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According to hydrogenic-effective-mass theory, exact solutions and quantum-level structures are
presented for confined electron and hydrogenic donor states in a spherical quantum dot (SQD) of
GaAs-Ga, ,Al, As. Calculated results reveal that the values of the quantum levels of a confined
electron in a SQD can be quite different for cases with finite and infinite barrier heights. The
quantum-level sequence and degeneracy for an electron in a SQD are similar to those of a super-
atom of GaAs-Ga, „Al As but different from those in a Coulomb field. There is stronger
confinement and larger binding energy for a hydrogenic donor in a SQD of GaAs-Ga~ „Al„As than
in the corresponding quantum-we11 wires and two-dimensional quantum-well structures. The bind-

ing energy and its maximum of the ground state of a donor at the center of a quantum well are
found to be strongly dependent on the well dimensionality and barrier height.

I. INTRODUCTION

The advances in crystal-growth techniques such as
molecular-beam epitaxy (MBE) and metalorganic chemi-
cal vapor deposition (MOCVD) have made possible the
fabrication of quantum-well structures in which the elec-
trons are confined to move in low dimensions. Presently,
intensive work is done on the fabrication of one-
dimensional quantum wires' and zero-dimensional
quantum dots ' in a number of laboratories. The opti-
cal and electronic properties of these quasi-two-, "
one-, and zero-dimensional30

—39 structures have
been the subject of both theoretical and experimental in-

vestigations. The exciton and impurity states in two-
dimensional quantum wells (2D QW's) and superlattices
have been calculated by a number of authors. " For an
infinite barrier height of 2D QW s, the binding energy ap-
proaches 4 Ry' (Ry' is effective Rydberg, i.e., the bind-

ing energy of the ground state in the bulk semiconductor)
as the well size is reduced. For a finite barrier height of
2D QW's, however, several calculations have shown that
the binding energy goes through a maximum as the well

size is reduced instead of continuously increasing as is
found in the infinite barrier calculation. The maximum
of the binding energy is dependent on the barrier height.

In the last few years there has been increasing interest
in the study of the electronic properties of quantum-well
wires (QWW's). In such structures, the electrons are
confined to movement along the length of the wires while
the motion normal to the wires is quantized in the two di-
mensions. Several calculations have been performed
for electron and impurity levels of QWW's. Lee and

Spector have calculated the binding energies for bound
states of a hydrogenic impurity placed on the axis of cy-
lindrical QWW of infinite confining potential. It is found
that the binding energy is increased continuously as the
well size is reduced. Assuming a finite barrier height for
the confining potential, Bryant has also calculated the
binding energies and found that they are two or three
times greater than the values in comparable 2D QW's. It
is also shown that there is a maximum of the binding en-

ergy for a fixed barrier height of QWW's, and that the
binding energy is larger as the confinement is stronger.

Although perfect quantum-dot structures (boxes or
balls) have not yet been realized, Asada et al. 3 have
shown that the linear gain of quantum boxes is much
larger than that of bulk crystals at fixed carrier density,
and that the laser threshold can be reduced by the struc-
tures of boxes. Schmitt-Rink et al. have reported a
theory of the linear and nonlinear optical properties of
semiconductor microcrystallites. They have also shown
very desirable optical properties of a perfect quantum
dot. Therefore it is interesting to study the electronic
structures of quantum dots, such as the quantum levels of
electrons and holes and the binding energies of impurity
and exciton states, which are important for much
better understanding of the problems mentioned above.

Because the transverse and longitudinal variables do
not separate, the impurity states in 2D QW's and QWW's
cannot be solved exactly. Therefore approximation
methods should be used. A reasonable trial function is
needed to obtain a correct variational state of an impuri-
ty in 2D QW's and QWW's, and calculated results are
more accurate if the coupling effect between the impurity
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and well potentials is considered using a trial function
which or a part of which has correctly both donor and
well potential effects. However, for a hydrogenic donor
at center of spherical quantum dots (SQD's) the exact
solutions ' can be obtained. It is interesting not only
from a physical point of view but also from a mathemati-
cal point of view to compare the solutions and binding
energies with those of 2D QW's and QWW's. In this pa-
per, we report exact solutions and quantum-level struc-
tures for confined electron and hydrogenic donor states in
SQD's. The dependence of the quantum levels and the
binding energies on the dimensionality of quantum wells
is also presented.

In Sec. II we present the calculation method for
confined electron and hydrogenic donor states in a SQD.
Main results are shown in Sec. III. A summary of the re-
sults is presented in Sec. IV.

II. CALCULATION METHOD

Our calculation is based on the effective-mass approxi-
mation. It has been known to give excellent results for
electronic structure of GaAs-Ga, „Al„As 2D QW's and
(A1As)„/(GaAs)„superlattices if the well width or n is
sufficiently large. The limit is estimated to be about 30 A
(n —10). Therefore it should also be valid for the
GaAs-Ga, „Al„As quantum dots as the size (diameter
for a ball) is sufficiently large. Based on the facts men-
tioned above, the limit for a ball diameter is also estimat-
ed to be the same value and equal to 30 A. Here we treat
the cases where the diameter is larger than the critical
size. It is interesting to point out that the maximum
quantum confinement of an electron in the GaAs-
Ga& Al„As quantum ball is already obtained before the
diameter approaches to the critical value. In addition,
polarization and image charge effects can be significant if
there is a large dielectric discontinuity between the quan-
tum ball and the surrounding medium. However, this
is not the case for the GaAs-Ga& Al„As quantum sys-
tem; therefore we ignore such effects.

According to hydrogenic-effective-mass theory, the
electron bound states and their binding energies have
been found in 2D QW's and QWW's. Normally, the
effective-mass equation is reliable weakly bound states,
and one might worry that the effective-mass equation is
inappropriate when the binding energy is greatly
enhanced in SQD's of GaAs-Ga, „Al„As. However, the
band gap of GaAs is 1.4 eV, while Ry'=5. 3 meV. Thus
roughly a 100-fold enhancement of the binding energy is
necessary before the effective-mass equation becomes
inapplicable. This difference is much greater than the
enhancement seen in the cases considered here, so that
the theory is still reliable for the bound states in SQD's of
GaAs-Ga, „Al„As.

Let us for definiteness consider a hydrogenic donor at
the center of the SQD of radius Ro. The potential due to
the discontinuity of the band edges at the GaAs-
Ga& „Al As interface r =Ro is as follows:

Vo if r &Ro
V( )= 0;f „(R

where r is the electron-donor distance. The barrier
height Vo is obtained from a fixed ratio of the band-gap
discontinuity. According to hydrogenic-mass theory, the
Hamiltonian for the donor is

H= —V — +V(r) .
2w

r
(2)

It is written in a dimensionless form so that all energies
are measured in units of the effective Rydberg Ry and
all distances are measured in units of effective Bohr ra-
dius a*. wis equal to 1.

In order to solve the Schrodinger-like equation

He(r, 8,$)=E% (r, 8,$) (3)

the wave functions of an electron with well-defined values
of the orbital (I) and magnetic (rn ) quantum numbers in a
spherically symmetric potential, which is the quantum
well and Coulomb potential, are written in the form

'P~ (r, 8,$)=+"(r)Y& (8,$), (4)

where Y& (8,$) and +'"(r) are the spherical harmonic
and radial wave function, respectively. Substituting (4)
into (3), we find an equation for the function 4'"(r):

d'e'" r de'" rr' +2r + [[E(l)—V(r)]r'
dr

—l(1+ I)+2wr]+'"(r)=0 . (5)

Using the method of series expansion, we can solve Eq.
(5) exactly. It should be noted that the zero and infinity
are a regular and an irregular singular point of Eq. (5), re-
spectively. In the region 0 & r, we have a series solution,
which has a finite value at r =0, as follows:

N
4' '(r)=8 exp( K&r)r ' g b„' ~r—

n=0
where

K, = [V, E(l)]'", —

pl = —1+w /K

and
g(I) —

1

(9)

(10)

b„"+,= —
(p& n —1)(p& n+/+1)b„'"/2—K&(n +1), —

for n =0, 1,2, . . . ; (12)

B is a constant. The series appears suitable for numerical

e'"(r) = Wr' ~ a'"r"
n

n=0

where

ao"=1, a~i"= —I/(l+1)
and

a„'"=—[2wa„"', +E(l)a„"'2]!n (n +21+I),
for n =2, 3,4, . . . ; (8)

A is a constant. In the region Rp &r, we can obtain a
normal solution. It approaches zero at r = ~ and is
found in the form
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computations for large r. However, they are not suit-

able for Ro if it is small. In order to get exact value at
small Ro, we find a solution of uniformly convergent Tay-
lor series in the region Ro & r ~ R, where R is a proper
point, e.g., Rp ~ 2a', for using Eq. (9). For the sake of
using the matching conditions at r =R to obtain the

eigenenergy equation below, it is written as follows:

0" '(r)=C+c„(r —R )"+Dgd„(r —R )", (13)
n=0 n=0

where C and D are constants, co and d& are equal to 1,
and c, and do are equal to 0, respectively. Noting that c„
and d„are equal to 0 for negative n, the other c„can be
determined by the following recurrence relation:

c„=I 2—R (n —1) c„1+[ (n ——2)(n —1)+1(1+1) 2wR—+K&R )c„2
+2(K& R~ —w)c„3+K&c„4]/[Rr n (n —1)] (14)

and d„'s obey a similar recurrence relation.
Using the matching conditions at the interface r =Ro

and R, we can obtain the equation of the eigenenergies
E (1) as follows:

E(1, w =0) is as follows:

ko+Kotan(koRo)=0 if 1=0,
~'kih1(iK1Ro j)1 1(k,Ro)—

(18a)

W) ) 0 W)3 W]4

W2) 0

0 W32

0 W42 0 1

W23 W24

0 0

where

that is

W21( W42 W14+ W32 W13 } 11 W42 W24 W32 W23

(15)

(16)

+Kthi 1(iK1R—o~j 1(kiRo}=0 if 1~ 1, (18b)

k&=[E(l, w =0)]' K =[Vo E(1, w—=0)]' (19)

where J1 and h1 are the 1th-order spherical Bessel func-
tion and Hankel functions of the first kind, respectively.
Then, the same results are obtained if the wave functions
and quantum levels are calculated with use of the Bessel
and Hankel functions. Once E„(1,w = 1) and
E„(l, w =0}are obtained, the binding energy of the cor-
responding donor states in the SQD is given by

W11= g a„'"Ro, W, 3
= g c„(Ro Rp)", —

n=0
E„b(l)=E„(l,w =0)—E„(l, w =1) . (20)

W,4= g d„(Ro Rr }", W„—= g (1+n}a„'"Ro
n=1 n=0

(17)

W23 g nc„(Ro—R~ )" ', W24 =g nd„(Ro R~ —)"
n=0 n=1

N N

W32=+ O'"R ", W42=+ ( n+p, K,R—)O„'"R—
n=0 n=0

It can be solved numerically. Once the nth eigenenergy
E„(l) is known, the A, 8, C, and D [hence 4'„"(r)] are
known with use of the normalized condition of 4'„"(r).
This p'„"(r) depends on the value of 1, the quantum well,
Coulomb potential, and energy E„(1). We should point
out that we have neglected the difference of the electron
effective masses between GaAs and Ga, ,A1„As in the
Hamiltonian and the matching conditions. If the
effective-mass difference is considered, similar formulas
can be obtained.

If there is no Coulomb potential in the Hamiltonian of
Eq. (2), i.e., w =0, usin the same formulas, we can ob-
tain wave function 4'„'(r, w =0}, and quantum levels

E„(l, w =0) of an electron in the quantum well. In fact,
Eqs. (6) and (9) become the spherical Bessel function and
Hankel function if w =0. The equation of eigenenergies

III. QUANTUM LEVELS AND BINDING ENERGIES

We have performed a numerical calculation for GaAs-
Ga, „Al„As SQD's of the Ro between 0.15a' and 7.0a'
with different Vo. In Table I, we have shown quantum
levels of an electron in SQD's with different Ro and Vo.
The levels E„(1)are indicated by two symbols n and 1 as
shown in Sec. II. The n is equal to the number of the
root of Eq. (16) or (18}in order of increasing magnitude,
i.e., n =1,2, 3. . . and the n —1, hence, is the radial quan-
tum number as usual. The l is the usual notation, i.e.,
s,p, d, . . . . Thus we have ls, lp, ld, 2s, 1f levels (states)
and so on if the n and l are used as the level notation, and
we have ls, 2p, 3d, 2s, 4f levels, and so on, if the princi-
pal quantum number, which is equal to n +l, and l is
used as the notation. It is interesting to point out that
when Vo approaches infinity

E„(1)=(X„,/Ro) (21)

where X„I is the nth root of the lth-order spherical Bessel
function. In Table I, it is shown that the different values
of E„(l)are obtained as the Ro is equal to la * and 2. Sa ',
respectively. It is also shown that the values of quantum
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lf
(4f)

48.832
38.919
37.420
34.777
7.814
7.151
7.054
6.892

2p
(3p)

59.676
47.016
44.789

2$

(2s)

39.476
31.425
30.191
28.004
6.316
5.781
5.702
5.571

E (l)
Rp=1

9.548
8.735
8.613
8.409

TABLE I. Quantum levels of an electron in a SQD of GaAs-Ga, „Al„As with Ro =1 and 2.5a and

Vp =40, 60, 80, and ~ Ry, respectively. The notation with the principal quantum number is shown in

parentheses. Effective atomic units are used.

1s 1p
nl (1s) (2p)

Vp

80 7.957 16.225
60 7.702 15.679
40 7.292 14.786

2.5 00 1.580 3.230
80 1.446 2.958
60 1.427 2.919
40 1.396 2.854

levels are different between infinite and finite barrier
heights. The differences increase as the Ro and finite Vo
decrease. There are an infinite number and a finite num-
ber of bound states for a SQD with infinite and finite bar-
rier heights, respectively. There is no bound state if
Ro &R, =0.5n. j(Vo)'~ . However, the order of E„(1)is
the same for both infinite and finite barriers, i.e., the
unique level sequence ls, lp (2p), ls(3d), 2s, If (4f), and
so on. We should note that the level order is difFerent be-
tween both cases of a SQD and Coulomb field, in which
the level order of an electron is ls, 2s, 2p, 3s, 3p, 3d, and
so of if the principal and orbital quantum numbers are
used as the level notation. It is because of the lack of the
deep attractive region in the vicinity of the center of a
SQD. For the motion of an electron in a Coulomb field,
the quantum levels are only dependent on the principal
quantum number n and degenerate with respect to both
I (orbital quantum number ) and m (magnetic quantum
number). The total degree of degeneracy of a quantum
level with the n is equal to n (excluding spin degenera-
cy). For an electron in a SQD, however, the quantum
levels are dependent on both n and I and only degenerate
with respect to the m. The total degree of degeneracy of
a quantum level with n and I is equal to 21 + 1 (excluding
spin degeneracy). It is worthwhile to point out that the
degeneracy can be lifted in the other kinds of quantum
dots. In quantum boxes with circle cross sections, for ex-
ample, the degeneracy is lifted partly. Now, we can con-
clude that the quantum-level sequence and degeneracy
for an electron in a SQD are quite different from those in
a Coulomb field, and that this distinguishiog feature of
levels might cause new phenomena in this type of GaAs-
Ga& „Al„As structure.

In Fig. 1, we have, respectively, plotted the ground and
first excited energy levels of an electron in a SQD as a
function of Ro for an infinite barrier height and two finite
barrier heights Vo =40 and 80 Ry'. It is shown that the
difFerences of energy levels between difFerent barrier
heights increase as the Rp is decreased, and that the
difference of the first excited-state energy is larger than
that of the ground-state energy for a fixed value of Ro. It
is also shown that there are no bound states for a SQD
with a finite Vo if Ro & R, as mentioned above. In Fig. 2,
we have shown the binding energies of the ground and
first excited states of a donor in a SQD as a function of
the Ro for three barrier heights V =80, 60, and 40 Ry',
respectively. It is readily seen that as Ro decreases both

(a)

80-

60—

40-

20—

0 1

0 G2 04 06
Ro(Unjts 0f Q )

0.8 I.O

l6

!2

I I

2
Ro(units of G')

FIG. 1. Ground-state (Elp) and first excited-state (E») ener-

gy levels of an electron in a SQD vs the well radius Ro. The top
and middle dashed curves represent the levels E» and E,p of
the well of Vp = 00, respectively. The solid curves a, b, c, and d
rePresents the levels E» and Elp of the wells of Vp =80 and 40
Ry, respectively. All energies are expressed in terms of the
effective Rydberg (Ry*) and all distances are expressed in terms
of the effective Bohr radius (a ). Same units are used in all of
the following figures.
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the binding energies increase continuously until their
maxima and, then, decrease fast. The values of the bind-

ing energies can be much larger than those of QWW's
and 2D QW s as Ro is smaller. It is interesting to point
out that the ratio E&s(0)lE,&(1) increases as Ro in-

creases from some small value. The E,~(0) and E,~(1)
are almost independent of Vo and respectively equal to
1.192 and 0.576 Ry' at Ra=7.0a*. However, the ratio
1.192/0. 576 is still much less than 4, which is the limit
value of a three-dimensional hydrogenic donor as Ro ap-
proaches infinity.

In Figs. 1 and 2, it is easily seen that as the Ro de-

creases the binding energies with respect to different

states of a donor in a SQD increase until their maxima,
and that the increases of the binding energies are always
much less than the increases of the energies of the corre-
sponding states of an electron only confined by the SQD
although the binding energies can be much larger than
those in the corresponding 2D QW and QWW. It means
that confinement effects are dominant in the range of
R 0 ~ Further, it is also true for the higher excited states.
Therefore we can know what kind of quantum-level se-
quence we will have if the motion of an electron is
confined by both SQD and Coulomb field with a same
center. The level sequence is similar to that of a three-
dimensional hydrogenic donor if Ro is much larger and
quantum confinement due to the SQD is very weak.
However, it is similar to that of the electron in the SQD
if the quantum confinement of the SQD is stronger than
that of the Coulomb potential. Based on what we have
mentioned above, we can understand why the quantum-
level structure of GaAs-Ga, Al„As superatoms '" is
similar to that of an electron in a SQD and quite different
from those of ordinary atoms, and that the electronic
structure of the superatoms is dominated by no-radial-
node states of ls, lp (2p), ld (3d) and so on.

In Fig. 3, we have plotted the maximum binding ener-
gies Ez,„ for the hydrogenic-donor ground and first ex-
cited states in a SQD as a function of the barrier height
Vo. It is shown that the enhancement of the maximum is
greater in a SQD (quasi-zero-dimensional) than in the
corresponding QWW (Q1D) and 2D QW (Q2D) as Vo is
increased. This is because of the enhancement of the
electron confinement in three dimensions in the SQD. In
Fig. 4, we have shown that the maximum binding energy
Ez,„of ground states of a donor at the center of a
different kind of quantum well depends on the well
dimensionality and barrier height Vo and presents quasi-

I2- — IO

0

LX

~ IQ-
Cl

UJ

2
~o(units of a')

FIG. 2. Binding energies of the ground (Eog) and first excit-
ed (E,~) states of a donor in a SQD vs the well radius Ro. The
curves a, ab, and b represent E» of the well of Vo =80, 60, and
40 Ry*, and the curves c, cd, and d represent E» or Vo =80, 60,
and 40 Ry*, respectively. Arrows indicate the relevant vertical
scales.

6 l

0 20 4O CO

Vo (Ry')

I

80 IOO

FKJ. 3. Maximum binding energies Ez,„ for the
hydrogenic-donor ground (1=0) and first excited (1=1) states
in a SQD vs the barrier height Vo. Arrows indicate the relevant
vertical scales.
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l2-
V.=80

IO-

-„8-
C$
E
CP

LaJ

Vp=80

&o=80

40

I I I I I I

30 Q20 20 Q I 0 I 0 000 00

FIG. 4. Maximum binding energy Ez,„ofa donor ground
state in a quantum well vs the well dimensionality and barrier
height Vo. For the Q1D case, the dashed lines represent the
maximum binding energies of QWW's (Ref. 26) and the solid
lines represent the mean values of the maxima of the 2D QW's
(Ref. 40) and the SQD's.

IV. SUMMARY

We have solved the radial equation (5) and obtained
the exact solutions of confined electron and donor states
in a SQD. The quantum levels and binding energies of a
donor in the SQD are calculated numerically. The nu-
merical results reveal that the values of the quantum lev-
els of a confined electron in a SQD with a finite barrier

two-, one-, and zero-dimension features of the hydrogenic
donor, respectively. It is interesting to note that the
mean values of the maxima of the 2D QW's (Q2D) (Ref.
40) and SQD's (QOD) are very close to (slightly larger
than) the maxima for the QWW's (Q1D's).2 We should

point out that the maximum binding energies of higher
excited states can also be used to present the dimension
features.

height are different from those with an infinite barrier
height. The differences increase as the Ro decrease.
However, the quantum-level order is the same for both
infinite and finite barrier heights. It is also shown that
the quantum-level sequence and degeneracy for an elec-
tron in a SQD are similar to those of a superatom and
different from those in a Coulomb field. The quantum-
level structure of a donor in a SQD is similar to that of an
electron only confined by the SQD as the quantum
confinement due to the well potential is stronger than
that due to the donor potential. It is useful for under-
standing the shell model in microclusters.

On the basis of the calculated results, the crossover
from three-dimensional to zero-dimensional behavior of
the donor states in a SQD is shown when the radius be-
comes small. The binding energy of a hydrogenic donor
state in the well of GaAs-Ga, „Al„As and its maximum
are strongly dependent on the well dimensionality and
the barrier height and there is a larger confinement and
binding energy of a donor state in a SQD than in a QWW
and 2D QW. Using calculated results of 2D QW's and
QWW's, we have shown that the maxima of the binding
energies of hydrogenic donors in 2D QW's, QWW's, and
SQD's of GaAs-Ga, „Al„As can be used to present, re-
spectively, quasi-two-, one-, and zero-dimensional
features of the hydrogenic donor states. Further, we
have found that the maximum of the binding energy of a
donor ground state in a GaAs-Gai „Al„As QWW is
about half of the summation of the maximum binding en-
ergies in the corresponding 2D QW and SQD.

To close this paper, we should point out that impuri-
ties could be located anywhere in a SQD, and that the
binding energies will decrease and the level ordering will
change as the impurity location shifts to the edge or out
of the SQD. Based on the exact solutions obtained, the
quantum levels and binding energies of a donor located
out of the center of a SQD can be obtained by use of a
variation method. This work is in progress. The exact
solutions are also useful for the calculation of exciton
states in a SQD, which is a kind of quantum dot. It will
be interesting to compare the calculated results about
quantum levels and binding energies of impurity and ex-
citon states in a SQD with those of other kinds of quan-
tum dots.
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