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The second-order nonlinear optical susceptibility of a quantum well with an applied electric field

is studied theoretically with use of both a parabolic-band model and a valence-band-mixing model.
The electronic properties of the asymmetric quantum-well system due to an applied electric field

and their effects on the second-order nonlinear susceptibility are illustrated. It is shown that the ap-

plied electric field may change the second-order susceptibility significantly. The dispersion of the
nonlinear susceptibility using the valence-band-mixing model also shows more features than that us-

ing the simple parabolic-band model of previous studies of quantum-well systems.

I. INTRODUCTION

Very interesting electronic and optical properties of the
semiconductor quantum-well systems have been pro-
posed' and investigated recently. For example,
resonant-tuneling and e1ectroabsorption effects in
quantum-well structures have been demonstrated. Novel
optoelectronic devices using quantum-well structures
such as semiconductor lasers, ' photodetectors, ' ' and
electro-optical modulators' have been studied. Many in-
teresting quantum-mechanical phenomena using such
structures have been predicted and confirmed experimen-
tally.

Nonlinear optical properties of semiconductor quan-
tum wells have also been investigated recently for both in-
terband' ' and intersubband transitions. ' ' For in-
terband transitions, exciton absorption saturation has
also been investigated. "' ' Nonlinear optical processes
associated with generations of virtual carriers in an
electric-field-biased quantum well by optical radiation
with energy below the band-gap absorption edge have
also been proposed. ' ' These processes can also be un-
derstood from the nonlinear-optics theory as optical
rectification. Ultrahigh-speed resonance using such an
effect is expected since no true carriers are generated;
thus, the response is not limited by the carrier lifetimes.
A general feature of these interband and intersubband
nonlinear processes is that very large nonlinearity is pos-
sible. This leads to the designs of novel nonlinear op-
toelectronic devices such as the self-electro-optical effect
devices "'4"

In a symmetric quantum-well structure, the second-
order nonlinear susceptibility is usually very small except
for the contribution of the bulk susceptibility. Using a
built-in asymmetric quantum-well system, such as graded
we11s or two coupled asymmetric wells, or a symmetric
quantum well with an external applied electric field, a
large second-order susceptibility becomes possible.

Previous work on the second-order susceptibility using
the intraband and intersubband transitions has been done
using a parabolic band-structure model. ' ' Further-
more, for interband second-order nonlinear susceptibility,
the electric field effect has not been evaluated. On the
other hand, the nonlinear optica1 susceptibility for bulk
semiconductors such as GaAs and InAs has been calcu-
lated using different methods, such as the empirical
pseudopotential method and the tight-binding band-
structure technique.

In this paper, we investigate the second-order non-
linear optical susceptibility of a quantum well with an
external bias voltage using both the parabolic-band model
and the valence-band-mixing model. Since we are in-
terested in the optical energy near the band gap, the elec-
tronic structures based on the multiband effective-mass
theory using the k p method ' are calculated. The ex-
citon effects are not included. ' However, the inclusion
of the exciton effects, although it does not affect the ma-

jor conclusion of this paper, will make our model more
complete. A completeness relation for the enevelope
functions in both the parabolic-band and valence-band-
mixing models is used in the evaluation of the second-
order susceptibility to speed up the convergence of the
numerical results. We found that more features in the
dispersion of the nonlinear susceptibility are present
when the valence-band mixing is taken into account com-
pared with that of the parabolic-band model. The inter-
band nonlinear susceptibility is also significantly
enhanced when an electric field is applied. Thus, electric
field control of the second-harmonic generation using
quantum-well structures will be very important.

II. SECOND-HARMONIC GENERATION
BASED ON THE PARABOLIC-BAND MODEL

Consider a quantum well grown along the [Ool] direc-
tion with a well thickness L~ and a barrier thickness L~
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in an electric field F applied in the direction perpendicu-
lar to the quantum-well layers (Fig. 1). We choose the
origin to be at the center of the well. The Bloch wave
function of the nth subband state in the quantum well is

f„(k~(,r)=e " P„(z)u (r),

where the superscript b is the band index and is equal to c
(conduction band) or hh (heavy-hole band). The function

u (r) is the periodic part of the Bloch function and the
remainder on the right-hand side of (1) is the envelope
function. To derive the second-order susceptibility, the
standard perturbation theory can be applied to the
density-matrix formalism. ' Assuming that the valence
band is populated and the conduction band is empty and
retaining only the resonant contributions for 2%co close to
the band-gap energy give the following expression for the
second-order susceptibility.
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where V is the volume of the crystal, and
yh=(1/r, + I/rh)/2 is the linewidth parameter in the
density-matrix formalism with ~, as the relaxation time
for state a. In (2), co'hh (k~~)=[a'„(k~()—e""(k~~)]/A with

e'„(k~~) and e""(k~~) being the nth bound-state energy of the
conduction band and the mth bound-state energy of the
heavy-hole band at the kff, respectively. %e also have

Ak
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k~~ /(2m„) with 1/m„=l/m, + I/mhh, and tt}

is the azimuthal angle of the (k„,k ) plane. Substituting
(3)—(5) into (2), taking into account spin degeneracy,

and
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where E is the band-gap energy, and m, and m], ], are the
conduction-band and heavy-hole —band effective masses,
respectively. The quantized subband energies E„' an E""
are the energy eigenvalues for the envelope functions P'„
and P""., respectively. In Eq. (2) of the parabolic-band
model, the light-hole bands are neglected because the
light-hole effective mass is comparable to that of the
conduction-band mass and will result in a cancellation'
of the corresponding two terms in Eq. (2). However, in
the valence-band-mixing model to be discussed in Sec.
III, the heavy-hole and light-hole bands are coupled so
that such cancellation does not occur.

Using Kane's model, we have
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v'2 m, (EG+ 2b, /3 )

FIG. 1. A quantum well with an external applied electric
field F.
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changing summation over k~i into integration over

dk~~=k~, dkid!t!, and performing the integration over dg
give the result in terms of an integral over dkii. The in-

tegration variable k~~ can be further transforined to the
integration variable E. %e also note that the second-
harmonic coefficient d„,„(2co ) =g„,„'(2co ) /2:

Iei P'm„&,„&c|P""Ict!'„&&!t!'„Izi!))/ & (ct!i Ict!""&(1+cose,"„" coseh'h )
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where L, =L +LE and E'„"„=E+E„'+E"".The result in (6) should be independent of the upper limit of integration
E,„ if the integral converges quickly. However, the integral in (6) is slowly convergent. The integrand has to decay
faster than 1/E for convergence to occur. For 2fico close to Eg, this means that the integral in (6) starts to converge for
E )E„which (i) makes numerical integration impractical and (ii) is beyond the regime of validity of the k.p approxima-
tion. To speed up the convergence, we follow an approach similar to that used by Khurgin. ' This is based on the as-
sumption that both the conduction-band envelope functions!t!i and the heavy-hole —band envelope functions Pi"" form
complete sets so that gi I!t!i) ( Pi I

=pi I/i" ) (!t!i"I = 1. Then in Eq. (6) we can subtract terms that add up to zero as fol-
lows:
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The second and fourth terms in (7) are the newly added terms. They are both independent of 1 aside from the factors
gi I!t!i) (Pi I

and gi Igi" ) (!t!i"I. Thus the two terms cancel each other using the completeness relations. The integrand
in (7) starts to decay faster than 1/E for E larger than the maximum of 2fico E~ E„' E"—", IEf —E„'I—, and-

i

Ei"" E""I. Thus, it s—tarts to converge for E greater than the detuning energy and the intersubband energy separation,
both of which are much smaller than the band-gap energy. We calculate d„,„(2co) by direction integration of (7) until it
converges. Unlike Khurgin, ' who included only two subband states for the conduction band and the heavy-hole band,
we have included all the tightly bound states for each band. The envelope functions are calculated by solving the one-
dimensional Schrodinger equation in an external applied field using the finite-difference method.

A simple analytical expression can also be derived for an approximate solution of d,„(2co) using a method similar to
that in Khurgin (Appendix A), where the product of two cosines has been replaced by its average value —,'. The result is
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where the function I(x) is listed in Eq. (A3) of Appendix A.
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III. SECOND-HARMONIC GENERATION BASED ON
THE VALENCE-BAND-MIXING MODEL

$2
Q y2(k2i 2k,'), (12)

In this model, we retain the simple isotropic parabolic
band for the conduction band. For the valence band, we

use the 4 X 4 Luttinger-Kohn Hamiltonian, the elements
of which are derived based on the k p method. We also
make a unitary transformation ' ' ' of a 4 X4
Luttinger-Kohn Hamiltonian into a block-diagonal form
with each block of dimension 2 X2:

U0 02)(2

O2X2 0

3A k2 . T3

m II
(13)

where y=(y3+yz)/2, m is the free-electron mass, and

3 are the Luttinger parameters. In the above
equations, we have made use of the axial approxima-
tion ' neglecting the warping of the bulk valence band
in the (k„,k ) plane.

The wave functions for the upper and lower blocks are
as follows:

where the upper and lower blocks, H and H are given

by g &„(r)= g g'"'(kii, z)e " lv),
v=], 2

(14)

P+Q
P+Q (10)

v=3, 4

where o = U (or L) refers to the upper (or lower) + signs

$2P= y, (k +k )

where m denotes the mth quantized state. In (14) and
(15), Iv) denotes the transformed basis set (Appendix B).
The block envelope functions satisfy

H,„kii, i —+ V(z)5„, g" (ki, , z) =E (k„)gm"'(kii, z),

H „„kii, i —+ V(z)5,„g '
'(kii, z ) =E (kii)g "(kii,z),a

(17)

where
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is the confining square-well potential in the bias field.
The second-order susceptibility is
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where?) = 1 or 1 for the spin of the bound state I in the conduction band and o = U or L for the mth bound state of
Cgn" c ~mthe valence band, ~ " (k, ) = [e'„(k„)—c, "(k„)]/fi, e'„(kii) is the same as that for the parabolic-conduction band model,

m

(kii) = —E +E (kii). The matrix elements in (19) are derived in Appendix C.
We next substitute the ma~trix elements of Appendix C in (19). The integration f dkii f kiidkii jo dP, in which the

dP integration can be carried out. The result is
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In (20), the integral will be independent of the upper limit kll, „ if the integral converges quickly. However, as in the
parabolic-band model case of (6), the integral in (20) converges slowly. To speed up the convergence, we follow the
same idea as in the parabolic-band model case and assume the following completeness relations. For the conduction
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The two new terms in (24) compared with (20) can be
shown to cancel each other by using the completeness re-
lations of the envelope functions. The integral in (24)
converges much faster than that of (20) for reasons simi-
lar to that of the parabolic-band model.
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IV. NUMERICAL RESULTS AND DISCUSSION

In this section we illustrate the numerical results of a
Gao 6A104As-GaAs quantum well for 2%co between 1.28
and 1.68 eV. %e have assumed the following set of pa-
rameters: E =1.42 eV, hE, =0.2843 eV, and
AE„=0.2144 eV and tke spin-split-off parameter
b, =0.343 eV. This corresponds to a 57% band-gap-ofFset
parameter. We have used a relaxation time of
1.4X10 ' sec so that I =Ay=4. 7 meV. The effective
mass for the conduction band is m, =0.067mo, where mo
is the electronic mass. In the parabolic-band model, we
have used m„h=0. 4537mo for the effective mass of the
heavy-hole band. In the valence-band-mixing model, we
used the values y, =6.85, ye=2. 1, and y3=2. 9 for the
Luttinger parameters. The differences between these
parameters in the GaAs and Al, Gai As regions are ig-
nored for simplicity since their effects on the lowest
bound states are negligible.

In the parabolic-band model, we use the finite-
difference method to solve the one-dimensional
Schrodinger equation for the subband energies and the
envelope function &)1&'„of the conduction band and P"" of
the valence band. In the finite-difference method, we
have placed reflecting walls at z =+(L /2+Ls ). All the
bound states of the conduction band and the heavy-hole
band are included in (7) and (8). In Eq. (7), we performed
the integration over dE numerically. The upper limit of
integration, E,„, is chosen such that the integral con-
verges. The integral converges faster if 2Am is close to
the band-gap energy E and slower as 2%co deviates far-
ther from the band-gap energy. For the parameters that
we have used, we found that the integration is sufficiently
accurate for k((,„=0. 1 A

(2m„)=0.64 eV.
In the valence-band-mixing model, we solved Eqs. (16)

of the upper Hamiltonian and (17) of the lower Hamil-
tonian by using the finite-difference method. Equations
(16) and (17) are solved for each k,

(

and the subband ener-

gies r. (k(~) and envelope functions g '(k(~, z) are calcu-
lated. All the bound states are included in the calcula-
tion. In calculating d„„(2') by using Eq. (24), we per-
forrned the integration over dk,

~

numerically until the in-
tegral converges. For the parameters of this paper, a
choice of k~~,„=0.1 A ' gives sufficient accuracy. In
performing the numerical integration of (24), the sharply
peaked factor in the integrand is the resonant term of
[2A'co —E'" (k(()+i Ay ] '. The other factors such as

m

(k(() f(" I m»k(() "d u((" I m o k(()
smoothly varying over the domain 0(k]~ (k~~,„. To
speed up computation, these factors, which are computa-
tionally intensive, are only calculated at a selected num-
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FIG. 2. The second-harmonic coefficient d(2') ( 9 X10
mks units) as a function of 2hra (eV) for a quantum well with a
width L =100 A, and L +L& =152 A. F =95 kV/cm. The
parabolic-band model of Eq. (7) is used. The real part, imagi-
nary part, and absolute values of d(2') are illustrated.
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FIG. 3. The second-harmonic coefficient d (2~) as calculated
by using the analytical formula of Eq. (8) of the parabolic-band
model. The real part, imaginary part, and absolute value of
d (2') are plotted as functions of 2Aco (eV). The parameters are

=100 A and L„,+LE =152 A.

ber of k~~'s with the value at the rest of the k~~'s calculated
by a cubic spline interpolation.

In Fig. 2, the second-harmonic coefficient d(2'), as
computed by Eq. (7) of the parabolic-band model is plot-
ted against 2A'co for a QW of L =100 A in an external
field of 95 kV/cm. The barrier width Ls is chosen as 52
A so that there is negligible tunneling between wells.
Outside the resonance region, ~d(2')

~
and Re[d(2')] are

practically indistinguishable. The first resonance occurs
at the Cl-HH1 transition (see Fig. 1), while the reso-
nances at larger 2fico correspond to resonances at higher-
order subband transitions. In Fig. 3 we illustrate the re-
sults by using the analytical solution of (8). The results
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TABLE I. Second-harmonic coefficient Id (2')1 as a function
of electric field F for a quantum well with L„=100 A,

0

L„,+L& = 152 A. The frequency is such that
2@~—(c„(k~~—0)—0.075) ev. n, denotes the number of
bound states in a conduction band, and n, denotes the number
of bound states in a valence band of H .

0~~r~ » (» i I i i i I I I I I I I I I I I I I I t I I I I i I I I i

1.28 1.32 1.36 1.40 1 44 1.48 I 52 1.56 I 60 I 64 1.68
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FIG. 8. The second-harmonic coefficient 1d (2')1 ( 9 X 10

mks units) as a function of 2Am (eV) based on the valence-band-
0

mixing model for a quantum well of L =70 A and

L +L~ =106.4 A. The results of F =50, 95, and 150 kV/cm
are illustrated.

the overlap integral. We also see that the resonance
shifts to a lower frequency for an increasing electric field.

In Fig. 8, we illustrate the results for a narrower quan-
tum well of L =70 A for F =50, 95, and 150 kV/cm.
The case of a narrower quatum well has a larger separa-
tion in intersuband energies and thus gives rise to a larger
second-harmonic coefficient. [For example, in Eq. (24), if
we set c,

" (k
~~

) =s'"
(k~~ ), then d (2') is zero. ] Howev-

m m

er, if the well becomes too narrow, then the higher-order
subbands become unbounded. As can be seen from Eq.
(24), we need at least a higher-order subband quantized
state for d(2'�) to be nonzero.

In Table I, we list the second-harmonic coefficient
~d(2')

~
as a function of electric field F for L„,=100 A.

To avoid resonant absorption, it is necessary to have a
nonzero detuning 5 where 2fico=E'U', (k,,

~

=0)—5. We set
the detuning at 6=0.075 eV, which should be far enough
from the resonant absorption. We have also listed the
number of bound states n, and n, in the conduction band
and valence band, respectively. We note that generally
the second-harmonic coefficient increases with F.

The magnitudes of d (2'), shown in Figs. 7 and 8 and
Table I range from the order of 1 to 44 times ( —,

' X 10
mks units). Note 1 X ( —,

' X 10 mks/units) = l.25
X 10 ' m/V=3. 0X 10 esu. Thus the second-order
coefficients for these GaAs/Al Ga, As quantum-well
structures are comparable to those of lithium niobate
(d»-——4.76X —,'X10 mks units) and are substantially

smaller than that of the bulk GaAs
[d,4=—d, 23=(107+30)X —,

' X10 mks units]. Our nu-

merical results agree in order of magnitude with those of
Khurgin. ' ' For experimental implementation of these
nonlinear effects in quantum-well structures, the second-
harmonic amplitude has a saturation value determined by
the ratio of d(2') and the absorption coefficient of the
material at 2~ if the phase-matching condition is
satisfied. The length required to reach the saturation
value is also determined by the inverse of the absorption
coefficient. Thus it is important to optimize the second-
harmonic-generation amplitude and the coupling (satura-
tion) length by decreasing the absorption coefficient with
a proper design of the quantum-well structure such that
the absorption is small at the photon energy 2%co with a
reasonable amount of detuning. More work is necessary
for the experimental implementation of the nonlinear
effects in quantum-well structures.

V. CONCLUSIONS

In this paper, second-order nonlinear susceptibility in a
quantum well with an applied electric field has been stud-
ied theoretically using both a parabolic-band model and a
valence-band-mixing model. It is demonstrated that the
nonlinear susceptibility can be enhanced significantly
with an applied electric field across a symmetric
quantum-well structure. The dispersion in both the real
and the imaginary parts of the second-order susceptibility
is shown numerically using both models. The realistic
band structure using the valence-band-mixing model
should be used when accurate numerical results are
desired, although the parabolic-band model is easier to
use numerically and some rough numerical results may
be obtained.

APPENDIX A: DERIVATION OF EQ. (8)

To derive an analytical expression that approximates d(2') for the parabolic-band model, we first replace the prod-
uct of the two cosines in (7) by its average value of —,

' and ignore the fiy's. Next we Taylor expand the integrand by as-

suming the intersubband separation ~E„' EI'I to be small f—or the first term in square brackets and, for the second term,
we expand by assuming ~E"" E&""~ to be small. Then—
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d„„(2co)=—
6~~ ~s n, m l(&n) (E +Ehhm ) (2~~ E Ehhm )(~~ E Ehhm )

X (E(' E—,', )(2E +2Ehh fico—)

& P"."Ib'„&& 0","I.ly".")
& y'„ ly",

"
&

„m ( (~m) (E+E'„"„m)'(2fico —E —E'„"„)(fico—E —Eh"h )

&& ( Ei"" E""—)(2E +2E hh
—A'co ) (A 1)

where Ehh =E„'+E""+E The. first term in (Al) is of the form f0"dE g„g((~„)u(n, l, m, E) and can be manipu-
lated as follows. It is first written as f o dE g„gi (&„,u(n, l, m, E)+f0"dE g„g& (&„)u(l,n, m, E). In the second
integral, the dummy integration variable E is replaced by E'+E„'—F&'. It turns out that
u (l, n, m, E'+E„' Ei')—= —u (n, 1, m, E'). Hence, the two integrals combined to give

Ec Ec

f dE g g u(n, l, m, E) .
n, m I {&n)

The second term in (A 1) can be manipulated in the same manner. Thus,

,-'rr f' 'Iel'P'm, &)' &.' -& yhhly: & & y: l~ly( & & pilyhh & (E(' E.'—)(2E+2Ehh —i(I~)

n mi (&n) 0 (E+Ehh ) (2fico E —Eh"h —
) (fico E—Eh"i,—)i

Eh" —g""
&

yhh
I
y& ) &

(t)hh
I z

I((thh ) & ()()&
I

yhh )f ™dE
n, m 1 {)m) (E +Ehhm ) (2fico E Ehhm

—)—
( E""—E"h

) ( 2E +2E« —fico )

( fico E —E&n )i (A2)

Equation (A2) can be integrated readily. A linewidth is also introduced in the resonant term. Thus, we have
d„,„(2co) as given in Eq. (8) with the function l(x) defined as follows:

3 1 3 1 x 2fico i fig —
1
— 1 + 3Ix= n

4( fico ) x &cox 2(fico ) %co 2~ -' 2Acux

3 1

()iico )
~ x —fico

APPENDIX B: BASIS TRANSFORMATION

The basis in Luttinger-Kohn's paper is

—l(~+(I')», I-'„——,
' &=-~- l(~ —iI')1&+(-, )'"I» &,

2

I-,', —,') = — - (~+(I)l.)+(-')'" » &, I-,', —
-,') = —I(x —iI )» .

~ 1/2 1
(B1)

The new basis is

I2) =Pl '„——,
' ) —((l'-I!, !&, I3 & =Pl=,', —

—,
' &+0*1=,', ,' &, 14& =~i—=,', —)+~'I=,', —

=,
'

&,

where a=exp[i(3ir/4 —3p/2)]/v'2, p=exp[i (
—ir/4+(t /2)]/v 2, and p is the angle defined by k„=k,(cosp and

ky
=k((sing.

APPENDIX C: EVALUATION OF MATRIX ELEMENTS IN (19)

The matrix elements in (19) can be calculated by using (1), (14), (15), and the relations in Appendix A. They are as
follows:

&i'( (k(()lxIQ" (k„))=— IA i, g — rA i Ig (C 1)

where P is given in (4),
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"(k„)l~lg'(kl) &
=

(k ) —~(k )
(C2)

&g', (k())lxlg (kl) &
=

E,i(kl) —e (kii)
—& P„lg'" &+ —& P„lg"' & (C3)

&t)'/'(k, ~)l It/'(kl)&=
E,t(kl) —e (kl)

—&0, lg"'&+
6 '™

2
(C4)

(kl) I'Ig (kl) &

v=1,2

P &gI"'(k,~)l.lg.'"'(k„) &

v=3, 4

0 otherwise,

if o&=o =U

if oi=o =L (C5)
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