation of Eqs. (2) and (3) for sp-
bonded systems.

III. TEST OF THE METHOD
FOR SAMPLE DISTRIBUTIONS

a =2 V& /V2, (9)

As indicated in the Introduction, the second moment
gives an exact estimate of the average if the bandwidths,
Eq. (5), are zero. In this case, the Eqs. (6) and (7) obtain
with IV=0 and the right side of Eq. (8) gives exactly eb as
it should. We may take the other extreme, in which the
state distributions are not peaked at all, but uniformly
distributed with a state density N/2c Ofor —ep&s. &Ep
and zero otherwise. Then g, e;/N equals eo/3 and

g, e, /N equals ct/5. Equation (8) leads to the estimate
Kb

= ( 3 &&
)eo or eb =0.5 I 6ep compared to the exact

average of 0.500@0 which can be obtained immediately for
this distribution. That is very good accuracy indeed, and
significantly better than the estimate obtained directly
from the second moment itself [the first term in Eq. (8)]
of 0.577 co. Even when the bands are very broad, the
narrow-band approximation is working very well.

We may construct an example which may be more
relevant to sp-bonded materials, as we shall see. We let
the average of the upper and lower bands be plus or
minus V2 and let three-quarters of the levels in each case
lie V~ above the average and the other quarter lie 3V,
below the average. This differs from the previous exam-
ple in that the distribution has a third moment, which is
neglected in our analysis. For this case, g, e;/N be-
comes V2z+3V, and g; e;/N becomes V2+18V, Vz
+21 V, . These may be substituted into Eq. (8) and the re-
sult can be written in terms of a metallicity defined by

Mz =—g e, /N = eb + IV

M4 —= pe;/N=sb+6W eb .

(6)

(7)

which is a measure of the bandwidth relative to the sepa-
ration. Note that the metallicity goes to 0 for narrow
bands and approaches 1 as the band gap goes to 0. In
terms of metallicity, Eq. (8) gives

c,„=M~—(M4 —M~ )/(4M2) . (8)

This was our goal, to obtain the average energy of the
bonding or antibonding band in terms of the sums which
can be obtained from Eqs. (2) and (3). We shall see that
the first term alone will give a radial interaction and is
the dominant term. The small correction term will lead
to angular forces. Note that to keep terms only to lowest
order in our expansion, we may expand the square root
when we obtain c.b and the final term in that expansion
will be (M4 —M2)/(8M2 ) and we shall see in Sec. VI
that in a weak-coupling limit this becomes equivalent to
the "chemical grip" description of angular forces intro-
duced in Ref. 3 (pp. 459fI). We shall test the accuracy of
Eq. (8) for some simple examples in the following section

We subtract the square of the expression in Eq. (6) from
the expression in Eq. (7) and drop the higher-order term,
W, leaving 4c.bS'. This gives us an estimate of W in
terms of the sums in Eqs. (2) and (3). We substitute this
back into Eq. (6) and solve for eb ..

e' = V'[1+-'a' /(1+-'a' )] (10)

IU. PARAMETERS FOR sp-BONDED
MATERIALS (REF. 8)

We utilize universal tight-binding parameters, consist-
ing of Hartree-Fock term values for the diagonal terms

The exact value of the average is of course V2, and the
a term in Eq. (10) represents the error in the method.
If the metallicity becomes small, the error also becomes
small. Even if the metallicity approaches 1 and the gap
goes to 0, as for gray tin, the correction term in Eq. (10)
is only —,'„corresponding to a 10% error in the estimated
energy. Use of the second moment alone, V2+3V, ,
without correction for the bandwidth, leads to
V2(1+ 4a ) for the right side of Eq. (10) and an error of
32% in the energy. With the correction from the second
moment, the errors from the method would seem to be
comparable to the errors in the tight-binding theory and
the approach would seem to be justified.
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and forms

Va m n—a
2 2

for interactions between nearest-neighbor orbitals. The
first two subscripts indicate the orbitals coupled and the
last indicates the component of angular rnornentum
around the internuclear axis. The coefficients are

32 Q p
1 42 7fpp

=2.22, and
happ

0 63.
Use of these parameters beyond the realm of

tetrahedral solids may be questionable; Van Schilfgaarde
and Harrison have found that these do not transfer well
to other coordinations but that if one includes the effects
of nonorthogonality, the matrix elements of the
nonorthogonal orbitals do transfer but that one must in-
clude then explicitly the effects of nonorthogonality for
higher coordinations. The difficulty is partly that the
tight-binding basis orbitals are treated as orthogonal in
solving for the electronic energies. Though matrix ele-
ments between atomic orbitals might be expected to be
transferable, those between orthogonalized atomic orbit-
als might not. Even taking the couplings between the
original nonorthogonal orbitals as transferable led to
bands which become too broad with high coordination.
For this reason, we shall not go higher in coordination
than the 6 of the simple cubic structure, but even there
transferability may be questionable.

It will ease the interpretation if we write the pararne-
ters in terms of the parameters of bond-orbital theory for
tetrahedral solids, and no approximation is involved in
that. In that theory we constructed sp hybrids which
differ in energy from the average of all atomic term
values in the system by + V3 for the metallic atom (the
atom from columns I—IV in the Periodic Table) and —V3
for the nonmetallic atom (the atom from columns IV—VII
in the Periodic Table). The sp splitting is written 4V, +
for the metallic atom and 4V] for the nonmetallic atom.
Thus relative to the average of all eigenvalues, the p-state
energy of the metallic atom is given by + V3+ V, +, the
s-state energy is + V3

—3V]+ the p-state energy on the
nonmetallic atom is —V3+ V, , and its s-state energy is

Vp 3 V& . We may immediately write the sums of the
squares of the diagonal elements of the S-by-S Hamil-
tonian matrix by squaring these (including three terms
for each p state ) to obtain N [ V, + 3( V, + + V, )/2].

We may also immediately obtain the contributions
from off-diagonal terms. They arise entirely from the
coupling between orbitals on neighboring atoms since
there is no coupling between atomic orbitals on the same
atom. For a particular pair of neighbors the sum

g, , H, H„ is invariant under unitary transformations of
the states on either atom so for that sum the states may
be taken as o. oriented or m oriented and the sum is then
obvious, V„+2V,p + Vpp +2 Vpp . Each of thes
terms is of the same form, Eq. (11), and the appropriate
squared coefficient may be added up to give V2, where V2
is a covalent energy defined to be

with d of course the internuclear distance between the
atoms in question. This is slightly larger than the co-
valent energy of bond-orbital theory, 3.22k /md, which
was defined to be the coupling between two hybrids
directed into the same bond. This is as expected. The
square covalent energy we define here is the squared ma-
trix element between these two hybrids, plus the sum of
the squares of the other couplings between hybrids on
these two atoms, all of which are neglected in the bond-
orbital approximation.

This V2 is to be summed over the neighbors to each of
the N/4 atoms, and summed over those atoms. For the
present we let there be n nearest neighbors to every atom
and let all of the spacings be identical so the contribution
to the trace of the squared matrix is nNV, /4. Then we

may add this to the diagonal contribution and divide by
the number of orbitals, N, to obtain

g e, IN = V3+ 3( V)+ + V) )/2+ n V2 /4 . (13)

M4(1) = g H;; /N = V, +9V3( V', + V', )

(14)

This result for the second moment is rather remarkable
in itself. We could take the square root of the right side
as an estimate of the average electron energy (relative to
the average of the atomic levels) for a tetrahedral semi-
conductor (n=4). The corresponding estimate obtained
in the bond-orbital approximation, in which all coupling
is neglected except for that between two hybrids in the
same bond, is ( Vz+ V3)', equal to what is obtained
from Eq. (13) if the metallic energies (to which we shall
return) are dropped. We have in Eq. (13) a slightly larger
covalent energy and if in fact we expand to lowest order
in the difference we see that the result is of the form of
the appropriate correction, in perturbation theory, for
the neglected coupling between bonds and neighboring
antibonds, corrections which we have called "interatomic
metallization. " Similarly, if we expand the square root
of Eq. (13) in terms of V, + + V, , we see that the result
is of the same form as the corrections which we earlier
called (intra-atomic) metallization. Both corrections are
overestimated by writing the average energy as the square
root of Eq. (13), and our correction for bandwidth will

approximately remove that overestimate. An interesting
point is that the simple form, Eq. (13), will include
corrections which are ordinarily omitted in bond-orbital
theories and could be more accurate, even without band-
width corrections, than bond-orbital theory.

The evaluation of the fourth moment is more compli-
cated. The sum of the diagonal terms is straightforward
and gives

V2=(V„+2V~ + V p +2Vq )' =3.39% /md

(12)

(equal to the model result given earlier if V, ~ =
V& ).

The 1 in parentheses indicates one-atom terms.
There are off-diagonal terms involving two, three, and



6012 WALTER A. HARRISON 41

four neighboring atoms. Those involving only two atoms
may be obtained by taking the i in Eq. (3) to represent an
orbital on a particular atom and j, k, and I to be orbitals
either on that atom or a particular neighbor, but always

including at least one orbital on each atom. These can be
averaged with terms with i corresponding to the neighbor
atom. There are a large number of terms which must be
collected. They lead to

M~(2)=(V„+4V„V, —4V„V, V +2V, +4V, V + V +2V )/4

+ V„[V3+3V3(V, —V, +)+9(V,++ V, + Vi + VI )]/2

+ V, [ V3+ V3( V) —V, + )+5( V, + + VI )
—3V)+ VI ]

+( V& +2V~~„)[V3 —V3( V, —V~+ )+ V, + + V, +, +
~ ]/ (15)

These are to be summed over all atoms and over all
neighbors to that atom. The 2 in parentheses on the left
side indicate two-atom terms. For homopolar systems,
for which V3 =0, this can be rewritten simply as
0.2 1 5 Vp +4.032 V I Vp by substituting the appropriate
coefficients for each VII. and V;. These terms contribute
to a central-force two-body interaction.

The terms involving three atoms are the most interest-
ing. They may be organized and evaluated by thinking of
the terms in Eq. (3) as paths moving from state i to state j
to state k to state /; we must return to state i at the end.
In a tetrahedral structure two neighbors to any one atom
are quite far from each other (&3d) and the coupling be-
tween orbitals on those two atoms is small enough to be
neglected. Thus no paths contain a triangle, but must
have a central atom and two ligands with negligible cou-
pling between them. Similarly, second neighbors in a
simple-cubic structure are separated by &2d and it has
been usual to neglect their couplings, so again there are
no triangular paths. They occur only in the structures of
higher coordination, which we have omitted because of
the question of transferability of the matrix elements.
Thus for all of the three-atom paths which we consider,
there is a central atom and two ligands with negligible
coupling between them. Then we can begin a path at the
central atom with any one of four states, move to any one
of four states on the first ligand, return to the central
atom to any one of four states, and move to any one of

the four states on the second ligand for a total of 256
different paths. However, we may begin with i designat-
ing any of the states on the path and proceed in either
direction. For example, if we select p states which are
oriented perpendicular to the plane of the three atoms,
they couple to each other and to no other states. Thus
there is only one path which may proceed either way
from the center or begin at either ligand, leading to four
terms, each equal to Vpp per electron. We associate all
such paths with the central atom so when we divide by N
(equal to four times the number of atoms), as in Eq. (6),
we obtain a contribution of V& . For the remaining
terms, we include first only terms with o.-oriented states
on the ligands. When these involve a p state on the cen-
tral atom, we may orient it along the vector to the first
ligand, giving o-matrix elements, but then its o-oriented
component along the vector to the second ligand is cos8,
with 0 the angle subtended by the two ligands at the cen-
tral atom. We must keep these angular factors as we
evaluate these terms. Each path will give eight identical
terms when two different states on the central atom enter.
Finally, we add the terms with one or two m-oriented (but
in the plane of the three atoms) states on the ligands.
These many terms can be collected and combined, noting
that each term contains four matrix elements, two with
one neighbor and two with another, to give a three-atom
contribution to the fourth moment of

M~(3)=(V„+V, ) +2(V, + V )V „+V +2V, (V„—V ) cos8+( V, + V —V~ )~cos~g

= (0.150+0.382 cosl9+ 0.324 cos 8) V~ (d, ) V~ (d ~ ) . (16)

To obtain the final form we substituted the values of the
matrix elements given in Eq. (11) and noted that V„and
V~ are of opposite sign, so the two terms add. d, and
dz are the two internuc1ear distances involved. This is
the form we shall use in our analysis. It will be interest-
ing to note later that the final form has a minimum at
126'.

Up to this point we have taken all internuclear dis-
tances the same so d, =d& and we have added this partic-
ular ligand pair for every atom before dividing by the
number of electrons X. We must still sum over each
ligand pair to the atom in question. For the tetrahedral
structure, for example, there are 4—,'=6 ligand pairs, each
with cosO= —

—,'. When we construct general interatomic
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interactions we shall add such terms for every atom.
Finally we turn to terms involving four nearest-

neighbor atoms. These do not occur in the tetrahedral
structure, but they do in the rocksalt structure where the
paths are square. Consider first paths based entirely
upon s states. Let i in Eq. (7) reside on a particular atom.
There are 12 square paths starting with that state. Each
can be traversed in two directions so each path contrib-
utes 2V„. There is one such contribution for each
right-angle three-atom path which was included in Eq.
(16). This contribution does not change if the angles de-
viate from 90 . Other contributions from this collection
of four atoms do depend upon the angles, but for a square

contributions are 8 V„Vp Vpp 4 Vpp Vpp and
2 Vpp contributions for a total of 0.052 V2 for each of the
12 paths. We shall only require the contribution of the
square in the present analysis.

V. RELATIVE ENERGIES
OF THE STRUCTURES

The first application is to perfect-crystal structures.
The second moment is given in Eq. (13). The fourth mo-
ment contains the one-center terms of Eq. (14). It also
contains the two-center terms in Eq. (15), which are to be
multiplied by the number of neighbors, n, and can be
combined using the expressions Eqs. (12) and (13) for
V&& and V2 as

M~(2) =n [0.214 V2 +0.5 V2 V~ +0. 154( V, —V, + ) V~ V&

+1.808(Vi++ Vi )Vq+0. 405Vi+ Vi Vq] .

(17)

The three-center term is obtained by summing the final
form of Eq. (16) over pairs of neighbors for each struc-
ture. We write the result, again using Eqs. (12) and (13),

M~(3)=C„Vq .

For the tetrahedral structures there are six combinations
of ligand pairs, each having the angle such that
cosH

3
Thus we obtain C4 =0.352 . For the graph it e

structure, with three combinations of neighbor pairs,
each with cosH= —

—,', we obtain C& =0.120. For a chain
of atoms, with neighboring bands separated by H=126',
the angle at which Eq. (16) is a minimum, we obtain
C2 =0.037. For the simple-cubic structure, the sum con-
tains 12 pairs at H =90' and three with H = 180, for a
value of 2.076. However, for this one case there is also a
contribution of four-neighbor terms, 12 paths at 0.052V2,
giving 0.624V2, for a total contribution of the form of Eq.
(18) with C6=2.700. We do not go to higher coordina-
tion because of question of transferability of the cou-
plings discussed earlier for high cooordinations. These
are collected as M~=M~(1)+M~(2)+M~(3) and the en-

ergy e& is written using Eq. (8). We may readily evaluate
these for silicon, obtaining Mz =31.60 eV and M4 = 1938
eV, so indeed (M~ —M2)/(4M&)=7. 4 eV is small com-

pared to Mz, as we have assumed. The expansion would
seem to be reasonable.

It is most convenient to obtain the energy per atom
pair, so this cb is to be multiplied by —8. To obtain the
energy relative to isolated atoms, we must add a promo-
tion energy, cp

—c, =4V, , for each atom in homopolar
systems, which shifts the atom from an s p to an sp
configuration. For III-V compounds we must also shift
an electron from a p state on the column-V atom to one
on the column-III atom, to obtain both in an sp
configuration, requiring an additional —

V& +2 V&

+ V, +. Twice this transfer energy is required for II-VI
compounds and three times it for I-VII compounds, but
for the I-VII compounds no c —c, is required on the
column-I atom. Thus the promotion energy per atom
pair is given by

8V, for column-IV compounds,

5 V& + + 3 V] +2 V& for III-V compounds
E„,='

6V, + +2 V, +4V& for II-VI compounds, (19)

3 V& + + V& +6 V3 for I-VIII compounds

We must also add the coordination, n, times the repul-
sion, n Vo(d), to obtain an energy per atom pair of

1 /2

+nVo(d)+E „, .
4M2

(20)

Vo(d)= A/d +8/d' (21)

of the form used by Bechstedt and Harrison.
Our procedure then is to adjust A and 8 in the Vo(d )

of Eq. (21) such that the energy is a minimum at the ob-
served spacing in the observed tetrahedral structure, and
also gives 8 Epzlp /BIG( 4k, where k is the bond-
stretching force constant, given by 4d&3 times the bulk
modulus in the tetrahedral structure. Then using the
same A and 8, the energy is obtained from Eq. (20) for
the other structures, as illustrated in Fig. 2, and mini-
mized with respect to d for each of those structures. The
input parameters and resulting A and B are given in
Table I for two series of systems —C, Si, Ge, Sn, and Ge,
and GaAs, ZnSe, and CuBr—to obtain dependences on
the two familiar variations in covalent systems, namely
the variation of metallicity (or row of the Periodic Table)
and of polarity (or difference in the column of the Period-
ic Table for the two constituents). In Table II is given the
predicted equilibrium spacing and total energy, relative
to free atoms, for structures of different coordination.

For silicon we tried the form Vo(d) given for metals in
the Introduction, with ~=(4e k~m/M )'~ based on the
free-electron Fermi wave number for silicon and r, =0.56
A (Ref. 3). Minimizing the total energy with respect to d
gave d=2. 17 A, in rather poor agreement with the ob-
served 2.35 A. This r, also led to a bulk modulus of
about three-quarters of the observed value. It may be
gratifying that the theory predicts this well with so little
adjustment of parameters, but in order to use the method,
we will wish to adjust the overlap potential to give both
the spacing and bulk modulus correctly. We use
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FIG. 2. The energy per atom, relative to free atoms, for sil-
icon as a function of the internuclear distance d in the carbyne
(n=2) structure, the graphite (n=3) structure, the diamond
(n=4) structure, and the simple-cubic (n=6) structure, all
based on Eqs. (20) and (21), with A and B adjusted to give the
correct equilibrium spacing and bulk modulus for n =4.

The values for the case of silicon can be matched with the
minima in Fig. 2. We see that, remarkably, the correct
structure is obtained in each case (tetrahedral except for
carbon). The predicted cohesive energies are very rough-
ly in accord with experiment. The experimental values
are 7.36, 4.64, 3.88, and 3.12 eV/atom for C, Si, Ge, and
Sn, to be compared with the magnitude of the energy in
the n =4 structure, and 7.76, 6.52, 5.16, and 5.80
eV/atom pair for Ge, GaAs, ZnSe, and CuBr. The values
are sensitive to the form of the overlap repulsion; softer
repulsions ' ' give smaller cohesive energies, so one
should be cautious about attaching too much importance
to the agreement with these values, though it is encourag-
ing that the trends are not badly given.

It is also of interest to note that the energy difference
between the fourfold and sixfold structures decreases
with increasing atomic number (4.61, 1.15, 0.86, and 0.26
eV/atom for C, Si, Cxe, and Sn) and with polarity (1.73,
1.31, 0.77, and 0.40 eV/atom pair for Ge, GaAs, ZnSe,
and CuBr. Indeed, tin is stable in a more close-packed
metallic structure, and some noble-metal halides are
stable in the sixfold (rocksalt) structure.

We made similar calculations for three compounds
which occur in the rocksalt structure, namely LiF, NaC1,
and CaO. The corresponding results appear in Tables I
and II. It is disappointing that we find LiF and NaCl

stable in structures of lower coordination, again
representing an overestimate of n =6 energy relative to
n =4 energy. One effect which comes immediately to
mind is our neglect of second-neighbor repulsions, which
become important in the rocksalt structure. " Inclusion
of these would, however, further increase the energy in
that structure, worsening the agreement with experiment.

It may not be surprising that we do not obtain correct
structures in all cases with such a simple theory.
Nonetheless, the principal trends among the semiconduc-
tors are correctly given without any adjustment of the
bonding contribution represented by the first term in Eq.
(20), and with some adjustment it may provide a good
representation of the true interatomic interactions.

Another test which may readily be made is of the angu-
lar rigidity, rejected in the elastic shear constant
(c~, —c,2)/2 for the tetrahedral structure. We do this by
applying a strain e, = —e2 = c.. We then obtain the
change in angle 8 between a pair of neighboring internu-
clear vectors d, and d2 from cos8=d, d2/(d, dz), obtain-
ing two angles each with cos8= —

—,
'+—', c plus terms of or-

der c . Two other angles have cos8=
3 3e . All

changes in bond length are the same and of order s, giv-
ing a negligible change in total energy of order c . Thus
the second moment does not change, and only the 0
dependence of Eq. (16) enters. The sum over paths
of cos8 changes by ——', c, and the sum over cos 8
changes by 8s and M4 changes by (

——', XO. 382
+8X0.324)Vzs =2.08Vzs . Using the parameters for
silicon, this yields a change in energy per atom of 3.20@.

eV. Equating this to the elastic energy of (c» —c&z)s
times the atomic volume yields (c» —c,2)/2=1. 28X10"
ergs/cm . This is well below the experimental value of
5. 1 X 10" ergs/cm, and is not as close as values obtained
in the bond-orbital approximation. However, we shall
see that trends from material to material are better de-
scribed here. Before considering these trends, it is ap-
propriate to try some simplification of method which
makes those trends more apparent.

VI. SIMPLIFICATION AND INTERPRETATION

Our basic approach has been an expansion in the band-
width divided by eb, the term (M4 —M2)/(4M2) under
the square root in Eq. (20) being the correction to M2 as
the value of c.b. Thus, to the order we work, it is legiti-
mate to expand the square root as QMz—(M4 —Mz)/(8M& ), dropping higher-order terms. If
we make this approximation, we find that generally the
predicted structures do not change and the predicted
cohesion is not affected greatly. The predicted elastic
constant is decreased by 15%, slightly worsening the
agreement with experiment. On the scale of the apparent
inaccuracies of the method, it would seem to be a well-
justified approximation, and indeed it simplifies the form
of the interatomic interactions. It wi11 also make it some-
what simpler to understand the origin of predicted
trends.

In this expanded form we see that the leading
term in the energy per electron, —QM2
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= —[3(V, + V&+ )/2+nVz/4+ Vz]', provides a ra-

dial interaction, though one which depends on the envi-
ronment of the atom in the crystal through the coordina-
tion number, n. This is essentially the dependence of the
interaction on bond order discussed recently by a number
of authors. ' ' We see, in fact, that the one- and two-
body terms in M4 similarly give a radial interaction,
which is expected to be considerably smaller than the
leading term, and which also depends on the environment
of the atom.

In addition to these radial terms are the three-body
terms which, for V2 small compared to V&, approach the
fourth-order perturbation-theory correction which we in-
troduced for ionic crystals earlier (Ref. 3, p. 459) and
called the "chemical grip. " Since it raised the energy, it
needed to be distinguished from the bonding contribu-
tions and a new name seemed appropriate. It is the lead-
ing term in the angular interaction and is here extended
to systems such as silicon, where the perturbation theory
is not applicable, as well as to a variety of other systems.

Although the one- and two-body terms in M4, as well

as the Mz which partially cancelled against them, depend
upon the environment, it is reasonable to drop them and
hope that the difference is largely made up by the overlap
interaction, Vo(d}, which must now be readjusted to fit

the observed spacing and bulk modulus. Then only the
8-dependent M&(3) term of Eq. (18) (the chemical grip)
remains and the magnitude of the bond energy for the
undistorted crystals becomes e& =QMz —C„Vz /
(4Mz } ~ . This step, in fact, eliminates a small repulsive
interaction which is larger for higher coordination, and it
was large enough that dropping it changed the predicted
stable structure for silicon to the graphite structure, and
that for carbon to the carbyne structure, and increased
the predicted cohesive energy a few electron volts per
atom, significantly decreasing the agreement with experi-
ment. Thus this additional approximation is not justified
quantitatively, but will give us a simple enough picture to
understand easily the trends predicted by the more com-
plete energy of Eq. (20), or that form with only the first
term kept in the expansion of the square root. The ener-
gy per pair becomes

E~„,= —8+Mz+C„Vz/Mz~ + n Vo(d)+E „. (22)

The overlap repulsion Vo(d) is the same, but the
coeScients must be redetermined with the new expres-
sion for E „„,and E „, is from Eq. (19) as before. The
first two terms represent the effect of the electronic struc-
ture and we note that the properties of the constituent
elements, the V, + and Vz, enter only through QMz, the
C„depends only on structure, and V2=3. 39% /md is a

simple function of distance. Thus the two trends among
semiconductors which we mentioned earlier, variations of
properties with metallicity (or row in the Periodic Table)
and polarity (or column in the Periodic Table), are now a
single trend, that with covalency,

a, = Vz/[3( V, + V, + )/2+n Vz/4+ V&]'~z, (23)

which can be reduced either by the metallic or the polar
energies. That was not so apparent in the bond-orbital

model. The values of a, are 0.949, 0.832, 0.788, and
0.771 for C, Si, Ge, and Sn in the tetrahedral structure.
They are 0.721, 0.591, and 0.472 for GaAs, ZnSe, and
CuBr.

It is of interest first to consider the form of the energy,
Eq. (22), with the simplest form of Vo(d), given by
A /d . The first step for any system is to fix the value of
A by minimizing the energy with respect to d at the ob-
served spacing. If we first neglect the three-body term
C„V2/M2, which arises from the bandwidth, we note
that n Vo= n A /d is given by a constant times n Vz and
the only dependence of Eq. (22) upon bond length is
through the expression n Vz in the —8+Mz and the n Vo,
so a single value of nV2 provides the minimum for all
coordinations. It follows that, for the same system in
different structures,

1/4 (24)

v= —(d / Vo )(8Vo/Bd), (25)

corresponding to a Vo varying as 1/d". [This is the ratio
relevant to the determination of structures, though what
we have actually fitted to experiment is a different v,
equal to —(8 Vo/Bd )/(BVo/Bd) —1.] A value of v

larger than 4 favors high n, while a value lower than 4
favors low n. C„, on the other hand, increases more rap-
idly with n than n [it is more nearly as n (n —1)] which
always favors lower coordination. This effect of this
three-body term proportional to C„becomes smaller as
the covalency decreases. Both should be considered in
order to understand the trends.

Values of v obtained from Eq. (25) using the repulsion
given by Eq. (12) and Table I are 3.20, 4.09, 4.12, and
4.99 for C, Si, Ge, and Sn. This correctly suggests that,

Even if we include the C„Vz/Mz term, C„as a sum
over pairs of neighbors is approximately proportional to
n, so that the argument still applies. It is a familiar
qualitative fact that d increases with coordination, and
this yields a tentative quantitative expression. It is very
approximate because the A/d form is very crude. It
predicts a spacing in graphite of ( —,

' )'~ times the diamond

spacing, or 1.43 A, close to the observed 1.42 A.
Taking A to give the correct spacing in the observed

structure and substituting the universal value of nVz
back into Eq. (22) then leads to the same E „, for all
values of n, again only approximately if the C„Vz /M z

term is included, since C„ is not really proportional to n .
By finding all energies equal, we fail to predict the struc-
ture. As pointed out by Pettifor, ' this is a general
feature of models for which the repulsion is proportional
to the square of the interatomic matrix elements. To un-
derstand the structure, we must improve the model in
two regards: First, we must use a more appropriate form
for Vo and, second, we must use the correct values of C„.

Fitting the Bechstedt form, or any other form, of Vo

to obtain the observed bulk modulus as well as the ob-
served spacing gives a value different from v=4 for the
expression
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TABLE I. Experimental bond length d, and

k =—'O'E „,/Bd (k is the experimental interatomic force con-

stant) and parameters of the repulsion of Eq. (21). Experimental
parameters are from the collection in Ref. 7.

C
Si
Ge
Sn

GaAs
ZnSe
CuBr

LiF

NaCl
CaO

(A)

1.54
2.35
2.44
2.80

2.45
2.45
2.46

2.01

2.82
2.41

k
(eVA )

29.69
9.94
8.01
6.43

7.89
6.33
4.13

2.53

1.27
4.83

(eVA )

46.20
46.31
43.43
35.70

41.03
35.47
30.53

26.47

26.30
17.57

B
(eV A")

54.30
12 788.0
18 965.0

107425.0

19 506.0
16 548.0
12 767.0

484.7

26 960.0
10649.0

relative to the tetrahedral structure, on the basis of the
overlap repulsion, only carbon should have lower coordi-
nation, as we found in Table II, but it does not explain
why the carbyne structure is not even more stable than

graphite and, in fact, the full solution of Eq. (22), rather
than Eq. (20), did give the carbyne structure lower in en-

ergy. The effects of Vp also contribute to the increasing
stability of the simple-cubic structure relative to
tetrahedral structures with increasing atomic number.
The effects of the C„ term are always to favor low coordi-
nation, but they drop rapidly (as a, ) with dropping co-
valency and thus become quite small in tin, also support-
ing the tendency toward close packing for systems low in

the Periodic Table.
Values of v are very nearly the same for Ge, GaAs,

ZnSe, and CuBr, so the tendency toward higher coordi-
nation with increasing polarity may be attributed entirely
to decreasing of the three-body C„ term with decreasing
covalency. Note that there are no effects in this theory
from the Madelung energy, which we regard as a small
effect with effective charges typically of order +0.5e.

Finally, we should return to the angular rigidity as

reffected by the elastic constant (c» —ci2)/2. This arose
entirely from the angular chemical-grip term, M4(3),
which in our full analysis gave a change in energy

5E&„,=5M4/[M2[M2 —(M4 —M& )/(4M2)]'~ j. In the

simplified form this is modified only by replacing the

[M2 —(M4 M—
2 )/(4M~ )]'~ in the denominator by M2

(so that 5E „,=5M4/Mz ), decreasing the estimate by
a factor of 0.87. Our estimate was already much too
small, and this makes it slightly worse.

This was disappointing since the bond-orbital estimates
were much closer, but we recall that the bond-orbital
model predicted a variation from material to material in

proportion to covalency, a„equal to that defined in Eq.
(23) without the term 3( Vi + Vi+ )/2. Experimentally,
and theoretically with the inclusion of interatomic
metallization, the true behavior was more nearly as a, .
It is of interest to compare the ratios of the elastic con-
stants with the present theory. In the simplified form the
elastic constant, as derived at the end of the preceding
section, becomes

C11 C12

2

m4 V2a,'

4g 3/2 2
'

3PM2 C. d
(26)

This is immediately evaluated using the a, values listed
after Eq. (23) and the d from Table I. The predicted ra-
tios for each system to the value for germanium (and the
corresponding experimental number in parentheses) for
each system are C, 17.44 (11.80); Si, 1.42 (1.26); Ge, 1 (1);
Sn, 0.47 (0.49); GaAs, 0.75 (0.80); ZnSe, 0.41 (0.40); and
CuBr, 0.22 (0.13).

It is remarkable indeed that the trends are very well

given over an extraordinary range of values and variety
of materials, though the individual predicted elastic con-
stants are in error by a factor of more than 4. This would

suggest that though the parameters of the theory are not
so accurate in this instance for direct quantitative predic-
tions, with an adjustment of the numerical coefficients
entering the final form of M~(3) in Eq. (16) the theory
may give good trends over a wide variety of systems.

TABLE II. Predicted nearest-neighbor distance (A), and energy (eV/atom for elemental systems,
eV/atom pair for compounds) in structures of varying coordination (2, carbyne at 8=126'; 3, graphite;
4, diamond; and 6, simple cubic). The spacing in the stable structure has been fitted to experiment.

Material 71 =2

1.39, —8.19

7l =3

1.45, —9.37

n=4

1.54, —8.81 1.95, —4.20

Si
Ge
Sn

2.30,
2.43,
2.80,

—3.52
—3.47
—3.14

2.31, —4.17
2.41, —3.97
2.78, —3.69

2.35, —4.42
2.44, —4.21
2.80, —4.09

2.58,
2.65,
2.96,

—3.28
—3.34
—3.83

GaAs
ZnSe
CuBr

2.40,
2.39,
2.41,

—7.50
—8.69
—7.08

2.41, —8.39
2.41, —9.23
2.43, —7.31

2.45, —8.83
2.45, —9.51
2.46, —7.41

2.65, —7.53
2.62, —8.74
2.61, —6.85

LiF
NaCl
CaO

1.77, —15.71
2.67, —9.82
2.33, —13.11

1.79, —15.80
2.68, —9.93
2.33, —13.67

1.82, —15.63
2.71, —9.99
2.35, —14.16

2.01, —13.92
2.82, —9.76
2.41, —14.54
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VII. GENERALIZATION TO OTHER SYSTEMS

The formulation of the total energy required that the
energy levels in the solid be split up and down, with the
lower half occupied, so that we could use the second rno-
ment to estimate the average energy of occupied states.
This applied to sp-bonded AB compounds with eight
electrons per atom pair, but not to most other systems. It
is nevertheless possible in many cases to proceed. The
procedure for doing this is perhaps clearest for
transition-metal systems.

A. Transition-metal compounds

In many transition-metal compounds the important
electronic levels are the d states of the transition metal
and the p states of the nonmetallic constituent. In AB
compounds they ordinarily form in the rocksalt structure
so that the important coupling is the Vpd coupling be-
tween them. In such a situation with i' degenerate levels
coupled to I' degenerate levels there will be ~1' —I~ non-
bonding levels with energy equal to that for the majority
levels (d levels, in this case). [This is simply because it is
possible to select ~1' —1~ combinations for which the cou-
pling with the minority levels cancels out. Imagine, for
example, I') I. Then we seek a linear combination (with
coefficients u, ) of the I' states for which g; H;J is equal to
zero for l values of j. This is seeking the simultaneous
solution of I equations with l' unknowns. If l' were equal
to l, there would only be the trivial solution with all

u; =0, but for each integer by which l' exceeds l, there is
an additional solution, corresponding to a state uncou-
pled to the set of I levels. All that is required is that the
diagonal elements of the l' states be equal so that these
nongonding combinations are also uncoupled to the other
states of the set of I']. The remaining levels will then
split upward and downward and if the lower half are oc-
cupied, our approach is again applicable. Such an ap-
proach was taken by Harrison and Straub' for treating
transition-metal compounds using only the second-
moment contribution to the energy, without introduction
of the chemical grip. Then the combination of couplings,
V2 Vss 0 +2 Vsp & + Vpp ~ +2 Vpp & which we introduced in
Sec. IV, is replaced by Vz(pd) =

V~& +2V~&„, which was
written in terms of universal parameters. With three lev-
els coupled per atom, the expression Vz/4 of Eq. (13) be-
comes V2/3; there is no V, + with only one energy value

per atom. The form of the chemical grip is also modified
but can be directly written down.

Even in the rare case without half occupation of the
bands, such as the cuprate superconductors, we could use
the fourth moment to estimate the width of the bands
and using a model form of the density of states estimate
the average energy of the occupied states.

B. The role of peripheral states

We might be concerned about the neglect of the effect
of s states on the metallic atom in the transition-metal

compounds, but since the corresponding bands are well
removed from the occupied states it should be adequate
to treat them in perturbation theory. Then in lowest or-
der they simply add terms to the radial interaction which
should be adequately treated by absorbing them in the fit
overlap repulsion, as were many terms in Sec. VI here.
Similarly we might be concerned about the role of peri-
pheral s or d states in the sp-bonded materials, but for s
states they may again be absorbed in the overlap repul-
sion. For d states there are many terms which can be ab-
sorbed in the overlap repulsion and the remaining terms
could be included as an angular contribution similar to
the angular terms in Eq. (16). The fact that so many of
the contributions we are dropping can be absorbed in the
overlap repulsion explains to some extent why the theory
based upon a minimal basis set has been as successful as
it has.

C. Silicon dioxide

In silicon dioxide, and related compounds, there are
three oxygen p states on each of two atoms coupled to
four silicon atomic states. Thus if we omit, as a first step,
any role of the oxygen s states we may describe the elec-
tronic structure in terms of two nonbonding bands, at the
energy of the oxygen p state, four bonding bands and four
antibonding bands. We may then add the oxygen s states
in perturbation theory and, to second order in the cou-
pling, these simply add a radial interaction. We need not
specify the coefficients for the nonbonding states. Thus
again the second moments can be used to estimate the en-

ergy. We define a covalent energy

V~(Si02)=[V, +Vip +2Vpp )]'

=2 78$ /pygd (27)

The second moment is a sum of V2+ V3+ 3 V, + /2, with

V3 being half the difference between the silicon hybrid
energy and the oxygen p-state energy and V&+ being one
quarter of the silicon sp splitting, over all atoms and over
all neighbors to each atom, divided by the number of for-
mula units times eight for the number of orbitals involved
per molecular unit. The negative of the square root of it
is an estimate of the average energy of the band relative
to the average of the atomic levels involved.

We have a choice when we write the total energy of the
system in terms of locally calculated moments. For the
perfect crystal we could evaluate the moment for one for-
mula unit (one silicon and two oxygens in which case the
sum over V2 contains eight identical terms and is divided

by 8) and multiply the negative of the square root by 8 for
the number of electrons per molecular unit. We could in-
stead evaluate the moment at each oxygen {with a sum
over two neighbors and a division by 2), multiply each by
2, and add the negative of the square root of the moment
at the silicon {with a sum over four neighbors and a
division by 4) multiplied by 4. The same V3+3V2+/2
enters each second moment so the result is the same, but
the latter form extends more naturally to nonperiodic
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structures and we would choose that. The total energies
obtained are not identical for a nonperiodic structure be-
cause limiting the number of terms under the square root
eliminates cross terms between them, most of which we
expect correspond to unphysical interactions which
would be eliminated by including more moments. In par-
ticular, summing over molecular units would include in-
teractions between some sets of bonds but not other
equivalent sets.

The chemical grip contribution also generalizes direct-
ly to the Si02 structure. However, in eliminating the ox-
ygen s states from the problem we change its form and
the minimum energy in terms of the angle at the oxygen
occurs at 0=90' rather than 126'. Thus we predict too
small an angle at oxygen. This occurred also in the ear-
lier tight-binding analysis of this system. Adding the
effect of the oxygen s state would increase the equilibrium
angle, but it would appear not enough.

VIII. INTERATOMIC INTERACTIONS
FOR MOLECULAR DYNAMICS

The total energy of a system is obtained, in the
simplified theory, by summing the ,'E „„ofE—q.(22) over
all atoms. In this sum, and in obtaining Mz from Eq.
(13), the coordination n is replaced by a sum over neigh-
bors. The force on any atom, then, is the partial of this
total energy with respect to the position of that atom.
We look first at the term —4+M2. A change in that
term is given by —4/QMz times half the change in the
sum of Vz/4. Each term involves one neighbor, and the
corresponding force on the central atom is

F =2V2/QM2d (30)

in the direction of that neighbor and QMz is evaluated
for the central atom. Thus although this is a radial two-
body force, it depends upon the environment of the atom.
There is another contribution to the interaction between
this pair, in the same direction, and given by the same
formula but with QM2 evaluated for the neighbor. The
two forces may not be equal but when added they give
equal and opposite forces on the two atoms. The overlap
repulsion gives a second, simpler, contribution to the ra-
dial two-body interaction.

The bonding force drops from neighbor to neighbor as
1/d and is thus, hopefully, of short enough range that
summing over neighbors is not a serious problem. If the

contribution to any calculation of neighbors beyond the
first shell becomes significant, it is appropriate to cut off
the force since such a cutoff was made in the solid before
fitting the parameters of Eq. (11) and the overlap repul-
sion of Eq. (21).

The grip term in Eq. (22) is already in the form of a
valence force field with an angular dependence (from the
C„). The Mz in the denominator is to be evaluated at
the central atom and again 0 is the angle between the two
vectors, d& and d2, to the neighbors. Each pair is counted
only once, not d„d2 and d2, d, . There is some extra com-
plexity in the forces resulting from the grip due to the
variation of the Mz in the denominator as the position
is varied to obtain the force. It may sometimes be legiti-
mate, as we suggest in the example below, to neglect that
extra complexity. Another interesting feature of the grip
is that a chain of atoms tends to zigzag with a predicted
126 angle; if each atom has a third neighbor at the same
distance the angle decreases to 120'. Bringing a fourth
atom tends to pucker the plane.

Finally, we may note that there are many generaliza-
tions which may be made, such as allowing additional
electrons locally, which may be ignored if as in Si02 they
are nonbonding„or may be included reducing the fac-
tor 4 in the —4+M2 bonding term if they are in anti-

bonding states. We are not so much offering a specific
detailed scheme for calculating interactions as offering a
method of approach to the problem. In the same vein,
the genera) approach should be applicable to the wide
variety of dielectric and other properties of semiconduc-
tors, though some steps such as the dropping of two-
center terms in the fourth moment would need to be
reconsidered. Similarly, the specific parameters we have
used are not sacred, but there seems to be reason to be-
lieve that the form of Eq. (20) does well at representing
the form of the real interatomic interactions in nonmetal-
lic systems.
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