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Subband structure and plasmon-phonon coupled excitations in the accumulation layer of ZnO
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Calculations of electronic subbands and collective excitations are presented for strong accumula-

tion layers in ZnO. Our model for this system is that of a free-electron gas with an effective mass

embedded in a dielectric medium that supports lattice vibrations. Allowance is made for the con-
duction electrons to tunnel into the surface barrier. The effects of a position-dependent effective

mass and of exchange and correlation are also considered. Using a nonlocal dielectric response for-
malism based on the random-phase approximation, we obtain the dispersion and line shapes of both
intrasubband and intersubband plasmons. Evidence is found for two-dimensional intrasubband

plasmons, as well as intersubband and "acoustic" plasmons; the latter have a nearly linear disper-
sion relation. When lattice vibrations are included, coupled plasmon-phonon modes or "plasma-
rons" are obtained. Some of these modes have been observed in earlier high-resolution electron-
energy-loss spectroscopy experiments.

I. INTRODUCTION

Space-charge layers at semiconductor surfaces provide
an excellent opportunity to study collective excitations of
a nonuniform electron gas High-resolution electron-
energy-loss spectroscopy (HREELS) (Refs. 1 and 2) is a
particularly useful probe of these excitations because its
effective sampling depth is on the order of the width of
the space-charge region, namely 100 A. Thus this tech-
nique is sensitive to the dispersion of plasmons on the
same scale of wavelengths that characterizes the charge-
density profile. Unfortunately, the limited angular reso-
lution of most HREELS facilities does not permit the
direct measurement of the frequency —wave-vector
dispersion relations of the excitations. As a result, it is
necessary to couple theoretical calculations of energy-loss
spectra with the observations to elucidate the fundamen-
tal physics.

Until recently, theoretical studies of plasmons in
space-charge layers have relied on a simplified picture in
which the conduction electron response at a point in
space depends only on the local electrical field. ' Howev-
er, typical screening lengths in these systems are on the
order of 100 A, and so nonlocal response is expected to
play a crucial role. Ehlers and Mills have presented a
random-phase approximation (RPA) formalism for incor-
porating nonlocal effects in the inelastic scattering
efficiency, and have reported calculations of plasmon
dispersion and energy-loss spectra for depletion and accu-
mulation layers on GaAs. The first step in this approach
is the self-consistent determination of the energy levels
and wave functions for a jellium-like model of the con-
duction electron system in the semiconductor. With
these results in hand, one proceeds to solve the integral
equation for the density response in the RPA; this
response determines the plasmon spectrum. In a previ-
ous paper, we reported nonlocal response calculations
for accumulation layers on InAs, a system for which

HREELS data were available for comparison. Our re-
sults included the dispersion, localization and line shapes
of intersubband as well as intrasubband plasmons. We
found evidence for two-dimensional (2D) and acoustic
plasmons and studied the damping of all modes. When
the phonon response was included, we obtained coupled
plasmon-phonon modes or "plasmarons" which con-
firmed earlier interpretations of HREEL spectra for
InAs(110) exposed to atomic hydrogen.

In the present paper we present calculations of (1) the
self-consistent electronic structure of the subbands and
(2) the dynamical response of the electron-phonon sys-
tem, for accumulation layers on ZnO. The latter system
possesses a strongly localized electron gas with a length
scale of about 10 A. One anticipates that such a system
may exhibit 2D behavior because a large majority of the
conduction electrons inside in the lowest subband, whose
spatial extent is much smaller than typica1 wavelengths
involved in HREELS. Further, this material is of consid-
erable interest because it stands at the ionic limit of the
class of semiconducting solids. Finally, on account of the
strong localization of the conduction electrons near the
surface, the behavior of this system may be sensitive to
microscopic details usually ignored in space-charge lay-
ers, such as tunneling into the surface barrier, position
dependence of the effective mass, and exchange and
correlation.

Our paper is organized as follows. The self-consistent
electronic subbands and wave functions are determined in
the next section, for a simple model of the accumulation
layer in ZnO. While the method for obtaining the elec-
tronic structure is closely related to that introduced by
Ehlers and Mills and applied by us to InAs accumula-
tion layers, we have extended it to allow us to consider
the microscopic effects mentioned in the last paragraph.
Section III summarizes our adaptation of the nonlocal
response formalism to our model system and contains a
discussion of the various plasmon modes we obtained.

5991 1990 The American Physical Society



5992 HONG YU AND J. C. HERMANSON

Phonon response is added in Sec. IU, and coupled
plasmon-phonon modes are obtained. These modes are
related to peaks observed in HREELS spectra of ZnO
surfaces exposed to atomic hydrogen. ' ' Section V
contains our summary and conclusions.

II. SUBBAND ELECTRONIC STRUCTURE

qll' + &n (2.1)

In this section we summarize our physical model of the
ZnO accumulation layer and the main features of the
electronic structure associated with the subbands. The
model is described as follows. A semiconducting slab of
thickness L —2zo, dielectric constant e„,and effective
mass m* is centered between two infinite potentia1 bar-
riers at z =0 and z =L chosen for computational conveni-
ence; see Fig. l. Because the accumulation layer is local-
ized within a few atomic layers near the surface, electron
tunneling into the vacuum may play an important role. '

To include the effects of tunneling we fill the two regions
of width zo between the slab and the infinite barriers with
potential barriers of height Eb equal to the electron
affinity; i.e., the energy difference between the vacuum
level and the conduction-band minimum. We choose zo
sufficiently large compared with the decay length of the
wave function that the shapes of the charge density and
potential are independent of it. The conduction electrons
inside the dielectric slab are treated as a free-electron gas
characterized by an effective mass m '. Immediately out-
side the slab surfaces we place infinitely thin sheets of
charge of areal density n, representing the positively
charged layer induced by exposing the surface to atomic
hydrogen. We introduce a position-dependent effective
mass' m'(z) varying continuously between m' deep in-
side the slab and m„the free-electron mass, in the vacu-
um. Specifically, m'(z)=m, inside the finite barriers and
m' in the dielectric slab, except that in a thin layer of
width a immediately outside the slab (see Fig. 1) an ex-
ponential interpolation is inserted to connect the inner
and outer masses in a continuous manner.

As a result of the translation symmetry parallel to the
surface, the envelope function for the conduction electron
may be written as

where xll and qll are position and wave ~ector in the x-y
plane, and A is the surface area of the slab; i is a quan-
tum number for the motion in the z direction. The elec-
tronic energy can be written as

f2q 2

(2.2)

where c., denotes the energy minimum of the ith subband
in the potential well caused by the accumulation layer,
and we have assumed the transverse mass is m ', indepen-
dent of position. Given a position-dependent longitudi-
nal mass as defined above, the wave functions P;(z) satis-

fy a one-dimensional Schrodinger equation of the
BenDaniel-Duke form

A d 1 dP;(z} + V,z(z)P, (z) =e;P;(z) . (2.3)
2 dz m '(z) dz

In this equation, the effective potential is given by

V,q(z) = Vs(z)+ VH(z)+ V„,(z), (2.4)

where Vz(z) represents the potential barrier of height'6

Eh =4. 1 eV. In Eq. (2.4), VH(z) is the Hartree potential
of the conduction-electron system, and is related to the
charge density by Poisson's equation

27M
VH(z)= — f [n(z') nD(z'—)]lz —z'ldz', (2.S)

where nD(z) is the charge density of the ionized donors,
given by the constant value n+ inside the slab and zero
outside. In the case of ZnO, n+ is many orders of magni-
tude smaller than n(z) in the accumulation region; in the
calculations presented below, we assume n+ vanishes.
The boundary conditions

VH(z =L /2}=0, (2.6a)

d VH(z)

dz z=z0

d VH(z)

dz x=L —z0

4me
2n

E,

(2.6b)

ensure that we measure all energies from the bottom of
the bulk conduction band. The free-carrier density at
depth z is given at zero temperature by

m'
n(z) = g 8(EF s; )(EF—e; ) lP;(—z) l

l

(2.7)
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and n«, is the areal electron density given by

Ln„,= n(z )dz =n+ (L —2zo)+2n, . (2.9)

with 8 the unit step function, equal to unity (zero) for
positive (negative} values of its argument, and EF the Fer-
mi energy, determined by the condition of charge neu-
trahty,

FIG. 1. Slab model of ZnO; see text for explanation.
In Eqs. (2.7) and (2.8), the sum over subband index i in-
cludes occupied states only and a constant effective mass
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was assumed. The generalization of Eq. (2.7) to finite
temperatures is given in Ref. 4.

The exchange-correlation potential V„,was adopted
from the Hohenberg-Kohn-Sham local-density approxi-
mation we chose the simple analytic form of Hedin and
Lundqvist

V„,(z)= —[1+0.77341n(1+x ')] Ry'
CXf

(2.10)

with
1/3

r,
x =x(z)=

r, :—r, (z)=[—4~(a*) n(z)]

a*=, 1 Ry*=
m*e 2E.~a

(2.11)

As in our earlier work, it is convenient to use a Fourier
representation for the wave function. The wave functions
were expanded in a sine series which vanishes at the walls
z=O, L:

1/2

0

A. The present results are in good agreement with previ-
ous results on the subband electronic structure of ZnO
accumulation layers computed with a different method.
We find that more than 90% of the conduction electrons
occupy the lowest subband, the remainder occupying
mainly the second subband. The charge density is local-
ized within 8 A of the surface plane because of the strong
electric field evident in Fig. 2. Electrons in the first sub-
band exhibit very little tunneling into the vacuum region;
the electron density found outside the surface comes pri-
marily from the second subband. Since the density essen-
tially vanishes within 3 A of the surface plane, our choice
of surface barrier width, namely 10 A, is adequate to en-
sure that the results do not depend on the boundary con-
dition. Although exchange and correlation affect the
charge density only slightly on the scale seen in Fig. 2,
they do sharpen somewhat the electron density contribut-
ed by the first subband. The calculated charge density,
including the effects of a position-dependent effective
mass, is shown in Fig. 3 for two choices of the thickness a
of the interpolation region. For comparison, the density
obtained for constant m * is indicated by the dashed line;
the dotted line gives the result when tunneling is neglect-

. 7TZgb;sin j
j=1

(2.12)

With this expansion Eq. (2.3) is transformed into the ma-
trix equation

g M b, =E;b";, i,j =1,2, . . . .
j'=1

(2.13)

An explicit form of the matrix M ' is rather lengthy, and
is given elsewhere. ' As before in our work on GaAs
(Ref. 2) and InAs, we used a simple convergence-factor
technique to achieve self-consistency between the charge
density and potential.

In the calculations for ZnO, the parameters to be
specified include n, and n+, the slab thickness L —2zo,
the number of sine waves N„„,kept in the expansion of
P;(z), the width zo of the finite potential barrier, the
width a of the interpolation region for the effective mass,
and the dielectric constant and effective mass. The total
thickness L was chosen large enough to simulate a semi-

0
infinite geometry: q~~L )&1, where qI) =0.01 A is a typi-
cal surface wave-vector transfer in HREELS for ZnO.
The optimum choice for N„„,depends on the slab thick-
ness. The typical width of the accumulation layer is of
order 10 A; thus the smallest half wavelength in the sine
expansion basis must be of this order, or L/N„„,=10.

0
After careful examination we chose the values L =500 A
and N„„,=60 to provide an accurate simulation of semi-
infinite geometry.

The charge-density profile and self-consistent electron-
electron potential ( V,z —Vz ) are shown in Fig. 2 for ZnO
with n, =3X10' cm and n+ =0. The solid lines show
our results including exchange and correlation, while the
dotted lines were obtained by neglecting these effects.
The calculations shown in Fig. 2 included the effects of
the surface barrier but assumed that the effective mass is
independent of position: L =500 A, zo = 10 A, and a =0

c
cv
O

(b)

I

0.0 20.0 40.0 60.0
z(A)

80.0 100.0

FIG. 2. (a) Self-consistent conduction-electron density and
(b) electron-electron potential for ZnO accumulation layer with
n, =3X10' crn ', other parameters are explained in the text.
In both panels the results calculated with (without) exchange
and correlation effects are given by solid (dotted) lines. The
vertical dashed lines indicate the position of the surface plane.
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FIG. 3. Conduction-electron density for ZnO. Thick solid
line: same as Fig. 1(a). Other results computed for a=10 A
(thin solid line), constant m (dashed line), and z0=0 (dotted
line).

ed (z0=0). A reasonable value for a is expected to be
0

about 2 A, or roughly the interplanar separation. Figure
3 shows that tunneling shifts the peak of the charge den-
sity 3 or 4 A closer to the surface while keeping its shape
almost unchanged.

Figure 4 shows the dependence of the subband energies
and occupation numbers, and of the Fermi level and band
bending, on the surface charge density and the tempera-
ture. To facilitate comparison with the results of Eger
et al. we have shifted the zero of energy to the surface
potential, and we have included tunneling and exchange
correlation as described above. Our room-temperature
results, given in Fig. 4(a), are in excellent agreement with

the earlier work. At room temperature there are gen-
erally two subbands below EF, and the interband separa-
tions and band bending increase with n, as expected.
Note the nearly linear behavior of the curves in Fig. 4(a)
when n, &4X10' cm, and the smooth behavior of the
occupation numbers there. Below n, =2.5 X 10' cm
only the Srst subband lies below the Fermi level. The
dramatic changes of the occupation numbers at small n,
are associated with the passage from the 2D regime to
the classical limit in which the thermal energy kz T, or 26
meV, is larger than the subband separations. To explore
the strict 2D limit we show results in Fig. 4(b) obtained at
low temperature, T=10 K. For n, &3X10' cm the
energies of the lowest subbands agree closely with the
room-temperature results, although above 6X10' cm
three levels fall below EF instead of the two found at 300
K. Also for low temperature, the occupation numbers
vary monotonically with n, . Indeed, when n, is de-
creased below 10' cm the strict 2D limit is ap-
proached: essentially all of the conduction electrons are
found in the lowest subband. The low-temperature calcu-
lations suggest that ZnO is well suited for studies of the
2D and quasi-2D electron gas. Finally, we note that be-
cause the 10- and 300-K results are so similar at and
above 3 X 10' cm, a zero-temperature theory is expect-
ed to be adequate there.

III. DYNAMICS OF THE ELECTRON GAS

Having explored the subband electronic structure of
ZnO accumulation layers in the last section, we turn our
attention to the dynamical response of the system. Our
approach is that of the nonlocal response formalism
developed earlier within the random-phase approxima-
tion (RPA). The energy-loss function in the dipole ap-

0.0 2.0 4.0 6.0
n, (&O cm )

8.0 %.0
CS

0.0 2.0 4.0 6.0
n, (10 cm )

O

8.0 10.0

FIG. 4. Subband energy levels (solid lines) and occupation numbers (thin dotted lines) vs surface charge density for (a) T=300 K
and (b) T=10 K. Also shown are the Fermi level (dashed lines) and band bending (thin dotted line). The zero of energy is the sur-
face potential.
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proximation is given at zero temperature by

8 2

P(q, co) = f dz f dz' e
p p

X 1m[X(q~~, cp;z, z')], (3.1)

where
q~~

and co are the 2D wave vector and the frequency
transferred to the electron gas by the scattered electron.
The response function y is related to the noninteracting
response function y0 by the integral equation

L L
X(q~~, cv;z, z')=Xp(ql, cv;z, z') — dz& dzz Xp(q~~, co;z, z& ) V, (q~~', z&, zz)X(q~~, cv;z&,z'),

0 0

where the interaction potential V, contains the direct Coulomb interaction as well as exchange and correlation:

(3 2)

2

V ( )
2ne —

e((l~,
—~ I+ 2

e q)~s ls 2 e
E-qll +1 2q L

IIc„—1

6~+1
cosh(z, +zz L)+—cosh(z, —zz )

d V„,(z)
+ 5(z, —z~),

dn(z
(3.3)

where 5(z
~

—zz ) is the Dirac 5 function. The bare
response function p0 is defined at zero temperature by

Xp(q~~, cp;z, z') = p S«.(q~~, cp)p~(z)p~(z')
a, a'

(3.4)

where the matrix S ~ is given by the 2D integral,

d'k
~~f(Ep,.) f(EQ +—

qS (qadi, cp) =2f II' II qll

(2n) E), +q ~, E~ ~+i ri-
~ll' ll'

g~O+ . (3.5)

In Eq. (3.5) the Fermi distribution function f at T=0 is

1, E~EF
f'E'= 0 E)E (3.6)

Through contour integration' S ~ can be evaluated in
closed form. The procedure for solving the integral equa-
tion for g is formally identical to that used in our earlier
work, except that the matrix elements containing the
exchange-correlation potential V„,have to be evaluated
numerically.

Figure 5 shows representative results for the energy-
loss function when the phonon response is omitted.
These results were obtained by solving Eq. (2.1) using the
parameters assumed in Fig. 3 for several values of qI~. A
rather weak intrasubband plasmon peak due to the first
subband is seen near co=0.07 eV for the smallest wave
vector presented,

q~~
=0.001 A . Also, a weak peak is

seen near co=0.025 eV, associated with the interaction of
surface plasmon modes on opposite faces of the slab; note
that q~~I. =0.5. The transitions from the first subband to
the second (co=0.25 eV), and from the first to the empty
subband above the Fermi level (co=0.3 eV), can be
identified by comparing the energy-level separations with
the peak positions in Fig. 5. When q~~=0. 006 A ', or
q~II. =3, the interaction of plasmon modes from opposite
surfaces is weak, producing only a shoulder accompany-

ing the main intrasubband plasmon and a well-defined
peak at m=0. 26 eV due to an intersubband plasmon in-
volving the first and second subbands. Further, a rather
broad background due to single-particle (s.p. ) excitations
is found near the intersubband peak, and is attributed to
transitions from the lowest subband.

The finite slab simulates a semi-infinite material when
the wave vector is increased to

q~~
=0.01 eV or q~~L =5.

Then the two intrasubband modes associated with the
first band are degenerate, forming only one loss function
peak as seen in Fig. 5. Since less than 10% of the con-
duction electrons occupy the second subband, the collec-
tive response of this band is anticipated to be weak and to
have low energy. This intrasubband peak, strongly
screened by the main plasmon, ' can be seen at co =0.08
eV in Fig. 5. The broad feature below co=0.2 eV is attri-
buted to s.p. excitations; this conclusion is supported by
comparing the position of the dip near co=0. 18 eV with
the s.p. edge shown in Fig. 6. Note that the main
plasmon gains in intensity as

q~~
is increased in Fig. 5, and

that the mode is damped at large wave vectors
q~~

)0. 1
0A, where it enters the s.p. continuum, into which it
decays.

Figure 5 also presents the noninteracting (s.p.) spectra
obtained by omitting the electron-electron interaction in
Eq. (3.2). By energy-momentum conservation the excita-
tion energy must fall in the ranges (O, q~~v~, ), (O, q~~vFz),

(E» —
q~~ vF, ,E»+q~~ vF, ) and peaks should be obs«ved in

the spectrum near the edges of these continua; UF& and

UF2 are the Fermi velocities of the first and second sub-
bands. In our dispersion curves given below the two
edges E,2+q~~UF, and q~~uF& are shown as dotted lines.
The s.p. spectra at

q~~
=0.001 A ' in Fig. 5 contain only

one peak near the origin arising from the first subband,
because of the near degeneracy of q~~UF, and q~~uF2. The
intersubband peak is seen near the interband energy sepa-
ration E,2 =0.22 eV. At

q~~
=0.06 A ' there are two s.p.

peaks at low energy and two intersubband transitions
above 0.2 eV. For larger wave vectors the four peaks
have larger energy separations. Note that, unlike the
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three-dimensional case, 2D intrasubband continua are
peaked near their edges rather than displaying a triangle
shape. Experimentally, only one intersubband transition
and one intrasubband transition have been observed in
Raman spectroscopy. '

We turn now to the dispersion relations of the plasmon
modes portrayed in Fig. 5. By scanning the peak posi-
tions in these and other figures we mapped out the fre-
quency versus wave-vector plots given in Fig. 6. Three
modes are shown: intrasubband plasmons for the first
and second subbands, and the intersubband mode involv-

ing transitions between these bands. We assign the
lowest mode to an acoustic plasmon because of its nearly
linear dispersion relation; '~~ this mode may be described
as an intrasubband plasmon in the second band that is

screened by the plasmon in the first band. The middle
mode in Fig. 6 (intrasubband plasmon arising from the
lowest band) is closely approximated by the 2D frequen-
cy ~20 at small

q~~
& 0.02 A ', since the associated wave-

length is much larger than the width of the density
profile. The third mode in Fig. 6, an intersubband excita-
tion, has a noticeable coupling with the middle mode
even though its amplitude in the loss function is rather
small. This coupling deforms the two associated disper-
sion curves so that the intrasubband mode is depressed
below the 20 result; the intersubband mode follows the
s.p. edge instead of crossing it.

The intersubband plasmon frequency co,2(q i 0),
0.246 eV, is shifted upward from the transition energy
E&2 0.226 eV, because of the Coulomb interaction. This
shift, which has been referred to as a "depolarization
effect, " can be estimated from the relation '

co,i qadi-+0)=E, i(1+26 i~)' (3.7)

O

cvO
O

OO

Q
x20

: x20

0

q, =o.oio A

where 6,2=n,' V,2,2/E, z in terms of quantities defined
earlier. We obtained the values V&2&2 =7.01 eV A and

6,2=0.084. Thus, $»=0.244 eV, in good agreement
with the value m&2=0. 246 eV found from the peak of the
energy-loss function P(qi, co).

The induced charge density ' corresponding to

q~~
=0.04 A ' is presented in Fig. 7 as a function of fre-

quency and depth below the surface. Notice the one-to-
one correspondence between the peaks in this figure and
the resonances shown in the top panel of Fig. 5. As men-
tioned above, the charge density of the second subband
penetrates deeply into the surface; thus the weak induced

O
Q

q, = 0.006 A

N
Q ':.x200
000 O

q, =o.ooi A O

O4
Cl
O

0.0 0.2
u(eV)

OA 0.5 0.00 0.02 0.04 0.06 0.08

ql(A )
0.10

FIG. 5. Energy-loss function P(qt~, co) (solid lines) presented
as a function of frequency for four values of the surface wave
vector

q~~
in units of 2m*e2/fi . The results obtained when the

electron-electron interaction is omitted are shown by the dotted
lines.

FIG. 6. Frequency —wave-vector dispersion curves (solid
lines) for the plasmon peaks shown in Fig. 4. The dotted lines
show the edges of the single-particle (s.p.) continua correspond-
ing to intrasubband and intersubband excitation; ideal 2D
dispersion is indicated by the dashed line.



41 SUBBAND STRUCTURE AND PLASMON-PHONON COUPLED. . . 5997

Imaginary ( n ) ( arb. Units) in Fig. 8. These curves were obtained by monitoring the
position of peaks in the energy loss function P(qII, co) as a
function of wave vector. Though we do not present the
individual loss functions, we will briefly discuss some as-
pects of them now. At the small wave vector qll

=0.005
A ' there are four well-defined peaks at 0.05, 0.07, 0.14,
and 0.26 eV, which are interpreted as the co, coo, co+,
and intersubband modes, respectively. As the wave vec-
tor is increased, the spectral weight of the co mode is de-
creased, as expected; its frequency approaches the bulk

p (a)

P~+~p s+

(bg
O

'II 1'

O

FIG. 7. Imaginary part of induced charge density shown as a
function of frequency and distance below the surface for

qll 0'04 A

density near 0.09 eV in Fig. 7 supports the conclusion
that the acoustic plasmon is a collective excitation of the
second subband. The main peak near 0.28 eV is associat-
ed with the first subband. Interestingly, the shape of the
main peak is similar to that of the charge density shown
in Fig. 2, though the former is somewhat deeper inside
the surface. Near the frequency of the intersubband
plasmon, the induced charge density displays a surface
localized peak.

p~

O

"""" '~ IIII (
IIIlIIIIII I

" I
1 lli', Ig

4 la

oo

~s

IV. PLASMON-PHONON COUPLING

In order to compare our plasmon calculations with ear-
lier theoretical and experimental' ' work we extend
our model to include lattice vibrations as discussed in our
previous calculations for InAs. The dynamical lattice
response is incorporated by replacing the static dielectric
constant c„with a frequency-dependent dielectric con-
stant given by

0

coTo(eo e~ )
2

E(N ) —E~ +
67TO CO

(4. 1)

where the long-wavelength transverse-optical phonon fre-
quency AT~ for ZnO is 0.0507 eV and the low- and high-
frequency dielectric constants are' co=8.5 and c„=4.
A phenomenological phonon damping term —icoy was
added in the denominator of Eq. (3.7), with y =0.003 eV.
When the phonon response is included in the dielectric
function the plasmon and phonon modes may couple to
form the so-called "plasmarons" denoted as co, coo, and
co+ modes. ' The calculated dispersion curves are given

C) I I

0.00 0.02 0.04 0.06

q(A )

0.08 0.10

FIG. 8. (a) Energy-loss function P(qual, co) for surface charge
density n, =3X10' cm, including the effects of phonon
response in units of 2m *e /A'. (b) Plasmaron dispersion curves
obtained from (a); the intrasubband s.p. edge is shown by the
dotted line.
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phonon frequency and the mode becomes weak as
q~~

is
increased. An intersubband s.p. background and an in-
trasubband s.p. edge are seen near 0.3 and 0.13 eV, re-
spectively. The coo surface phonon mode has an almost
constant frequency but increases in intensity with in-
creasing wave vector, while both the co+ and the inter-
subband modes are shifted upwards in frequency.

Figure 8 shows the energy-loss function P(q~~, co) and
the corresponding dispersion of the co, coo, and co+ plas-
marons but omits the acoustic and intersubband
plasmons for greater clarity. Note that the lowest mode
(co ) is very weak. The s.p. edges are seen as two dark
lines in Fig. 8(a). The co+ mode interacts only weakly
with the surface phonon mode denoted coo, largely be-
cause of the energy separation of these modes; the disper-
sion of the former mode is almost unchanged from Fig. 6.
The co plasmaron branch runs almost parallel to the coo

branch at large wave vectors. Our dispersion results are
in reasonable agreement with earlier calculations' '
based on the strict 2D limit. There are some discrepan-
cies at small wave vectors, where our ~+ mode increases
monotonica11y and the frequency of the coo mode is nearly
constant. Unlike InAs, for the ZnO accumulation layer
there is no evidence of phonon character for the co+
mode, and the co+ plasmaron disperses upward, not
downward.

The energy-loss function and dispersion curves for a
smaller surface charge density, n, =1X10' cm, are
presented in Fig. 9. At this surface charge only the first
subband is occupied. Here the co mode is much
stronger than in Fig. 8, because the intrasubband
plasmon has lower frequency and therefore much
stronger interaction with the phonon mode. The co+, on
the other hand, is weaker, appearing as a shoulder on the
loss peak attributed to the coo mode. The dark lines
represent the s.p. transitions from the occupied subband
to higher subbands. Note that the co mode is strongly
Landau damped when it enters the s.p. region.

So far we have discussed the spectrum of collective ex-
citations of the electron gas including the effects of pho-
non response by monitoring the peaks in the energy-loss
function P(q~~, ~); the latter contains all information
about the dynamical response of the medium. Now
energy-loss spectrum P(co), obtained from P(q~~~, co) by in-

tegrating over the wave vector, is a quantity that can be
directly measured in HREELS. For small wave vectors
these two functions are proportional. The surface pho-
non on ZnO was first observed by Ibach. He found that
the relative intensity of the corresponding energy-loss
peak became weaker with increasing impact energy.
Noting that the probe depth is of order

q~~
'-E,'

where E, is the impact energy, our results for the coo peak
intensity are consistent with the observed behavior: the
phonon peak decreases in intensity when the wave vector
decreases. For large probe depths (small q~~) the modes
that extend deeper into the material are preferentially ex-
cited (intersubband mode, for example), while for small
probe depths (large q~~) the surface-localized modes (sur-
face phonon and main intrasubband plasmon, for exam-
ple) are dominant.

In order to make quantitative comparison with the
data, ' ' we carried out the wave-vector integration for
P(co) in the same way as in Ref. 5. We did not, however,
convolve our spectra to simulate instrumental broaden-
ing. The resulting spectra are given in Fig. 10 for various
impact energies Eo and an angle of incidence of the pri-
mary electrons of 55'. The three plasmaron peaks are
well separated, as noted earlier. The lowest mode (~ )

is sharp and has little dispersion; it evolves into a bulk
phonon at large wave vector (small Eo). The spectral

(a)

O

f~ o

p

(b)

Ql
C)

3 0
~ ~ yO

~ ~ y ~ ~

o
C) l l

0.00 0.01 0.02 0.03 0.04 0.05 0.06
0-1

qI(A )

FIG. 9. (a) Energy-loss function for surface charge density
n, = 1 X 10' cm including the effects of phonon response. (b)
Plasmaron dispersion curves obtained from (a); the intrasub-
band single-particle (s.p. ) edge is shown by the dotted line.
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FIG. 11. Energy-loss spectrum at 1 eV impact energy for
various angles of incidence 01 of the primary electron beam;
n, =3X10"cm
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FIG. 10. Energy-loss spectrum P(co) obtained by integrating

P(qll ~~ ver qll for ~a~ious values of the impact energy E,;

, =3X10'

their HREELS data (Fig. 4 of Ref. 12) with our calculat-
ed spectra given in Fig. 10, we note a similar behavior of
the two peaks common to both figures. The frequency of
our co+ mode is slightly lower than that of the experimen-
tal peak, suggesting that the surface charge we assumed,
n, =3 X 10' cm, is lower than the actual charge
present in the experiment. Only the value of pn„where
p is the surface mobility, was quoted in the experiment. '

V. SUMMARY AND CONCLUSIONS

weight of the surface phonon mode (coo) increases as the
HREELS probe depth decreases. Further, the effects of
the steep dispersion of the highest mode (co+ ) can be seen

clearly in Fig. 10: as the impact energy decreases, the
peak maximum moves to higher energy and the peak be-
comes broader. The s.p. excitations (intrasubband as
well as intersubband) provide a noticeable background in

the region of the co and m+ peaks. Figure 10 also con-
tains evidence for an intersubband plasmon. Because of
its surface localization this mode is only seen at low im-
pact energies. When Eo is reduced to 3 eV a shoulder is
visible on the high-frequency side of the co+ peak; the
shoulder becomes a weak peak at a frequency of about
0.25 eV when the impact energy is 1 eV. The
identification of this feature as an intersubband plasrnon
is suggested by noting that the intersubband transition
energy is 0.24 eV. The intensity of the intersubband peak
can be enhanced by increasing the angle of incidence (i.e.,
decreasing the probe depth), as shown by our calculations
presented in Fig. 11. The peak gains significant strength
as the angle of incidence increases from 20' to 60' at 1-eV
impact energy.

Gersten et al. ' performed HREELS experiments on
the oxygen face of ZnO in the presence of adsorbed hy-
drogen which produced a strong accumulation layer.
They observed the coo and co+ modes only. On comparing

We determined the self-consistent electronic structure
of strong accumulation layers on ZnO. The subband en-

ergy levels and wave functions were found to be only
weakly affected by factors such as the position depen-
dence of the effective mass, tunneling beneath the surface
barrier, and exchange and correlation. Using a nonlocal
description of dielectric response within the RPA, we ap-
plied our subband calculations to predict the collective
excitations of the system. We obtained dispersion rela-
tions for both intersubband and intrasubband plasmons.
By including a simple model of photon response, plasma-
ron dispersion was also studied. Beyond providing a
physical picture of the excitations in the accumulation
layer, we computed HREELS spectra for comparison
with the data and calculations reported earlier. ' ' Our
results are in qualitative agreement with the observations.
As yet, neither the co plasmaron mode nor the intersub-
band plasmon has been observed in HREELS. Higher
resolution may yield better understanding of these excita-
tions. Also, experiments done at varying impact energies
and angles of incidence would be useful in clarifying the
localization properties of the modes.
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