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We present a detailed analysis of zero-field muon-spin-relaxation (uSR) measurements in CuMn
and AuMn spin glasses in the framework of a fractal cluster model. The latter is reformulated in
terms of a probability distribution of spin-correlation times from which an expression for the spin
autocorrelation function S(#) is inferred. The fractal cluster model predicts that the upper limit 7,
of the correlation time spectrum diverges at the freezing temperature T, and decreases below T;.
The uSR method measures the average amplitude a; of a static part and the effective correlation
time 74 of a rapidly fluctuating part of the local magnetic field at the muon site. The scaled quanti-
ties a, /a,, where a, denotes the static field amplitude in the limit T—0, and 747, turn out to be
universal functions of the reduced temperature T /T, for all investigated spin glasses. 7. decreases
below T, and qualitatively reflects the temperature dependence predicted by the fractal cluster
model for the characteristic correlation time 7,. To relate the local-field time correlations and the
spin autocorrelation function S(?) quantitatively, we discuss two different models for the local-field
dynamics as probed by uSR. As a result the uSR data do not reflect a spatial arrangement of spin
clusters reorienting with size-dependent relaxation times. Rather the local field appears to be simi-
lar at each muon site and seems to consist of many contributions from different spins fluctuating
with different correlation times. We analyze neutron and ac susceptibility data for the spin auto-
correlation S (#) within the fractal cluster model and show that they agree well with the uSR results.
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I. INTRODUCTION

The spin glasses CuMn and AuMn provide typical ex-
amples for the classic group of metallic systems, which
consist of dilute 3d transition-metal impurities randomly
substituted into a noble-metal host. Although both alloy
systems represent similar fcc solid solutions, they differ in
characteristic properties such as their tendency to short-
range ordering or the magnetic anisotropy,' which are
much larger in AuMn than in CuMn.

Among the most remarkable experimental properties'
of these spin glasses is the unusual spin dynamics at low
temperatures. Below their “freezing” or “‘glass” temper-
ature T, which is marked by a sharp cusp in the ac sus-
ceptibility,” spin glasses show time (or frequency)-
dependent effects, whatever the time (or frequency) scale
probed by the experiment. An extremely wide range of
spin-correlation times between 107! and roughly 10° s
has been investigated by a variety of dynamic experi-
ments, e.g., neutron-spin-echo (NSE),’>™° zero-field
muon-spin-relaxation (ZF-uSR),® 8 dynamic susceptibili-
ty (Xa)," ! relaxation of the thermoremanent magneti-
zation, "> !* and magnetic noise measurements.’>"!'% A
central quantity studied here is the time-dependent spin
autocorrelation S (t)= (o (t)-a(0)), where o denotes the
impurity spin, or the Fourier transform of S(¢), the mag-
netic noise spectrum J (). '’

Since Edwards and Anderson?® (EA) defined a new
type of order parameter as the limit of the (averaged) spin
autocorrelation for infinite times, dynamic methods have
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contributed much to the problem whether or not spin
glasses undergo a genuine phase transition at 7,. Yet
this question still has no definite answer. In recent years
an increasing number of investigators?! ~2° analyzed their
results in the frame of the dynamic scaling theory of (con-
ventional) phase transitions.?® This concept is based on
the assumption of a spin-glass correlation length £, which
diverges at T, as a power of the reduced temperature
€=(T —T;)/T,. The experimentally observed quantities
can be related to a characteristic correlation time Te
which itself is a power of the correlation length and con-
sequently diverges at T'y.

To study the quasistatic equilibrium behavior while ap-
proaching T, from above, it is necessary to measure dy-
namic properties at very long times or very low frequen-
cies,?® respectively. Although the scaling is generally
considered to be satisfactory, the exponents found do not
seem to be universal, e.g. they differ for two different me-
tallic systems with Ruderman-Kittel-Kasuya-Yosida
(RKKY) interactions.?>»?>?’ In addition, it is extremely
difficult to rule out other possible scaling laws, e.g., corre-
sponding to a zero-temperature transition®® or activated
dynamic scaling. 2>

Things have turned out to be more complicated below
T,, where dynamic methods revealed pronounced non-
equilibrium effects at long observation times (above 100
5).313214 Here the spin-glass response to a change of
external field or temperature depends on the waiting
time, which the system has spent in the given state before
the change. Theoretical advances, which can probably
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account for these effects, have been made only very re-
cently. 333

Dynamic experiments that probe short-time scales like
NSE (=107"%-107% s) or ZF-uSR (=107'°-107° s)
most likely cannot contribute very much to the observa-
tion of diverging spin-correlation times near T, because
of their limited time window, but for the same reason
they are not hampered by nonequilibrium effects below
T;. 1t is therefore interesting to pursue the theoretical
predictions for the low-temperature dynamical behavior
and look for corresponding experimental results.
Theoretical information about spin dynamics can be
roughly grouped into three categories.

(1) Analytic solutions exist for the dynamic version of
the EA model with infinite range interactions.3* Unfor-
tunately this mean field theory turned out to be inap-
propriate for real systems. %37

(2) Knowledge about EA models with short-range in-
teractions stems from computer simulations, >®3¥3% which
mainly address problems such as the existence of a phase
transition, critical dimensions, etc. Especially metallic
spin-glass systems are modeled in random-site simula-
tions of Heisenberg spins with RKKY interactions. 44!
Although desirable, information about spin dynamics are
scarce in both types of simulations with the notable ex-
ception of the 3d short-range Ising model,* where the
spin autocorrelation has been characterized in detail.
Here the critical exponents differ from the mean-field
values, but also from those obtained experimentally for
the metallic system 4AgMn.?’

(3) A group of models completely different from the
EA approach envisions the spin-glass transition as a per-
colation of spin clusters.*>~¢ Some of them have been
profoundly criticized.*® An interesting and promising
concept, however, is the critical fractal cluster model,
which has been developed by Malozemoff together with
Barbara and Continentino (MBC).*¢*” Here the adapta-
tion of the percolation theory of phase transitions* to the
spin-glass problem yields a variety of unusually detailed
predictions for experimentally accessible quantities. The
model has already been used to interpret the observed re-
laxation behavior of the remanent magnetization in a me-
tallic spin-glass system.*

In this paper we present a detailed analysis of neutron,
ac susceptibility, and zero-field uSR results of the metal-
lic spin-glass systems CuMn and AuMn in the frame of
the fractal cluster model. The paper is organized as fol-
lows. In Sec. II we briefly introduce the MBC model and
derive a probability distribution of spin-correlation times,
from which all further quantities can be inferred. In Sec.
III we use an expression for the spin autocorrelation .S (¢)
to analyze neutron and ac susceptibility data for the sys-
tem CuMn and determine the model parameters for a few
temperatures T/T. Section IV gives an introduction to
ZF-uSR in spin glasses. Since uSR probes the dynamics
of local magnetic fields rather than spin dynamics direct-
ly, additional assumptions are necessary to relate both.
We consider two extreme cases here. In Sec. V the as-
sumption of a spatially inhomogeneous distribution of
correlation times is shown to contradict the analysis of
Sec. III. In Sec. VI we turn to the opposite case that the

spin autocorrelation of the MBC model describes the
local-field dynamics independent of the muon site, which
turns out to be in reasonable agreement with Sec. III.
Section VII comments on limits of the latter interpreta-
tion in connection to the sample preparation and Sec.
VIII summarizes the results.

II. THE FRACTAL CLUSTER MODEL
OF MALOZEMOFF, BARBARA,
AND CONTINENTINO (REFS. 46 AND 47)

The underlying physical picture in the fractal cluster
model of MBC consists of rigid, noninteracting clusters,
which grow in size when the temperature is lowered to-
wards T,. At T, an infinite percolating network is
formed and the participating spins appear to be frozen on
most experimental time scales.

At a given reduced temperature e=(T —T,)/T, (€
small) all relevant physical quantities are controlled by a
characteristic cluster size s, which relates to the correla-
tion length § through s, « EP. Here D denotes the fractal
dimension of the clusters and the correlation length is as-
sumed to diverge, as £ <€ ¥ as usual.

The quantity of interest is the distribution of cluster
sizes: the number n, of clusters containing s spins is
given by

ngws 2TVOf (s /sg) (0

The scaling function f(y) approaches a constant at low
values of y and falls off rapidly for y > 1, thus expressing
the fact that it is very unlikely to find a cluster with more
than s, spins for a given £(€), and 8 is a standard critical
exponent.

Since the correlation time 7, of a cluster is related to
its size s by 7, =75, where 7, is a microscopic time (of
the order 10713 5) and x is another critical exponent, the
cluster-size distribution can be converted into a distribu-
tion of correlation times p (7). Such distributions have
been assumed in general form earlier for the interpreta-
tion of ac susceptibility measurements,'"">° but the MBC
model now gives an explicit functional form. The calcu-
lation below follows approximately the treatment of
Lundgren et al.®

The probability to find a spin with correlation time 7
is given by sn, /N, where N denotes the total number of
spins. With the approximation

1 for sSs§

f(S/Sé-): ‘

0 fors>s§ ,

p (1) is given by

1/(8x)

T dlInt for o=7=7;

To

11
p(r)dInr= | C 8x

0 elsewhere . 2)

Here and henceforth 6x denotes the product 8x. From
the normalization conditions*®
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T

fT gp(T)d Int=1 for T>T,,

0

[ p(ndmr=1 for T<T,,

0
the constant C follows as

1=/ for T> T,
1 for T <Tf . 3)

To illustrate the model, the distribution p (7) is shown in
Fig. 1. The characteristic cluster size s, is now replaced
by the characteristic correlation time 7¢ Both are con-
nected to the correlation length § via 7,=75% o« 7 EPx,
Above T [Fig. 1(a)] the distribution is cut off at 7,. With
decreasing temperature (e—0),7, diverges because the
correlation length diverges and the distribution p (7) cov-
ers all correlation times between 7, and infinity. The
lower limit 7, corresponds to the single-spin-correlation
time (s =1). At T, the clusters percolate, forming an
infinite network (the infinite cluster), which we associate
with an infinite correlation time at least with respect to
the time scale of the uSR method.

When the temperature is lowered below Tf, the infinite
cluster incorporates the largest remaining clusters as it
grows. 7, now represents the correlation time of the larg-
est cluster left “free” to rotate and decreases towards
shorter times [Fig. 1(b)]. The fraction of spins bound to
the infinite cluster is represented by the shaded area in
Fig. 1(b) and gives the order parameter q of this model:

g =(7o/7)"/® for €<0 . (4)
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FIG. 1. Probability distribution of spin-correlation times p (1)
[Eq. (2)] inferred from the critical fractal cluster model of MBC
(Refs. 46 and 47). Above T, the distribution is cut off at the
characteristic correlation time 7, which diverges as T ap-
proaches T;. Below the freezing temperature 7, decreases be-
cause the infinite cluster formed at T, incorporates the largest
remaining clusters as the temperature decreases. The shaded
area represents the order parameter ¢ of the fractal cluster mod-
el. The quantity a; ' sets a time scale for the muon by dividing
the correlation time spectrum into a static part (7> 1/a,) and a
dynamic part (1< 1/a,).

The quantity a, ! denotes the so-called reciprocal static
linewidth and sets an important time scale for the muon,
because it separates the ‘“dynamic” part of the correla-
tion time spectrum (7<a,') from the “static’ part
(r>ag!). These notions are more precisely discussed in
Sec. V.

III. ANALYSIS OF NEUTRON AND y,. DATA

In a first step we applied the fractal cluster model to
the neutron-spin-echo (NSE) measurements of Mezei and
Murani.>”® The NSE method directly measures the spin
autocorrelation function S(q,?) for discrete times in the
range 5X10712-5X107°s. Generally it depends on the
momentum transfer q of the neutron, but it has been ar-
gued,*®! that the weak g dependence found for the
CuMn system permits comparison to both susceptibility
measurements (Y,.), i.e., the q—O0 limit, and uSR data
which correspond to a broad average over all q.

Within the fractal cluster model the spin autocorrela-
tion function S (¢) for the impurity moments is given by
the integral

S(0= [ “p(rie™"dInr . 5)

Inserting p(7) from Eq. (2) we can approximately in-
tegrate Eq. (5) to yield for T> T,

Sd(t)=%{[1—(To/t)l/(5")]exp( —t/7y)

+[(To/t)l/(ﬁx)__(TO/Tg)l/(Sx)]exp( —t/Té-)} .
(6)

The constant C is again given by Eq. (3) and the subscript
d (dynamical) indicates that there are no time-
independent parts of S(z), since 7, has not diverged and
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FIG. 2. Spin-autocorrelation function S(¢) measured by neu-
tron scattering (open squares) and ac susceptibility (solid
squares) for a CuMn(3 at. %) spin glass at temperatures T /T, =
(a) 0.25, (b) 0.75, (c) 0.9, and (d) 1.0 (data taken from Ref. 5).
The solid lines correspond to least-squares fits of the model
functions Egs. (6) and (7), which are derived from the fractal
cluster model (see text).
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TABLE I. Model parameters of the spin autocorrelation S(¢) of the fractal cluster model obtained
from least-squares fits of Eqs. (6) and (7) to the neutron and y,. data shown in Figs. 2 and 3.

To Tg
Symbol T/T, (s) (s) 5x Equation

CuMn(l at. %) T,=99 K Fig. 3

a 0.8 1Xx10713 (2.7£0.1)x 1078 11+0.4 (7)
b 1.23 (1.5+0.5)x 10713 (6+3)X107° 743 (6)
CuMn(3 at. %) T,=20K Fig. 2

a 0.25 2X1074 (3+1)x 10710 70420 (7)
b 0.75 2X107H (7+£2)X107° 18+0.6 (7
c 0.9 (2£1)X 10714 (7£3) X 10° 16+2 (6)
d 1.0 (2x1)x10714 (3+1)x10™* 18+4 (6)

consequently no contribution from the infinite cluster ex-
ists.
For T < T the calculation gives

S(t)=q +(1—q)S,(1), (7)

with g given by Eq. (4) and S,(¢) by Eq. (6).°> The above
formulas require 7; to be at least 3—4 orders of magni-
tude larger than 7, because expressions such as
(t/7)exp(—t/7) have been treated similar to a 8§ func-
tion, 8(7—t), under the integral in Eq. (5).%*** For a very
broad distribution the function S;(¢) practically follows a
power law

Sd(t)z'é:(To/t)l/(sx) (®)

if 7o <t <7 and In7,>>In7,,

Figures 2 and 3 show neutron data for S(¢) combined
with ac susceptibility data as given by Murani’ for a
CuMn(3 at. %) sample (Fig. 2) and by Murani et al.>* for

10
S(t)

5+« 2
logwf (s)

FIG. 3. Spin autocorrelation function S(z) measured by
neutron-spin-echo (open squares) and ac susceptibility (solid
square) for CuMn(1 at. %) at temperatures 7/7T,= (a) 0.8 and
(b) 1.23 (data taken from Ref. 54). As in Fig. 2 solid lines corre-
spond to least-squares fits of Eqs. (6) and (7) to the data.

a CuMn(1 at. %) sample (Fig. 3). The latter is important,
since concentrations around 1 at. % are also used in the
1SR measurements. The solid lines correspond to least-
squares fits of Egs. (6) and (7) to the data. The parame-
ters are given in Table 1.

From the fractal cluster model we expect that data for
a given concentration can be described with a common
exponent 8x and a common lower limit of the correlation
time spectrum, 7, the upper limit of the spectrum 7, be-
ing the only temperature dependent quantity. Table I
shows that this is indeed possible within some limitations.
The errors given in Table I have to be taken with care,
because Figs. 2 and 3 do not contain enough data points
to permit a correct y? analysis. The fit favors large values
for the exponent 6x = 10 for CuMn(1 at. %), which are in
reasonable agreement with 6x =7.8+2 found for the sys-
tem AgMn.’*? Neutron and y, data for a CuMn(5
at. %) sample® could not be fitted with a common 7, but
also gave values around 10 for the exponent 6x. This is
in contrast with the results of Heffner and MacLaugh-
lin,>! who analyzed the data set restricted to the NSE
part and obtained the mean-field value dx =2 below T
and 8x =4 at T,.*° Clearly more data with improved
precision are required to draw further conclusions.

For the moment we will use Table I as a suitable pa-
rametrization of the measured spin autocorrelation,
which will enable a quantitative comparison to the uSR
results in the following sections.

IV. ZERO-FIELD uSR IN SPIN GLASSES

Contrary to the NSE method, the muon-spin-
relaxation technique does not give direct access to the im-
purity spin autocorrelation in spin glasses. Rather the
positive muon provides an excellent probe for the local
magnetic field at interstitial sites, whose observed dynam-
ic properties can then be related to the impurity spin dy-
namics.

The details of the uSR method including spin glass and
many non-spin-glass applications have been described in
a number of reviews** ®! and a recent book.®? Usually
time differential histograms of positrons are recorded,
which are generated in the parity violating, spatially an-
isotropic muon decay. From the positron spectra the
muon-spin-relaxation function G(¢) can be deduced,
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which carries the important information in the case of
spin glasses. The measurements discussed below have
been done at the muon channels uE1 and pE4 at the
Paul Scherrer Institute [the former Swiss Institute for
Nuclear Research, (SIN)] in Villigen, Switzerland with a
conventional uSR spectrometer.

In the fcc lattices of the host metals Cu and Au the
muon does not diffuse in the temperature range 2-70 K
and samples all possible interstitial sites randomly. %2~ %
The local magnetic field causes the muon spin to evolve
in time and the spin-relaxation function G (¢) reflects in a
characteristic way the distribution of the local magnetic
fields and their dynamics because it is not obscured by
motion of the muon.

The general appearance of G (¢) in the two spin-glass
systems AuMn and CuMn is shown in Figs. 4 and 5 for
several reduced temperatures 7 /7.

In the system AuMn (Fig. 4) the Mn moments provide
the only source for the magnetic field. At temperatures
above T, the relaxation function follows the so-called
““exponential-root” law:

G(t)=exp[ —(A)'?] . 9

This form is a direct consequence of rapidly fluctuating
magnetic moments in combination with their large dilu-
tion. Owing to the random occupation of lattice sites by
the Mn moments, their many possible orientations and
their low concentration, the muons experience a large
number of different environments, which have to be taken
into account in a proper average. Such a configuration
average has been explicitly treated by McHenry, Wer-
nick, and Silbernagel®® in the case of rapidly fluctuating
moments, where the exponential-root law follows, and by
Walstedt and Walker® and by Mikaelyan and Smilga®’ in
the case of static moments, where the resulting probabili-
ty distribution of the local-field amplitudes turns out to
have a Lorentzian form.
The relaxation rate A in Eq. (9) can be expressed as’*®®

7&=4a(2)1', (10)

where a,=7v,b, is given by the full width at half max-
imum (FWHM) b, of the Lorentzian field distribution
times the muons gyromagnetic ratio y,, and 7 denotes
the correlation time of the local field. Equations (9) and
(10) require the “narrowing” condition a,7<<1 to be
fulfilled.

When the temperature is lowered towards T, the
correlation time increases and consequently the relaxa-
tion rate A increases too. A qualitative change in the ap-
pearance of G (¢) occurs below T,: The relaxation func-
tion no longer decreases monotonically, but shows a
minimum at short times (around 0.2 us). This minimum
unambiguously signals the presence of quasi-static local
fields,® ie., now a,7>>1. For completely static
Lorentzian distributed fields the relaxation would follow
the function:%”-7°

G(t)=1+2(1—ayt)exp(—aypt) , (1)
which is indicated in Fig. 4 for T=0.5T.

The decay of the “J tail” at long times (¢ >0.3 us)
shows, that even at T=0.5T, fluctuations of the local
field are present. Without further assumptions different
interpretations of this decay are possible, e.g., complete
but slow reorientation of the local field,%” rapid fluctua-
tions in a small-angle interval,”%®"! and even a superposi-
tion of both.”

The relaxation function in CuMn spin glasses (Fig. 5)
appears to be very similar to that in 4uMn at low tem-
peratures, but different above T,. This difference simply
originates from the presence of the Cu nuclear moments.
Their high concentration in combination with random
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FIG. 4. Muon-spin-relaxation function G (z) measured in a
AuMn(0.84 at. %) spin glass at several reduced temperatures
T /T (the ordinate is scaled by the observed muon decay asym-
metry a). Solid lines correspond to least-squares fits of a model
function which is discussed in Sec. VI. At T=0.5T, the dashed
line indicates the theoretical form of G (¢) for completely frozen
local fields [Eq. (11)].
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orientations leads to a Gaussian shape for the field distri-
bution,”® which contrasts to the Lorentzian form charac-
terizing the fields of the electronic Mn moments. At
T>>T, the relaxation almost completely follows the
well-known “Kubo-Toyabe” (KT) formula:™
GXT(t)=1+2(1—0%*)exp(—0%?/2), (12)
where in our case 0 =0, =0.36—0.38 us 1,627
As long as the impurity moments fluctuate rapidly,
they can be regarded as an independent relaxation source
for the muon spin®® and the total relaxation function is
given by the product of Eq. (9) with Eq. (12). At temper-
atures well below T, the quasistatic fields from the Mn
moments dominate the Cu nuclear dipole fields complete-
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FIG. 5. Relaxation function G (t) measured in a CuMn(0.65
at. %) spin glass at temperatures comparable to those of Fig. 4.
The different form of the curves above T, displays the charac-
teristic signature of the Cu nuclear dipoles.

ly and therefore the latter no longer have to be taken into
account.

References 65-67 provide examples, where it has been
possible to calculate the muon-spin-relaxation function
directly from the dynamic properties of the impurity
spins and their coupling to the muon in limiting cases.
Unfortunately, no generalization to the complicated spin
dynamics in the vicinity of T, is known. Usually one cal-
culates the relaxation function in an intermediate step us-
ing stochastic models for the local magnetic field such as
the strong collision model’® "% or the assumption of a
Gaussian process.’® These involve properties such as the
local-field autocorrelation Sy (¢)=(H (1)H (0)) /{ H*0))
and the static field distribution p (H). The connection to
the neutron results and the fractal cluster model then re-
quires a relation between the local-field dynamics and the
impurity spin dynamics, which is not straightforward.

The coupling between muon and impurity spins is
mediated through two essential mechanisms: dipolar
coupling and spin-density oscillations of conduction-band
electrons, i.e., the RKKY interaction. For CuMn the di-
pole fields have been shown to dominate the RKKY fields
by far.”® Although this is not necessarily the case for
other hosts such as Ag or Au, the assumption of pure di-
polar fields accounts satisfactorily for the observed static
Lorentzian linewidths a, in zero-field uSR measurements
(c.f. Refs. 7 and 79, see also below). Since the dipolar
coupling is anisotropic and long ranged (see, e.g., Refs. 73
and 77), the local-field autocorrelation and the impurity
spin autocorrelation cannot be directly inferred from
each other. Therefore we will explicitly assume here,
that the local-field autocorrelation, averaged over the en-
tire system, and the impurity spin autocorrelation mea-
sured by NSE can be directly compared, which has been
discussed by Heffner and MacLaughlin®! and implicitly
assumed by Uemura et al.®

Since the muon is a localized probe, we have to specify
the fluctuations of the magnetic field at a given site, cal-
culate a local relaxation function, and perform the aver-
age over all interstitial sites. We will consider here two
extreme cases.

(a) Spatially inhomogeneous local-field dynamics.
Remembering that the fractal cluster model assumes rig-
idly coupled clusters, we may visualize the local field as
fluctuating predominantly with the particular correlation
time of a given cluster within its volume. The local-field
autocorrelation will then be exponential, but the correla-
tion time differs for sites belonging to different clusters.

(b) Spatially homogeneous local-field dynamics. Alter-
natively we can argue that the local field at a given site is
a superposition of many contributions from spins belong-
ing to different clusters because of the long-ranged cou-
pling. This could lead to very similar fluctuations of the
local field at different sites. The local-field autocorrela-
tion will clearly be nonexponential and we may try to use
the impurity spin autocorrelation discussed in Sec. III.

V. SPATIALLY INHOMOGENEOUS LOCAL-FIELD
DYNAMICS

The situation requires the calculation of a local relaxa-
tion function for an arbitrary correlation time 7 and a
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subsequent average over the distribution p(7) given by
Eq. (2). Apart from the local-field dynamics we have to
take into account the random variation of the local-field
amplitudes due to the varying configuration of Mn mo-
ments around the muon sites. We will treat the problem
within a scheme proposed by Uemura et al.:*%%80 The
local relaxation function G°(t,A,r) is calculated from
the “Gaussian strong collision model”’®"7% for a given
(local) Gaussian linewidth A and correlation time 7 of the
magnetic field and in general cannot be represented
analytically. The configuration average in Refs. 65-67 is
replaced by an integration over a probability distribution
p(A) for the Gaussian linewidths:

p(A)=(2/7)"2ay/A%xp[ —ad /(2A%)] . (13)

The probability distribution p (H) for the entire system is
then Lorentzian with a FWHM by=a, /v,
The total relaxation function is given by the integral

totgy— [ % bt loc
G''(1) fo dlnrp(r)fo dAp(A)G(t,A,7),  (14)

where we have assumed that the average amplitude A of
the local field is independent of its correlation time 7. It
is not clear whether this is reasonable in spin glasses, but
no theoretical help exists here and we have no other argu-
ment than simplicity. If the averages are independent,
the integration over A leads to the “Lorentzian strong
collision” model.*®% The latter can be expressed
analytically in two limiting cases:

(i) agr<<1: G§U(t)=exp[—(4adrt)'/?], (15)
(i) @gr>>1: GS(H)=[L+2(1—ast)exp(—ayt)]
Xexp(—%t/7) . (16)

Equations (15) and (16) demonstrate that the reciprocal
static linewidth 1/a, sets a time scale for the muon by
separating the region of small correlation times (fast fluc-
tuations, “dynamic clusters”) from the region of large
correlation times (slow fluctuations, ‘“‘quasistatic clus-
ters”) in the spectrum.3! This is also indicated in Fig. 1.

Both approximations do not work in the vicinity of
T=ag !, but the error resulting from their use in Eq. (14)
reduces with increasing width of the distribution p(7):
The spectral weight of correlation times around ag !
should play a minor role, if In7,>>In7,. Inserting Egs.
(15) and (16) into Eq. (14) the remaining integration over
7 can be finally performed in a way similar to the treat-
mglt of Eq. (2). The result can be expressed for T> T,
as

G‘°'(t)=Gd(t)+Gqs(t) , (17)
where
J
. 1/(8x)
Gqs(t)=E (@yro)'/ % — ST ] exp(—2agt)—

0.20
aG(tp () .
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aG(t)
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time(ps)

FIG. 6. Attempts to fit the relaxation function for spatially
inhomogeneous local-field dynamics [Eq. (17)] to data for a
CuMn(1.21 at. %) spin glass at T=1.04T . (a) 7, fixed at 107"
s: the fit favors extremely large values for &x ~168 and
7,=5X107%s. (b) 8x fixed at 8x =10, both limits 7, and 7 of
the correlation time spectrum left as free parameters: the fit im-
proves considerably.

Ga)= & (expl — (gt /]
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and
40575 if Tgﬁao“l ,
ro=4alr,, A= . 1
4a, if 1z>a, " .

The contribution from the quasistatic clusters G (2) is
only finite if 7,>aq !, Then

1/(8x)
7o

Te

exp |—=—— | 18.(t,aq) ,

ll/(ﬁx)




where C denotes the normalization constant from Eq. (3)
and g;(t,a,) is the static “Lorentzian Kubo-Toyabe”
function®”’ given in Eq. (11). In both cases C is again
given by Eq. (3).

Equation (17) gives the final formula for the muon-
spin-relaxation function corresponding to the fractal clus-
ter model with the assumption of spatially inhomogene-
ous local-field dynamics above T,. Even the first trials
showed that it is impossible to fit the measured relaxation
functions above T, with the strategy pursued in the
analysis of the neutron data, i.e., with a common value
for 7, and 6x. Figure 6 gives an example for a
CuMn(1.21 at. %) spin glass. The fits considerably im-
prove if the exponent 8x is fixed and both limits of the
correlation time spectrum 7, and 7, are left as free pa-
rameters [Fig. 6(b)]. Both limits increase by several or-
ders of magnitude when T is approached (Fig. 7). This
corresponds to a shift of the entire correlation time spec-
trum in Fig. 1 to larger times which can also be described
by a single average correlation time (c.f. Sec. VI).

It is interesting to note that the data in Fig. 7 contra-
dict the analysis of the neutron data in Sec. III. This can
be seen by calculating the averaged local-field autocorre-
lation Sj;(¢) using Eq. (6) with the parameters from Fig.
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FIG. 7. Temperature dependence of the upper and lower lim-
its 7, (triangles) and 7, (squares) of the correlation time spec-
trum for CuMn(1.21 at. %) resulting from the fit strategy in Fig.
6(b).
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FIG. 8. Comparison of the spin autocorrelation function S ()
for CuMn(1 at. %) from the neutron and Y, results in Fig. 3
(dashed lines) to the averaged local-field autocorrelation func-
tion Sy(2) calculated for CuMn(1.21 at. %) using Eq. (6) with
the uSR data from Fig. 7 [solid lines, T/T,= (a) 1.13; (b) 1.08;
(c) 1.03].

8. The comparison to the impurity spin autocorrelation
S(z) is shown in Fig. 8. The neutron measurements
clearly suggest that for temperatures in the range 1.3-0.8
T, a part of S(1) always decays below 107" s, whereas
the uSR results in Fig. 7 show no decay of Sy(¢) within
this time range for 7 <1.17.

The discrepancy becomes even more severe below
T;,% where the fractal cluster model predicts the de-
crease of the characteristic correlation time 7, with de-
creasing temperature. For 7,<ag, ! follows the existence
of two phases with extremely different correlation times:
a totally frozen phase (7= o) corresponds to the infinite
cluster, while the remaining small clusters generate a
“paramagnetic” phase with fast fluctuating local fields,
which has never been observed below 0.87 ;. 8,84,85

Given the fractal cluster model, we are left with the
somewhat puzzling result that the spatial structure of the
local-field dynamics as measured by uSR bears little or no

relation to the assumed spatial configuration of the spin
clusters.

VI. SPATIALLY HOMOGENEOUS LOCAL-FIELD
DYNAMICS

A. The relaxation function for the muon spin

We now turn to the opposite viewpoint and assume
that the local-field autocorrelation Sy(¢) does not vary
with the muon site. From the fractal cluster model [Eq.
(7)] we expect Sg(¢) to have the approximate form

where S;(¢) follows a power law in time [Egs. (6)and (8)]

and g denotes the order parameter of the fractal cluster
model [Eq. (4)].
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To calculate the corresponding muon-spin-relaxation
function, we will reconcile the ansatz of Eq. (18) with
ideas already developed by Uemura®® 7% and Heffner
and MacLaughlin.’® The basic idea of Uemura is to
decompose the local magnetic field into a static part H;
and a rapidly fluctuating dynamic part H,, which serve
as independent relaxation sources for the muon spin.
Their amplitudes are Gaussian distributed with respec-
tive widths A; and A;. The total amplitude is then also
Gaussian distributed with width

A=(A2+A%)12, (19)

The relaxation functions corresponding to the two parts
are taken as the limiting cases of the Gaussian strong
collision model, i.e., for the static part we have

Glo(1,A,)=1+2(1— A2t exp(— A212/2) (20)
and for the dynamic part
GYe(t,Ay,7)=exp(—2A3%71) . @1

Here the autocorrelation for the dynamic part is assumed
to be exponential and Eq. (21) requires the condition for
rapid fluctuations A, 7 <<1 to be valid.

Uemura calculated the total autocorrelation for the su-
perimposed fields as

AY A
SH(I)=XE+FCXP(_I/T) . (22)
If we define the quantity g5 =A2/A?, Eq. (22) looks al-
ready similar to Eq. (18). Uemura® "8 identified g
with the well-known Edwards-Anderson order parameter
gea» 2 which is defined as averaged spin autocorrelation
in the limit of infinite times. However, this identification
is by no means self-evident: in uSR measurements the
notion of a “static” field is clearly connected to the
muons time window, i.e., the field appears static, if
A7, >>1, where 7, is the correlation time of the static
field, which might be of order 10~ °s. From the probabil-
ity distribution p(7) of the fractal cluster model (Fig. 1)
we can argue that the fraction of correlation times
exceeding the reciprocal static linewidth will contribute
to this static part, even if 7, has not diverged, and conse-
quently the order parameter g of the fractal cluster model
is zero. As we shall see below, gy turns out to be finite at

and slightly above 7.

Replacing the exponential in Eq. (22) by the approxi-
mate power law S;(¢) [Egs. (6) and (8)], we get an ansatz,
which describes the local-field dynamics effectively
probed by the muon:

Sy()=qy+(1—gy)S,(t) with g5z =A%2/A>. (23)

This form is not only suggested by the fractal cluster
model, but also removes inconsistencies in the interpreta-
tions of longitudinal-field measurements (compare Refs.
82, 86, and 87).

Concerning the validity of Eq. (21) we invoke an argu-
ment given by Heffner and MacLaughlin:’! as long as the
fluctuations are rapid, the spin-relaxation function G,(t)
is not sensitive to the functional form of the autocorrela-

tion Sd(t),73 and the correlation time 7 is replaced by an
effective correlation time

= Sa(ndr . (24)

To calculate the total muon-spin-relaxation function
we have to take the product of Egs. (20) and (21), express
A? and A2 as functions of A2 and perform the
configuration average by integrating over the distribution
p(A) [Eq. (13)]. But in doing so we only take into ac-
count the magnetic fields generated by the impurity mo-
ments. For the system CuMn, Uemura et al.% treated
the fields from the Cu nuclear dipoles in the way dis-
cussed in Sec. IV. This may cause difficulties in the im-
mediate vicinity of T, where the static fields from impur-
ity moments and Cu nuclear dipoles can be of compara-
ble amplitude. We finally remark here, that the effect of
the latter can be taken into account exactly on the level
of Uemura’s calculation scheme: In the case of CuMn
the Gaussian distribution describing the static part of the
local field is a convolution of two independent Gaussian
distributions with the respective widths A, and og,.
Consequently we replace A2 by A2+¢2, in Eq. (20). Per-
forming the calculation, we arrive at the final formula for
the muon-spin-relaxation function corresponding to the
assumption of spatially homogeneous local-field dynam-
ics:

G(t)zgexp[—(kdt)l/z]

2,2
act
+2|1—oit?—————
3 Cu (a2t2+A )2
Xexp[ —o&,t2/2—(akt + A 1) 2] . 25)

Since the quantity g, =A2/A? is explicitly assumed to be
site independent, i.e., independent of A, it is not affected
by the configuration average. Here only the Gaussian
linewidths are replaced by the corresponding Lorentzian
ones and we have the additional relations

GXZZQH‘J%’ ‘15:(1"‘111)‘1(2)’ )‘d=4aa2’7eﬂ“ ’ (26)

where a, denotes the static Lorentzian linewidth in the
limit T—O [see Eq. (28)]. Finally the condition for rapid
fluctuations of the dynamic part becomes

adTeﬂ'<<1 . (27)

Equation (25) includes various limits already discussed
in the text. For example, for g, =0, corresponding to a
superposition of static nuclear dipole fields and rapidly
and isotropically fluctuating Mn impurity fields, Eq. (25)
reduces to the product of the exponential-root law [Eq.
(9)] and the Kubo-Toyabe function [Eq. (12)]. If g5 (and
consequently a;) is finite, we may visualize the local field
as fluctuating rapidly in a finite solid angle, where the
symmetry axis of the latter varies randomly with the
muon site. As it is also clear from the foregoing, this
general physical picture has been used by other uSR in-
vestigators before, but we have now reconciled different
aspects of their interpretation and will relate the results
to the fractal cluster model of MBC below.



B. Data evaluation: static linewidth
and dynamic relaxation rate

We have analyzed new data for six different polycrys-
talline spin-glass samples out of the two systems CuMn
and AuMn with the relaxation function Eq. (25). Their
characteristic properties are given in Table II together
with the symbols used in the following figures.

Equation (25) permits a very good overall description
of the measured data, except for the CuMn system, where
some deviations occur in a small temperature interval
around T;. We comment on them in Sec. VII. Fit exam-
ples have already been given in Figs. 4 and 5 in Sec. IV.

Figures 9(a) and 9(b) show the scaled static linewidth
a, /c separately for each system as a function of the re-
duced temperature 7/T;. The limiting values for T—0
have been calculated by Mikaelyan and Smilga®’ for the
case of pure dipolar coupling as

ao(T =0)=4.5406n,cy ,8.altpS (28)

(see also Ref. 88). Here n, denotes the host site density
(=4/a3, where a is the fcc lattice constant), ¢ is the im-
purity concentration, y, the gyromagnetic ratio for the
muon, and g and S the effective g value and spin for the
impurity moment. Equation (28) may be written as
a,=Kc, where the system dependent constant K is given
by89

K(CuMn)=13.05 us™/at. % ,

(29)
K(AuMn)=9.84 us~'/at. % .

To compare both systems, we scaled a, using the respec-
tive values for a [Fig. 9(c)]. To a very good accuracy the
temperature dependence of a;/a, is common to all six
samples. It is important to note that the static linewidth
is finite at T, where a; /ay,=0.2, contrary to the results
reported by Uemura et al.”"*® It drops to unmeasurable
values above approximately 1.057 ;.

The dynamic relaxation rate A; depends on tempera-
ture through both the amplitude a,(T) of the dynamic
part of the local field and its effective correlation time 7.
Rewriting Egs. (26) we get

A’d:4a%(l_qﬂ)reﬂ'=4c2K2(1_qH)Teff’ (30)

where the constant X is given in Eq. (29).

TABLE II. Characteristics of the polycrystalline spin glasses
investigated in the uSR measurements (see also Table IV). The
last column gives the respective symbols used in the following
figures.

Concentration T,

Sample (at. %) (K) Symbol
CuMn(0.65) 0.65 7.6 ¢}
CuMn(1.03) 1.03 10.62 O
CuMn(1.21) 1.21 11.3 A
AuMn(0.84) A 0.84 4.05 )
AuMn(0.84)B 0.84 4.19 ]
AuMn(1.15) 1.15 5.36 A
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Since from Fig. 9(c) we can regard q;5(T) as a unique
function of temperature in all samples (see also Fig. 13),
differences in the temperature dependence of A, directly
bear on differences in the effective correlation times. As
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FIG. 9. Scaled static linewidth a;/c for (a) three different
polycrystalline CuMn spin glasses and (b) three different AuMn
spin glasses as functions of the reduced temperature T/T (for
symbols see Table II). In the limit 7—0 the data can be extra-
polated for each system to the respective value a, calculated
from the Mikaelyan-Smilga theory for pure dipolar coupling
[Eq. (29)]. The scaled linewidths a,/a, show (c) the same tem-
perature dependence in all six samples.
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MacLaughlin et al.®® pointed out, all fluctuation frequen-

cies v in spin glasses should scale as the average exchange
interaction J,,=kpT, and consequently 7.4=1/vq
should be proportional to 1/T,. We can check this rela-
tion by plotting the scaled relaxation rate A, T, /c? versus
the reduced temperature T /T, which is done in Fig.
10(a).”°

Contrary, Uemura et al. 8 found the same absolute
values for 7.4 as a function of temperature in the spin-
glass systems CuMn and AuFe. Then the appropriate
quantity for comparison is A, /cZ, which is shown in Fig.
10(b). Figures 10(a) and 10(b) clearly suggest that in our
samples 7. varies as 1/T;.°' It seems that in Ref. 80 this
relation is broken by CuMn samples with relatively large
concentrations (3 and 5 at. %), where the scaling laws are
not expected to be valid.”?
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FIG. 10. Dynamic relaxation rate A, for the six spin-glass
samples from Table II scaled in different ways to test for the T,
dependence of the effective correlation time 7.5 The much
better scaling in (a) suggests that 7. is proportional to 1/T (see
text).

C. Data evaluation: aspects of a phase transition

We now ask whether the parameters from the preced-
ing section apart from their scaling behavior reflect
phase-transition properties. As we have already seen in
Fig. 9, the static linewidth a; is finite at 7,. Consequent-
ly we cannot interpret g, =a?/a} as an order parameter
in the vicinity of T'f.

Another problem arises from the temperature depen-
dence of A; above T,. Here we have a; =0 and the steep
increase of A, directly reflects the temperature depen-
dence of 7.. From the fractal cluster model the effective
correlation time can be derived from Egs. (24), (5), and (2)
as

Teg™= fode(t)dt = fTogrp('r)d Int
C ox —1

with the normalization constant C given by Eq. (3).
Equation (31) predicts a divergence of 7. with an
effective exponent w:

[(Tg/TO)‘_l/(BX)"“l] , (31)

Teﬁ_ocTé—l/(éx)cxs—vz(l—-—l/éx)::e—w , (32)
where vz is the dynamical critical exponent, which con-
trols the divergence of , at T,.%

Figure 11 shows the scaled effective correlation time
Tegl ; versus the reduced temperature €=(T —T7,)/T,.
For €>0.05 the data may be represented by the power
law Eq. (32) with w =2.6+0.3, which agrees very well
with values given by Uemura et al.®° However, inserting
6x =10 from the analysis of the neutron and y,. data, we
get vz=2.940.3 which clearly deviates from the larger
values vz =7 obtained from dynamical scaling for several
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FIG. 11. Scaled effective correlation time 7,47, as a function
of the reduced temperature e=(T —T,)/T, above the freezing
temperature for the six CuMn and 4uMn samples. The straight
line corresponds to a power law 7,47, < €~ * with an exponent
w=2.6%0.3.
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spin-glass systems.2""2~2> We could argue that tempera-
tures € > 0.05 do not correspond to the critical region and
the correct exponents have to be determined from tem-
peratures much closer to 7,.>* But in Fig. 11 the value
of w decreases for smaller € and an even more pro-
nounced curvature has been reported by Uemura et al.*

We believe that we must take into account the finite
time window of the uSR method here. This can be done
approximately in the frame of the fractal cluster model
by assuming that correlation times 7 larger than the re-
ciprocal static linewidth 1/a, do not contribute to the
effective correlation time 7.4, but to the static part of the
local field and hence lead to finite values of gy already
above T,. If the characteristic correlation time 7, of the
fractal cluster model exceeds 1/a,, we have to replace 7
in the integral of Eq. (31) by 1/a, and in addition we get
9y as

T

: p(7r)d Int

W= J /g

=—é,—[(aoTo)l/(a)d-(To/Tg)]/(SX)] if ‘r§>ao_1 . (33)

It follows that the quantities g5 and 7.4, as measured by
uSR, will reflect the corresponding critical quantities g
and 7; of the fractal cluster model only if 7, <1/a, that
is, outside a certain temperature interval around 7.
These considerations also permit the comparison of the
1SR results to the analysis of neutron and Y,  data in Sec.
II1.

D. Comparison to the neutron and y,. data

Using Egs. (31) and (33) we have computed from the
model parameters in Table I the quantities 7% and ¢} in
Table III (the superscript N refers to the neutron data),
which should now correspond to the uSR results. The
most remarkable feature of the data in Table III is the de-
crease of T with decreasing temperature below T,. Al-
though the experimental methods are entirely distinct,
the same qualitative temperature dependence is found in
the uSR data, when 7.4 is calculated via Eq. (30). Figure
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FIG. 12. Temperature dependence of the effective local-field
correlation time 747, calculated from the uSR data in Figs. 9
and 10 via Eq. (30) (small symbols, see Table II). Large symbols
denote the effective correlation time 72T, which is computed
for the uSR time window (see text) from the results of the neu-
tron and Y,  data analysis in Sec. III (Tables I and III: [J,
Te<1/ay; o, T¢>1/ag). In both cases the effective correlation
time decreases with decreasing temperature for T < T,. Below
about T/T;=0.6 the temperature dependence becomes ob-
scured by the large scatter.

12 shows the scaled correlation time 747, together with
the corresponding values for rfﬁTf from Table III.

The unusual behavior of 7.4 below T is interpreted
within the fractal cluster model as the growth of the
infinite cluster, which always incorporates the largest
remaining clusters, thereby leaving smaller clusters with
smaller correlation times free to rotate (see also Fig. 1).%

We emphasize here that the decrease of 7.4 in the uSR
data is not anticipated by the use of the relaxation func-
tion Eq. (25). The effective correlation time is calculated

TABLE III. Effective correlation time 7% and (effective) order parameter g} derived from the
analysis of neutron and y,. data in Sec. III (Table I). The limited time window of the uSR method was
taken into account in the computation (for the details see text).

Symbol in ™ T s
Figs. 2 and 3 T/T, (s) (s K) qy
CuMn(1 at. %) T,=99 K 1/a,=8X10"% s
a 0.8 (8.6+0.4) X107 1° (8.6+0.4)x107° 0.32+0.01
b 1.23 (2.6+0.8)x 107 1° (2.6+0.8)X107°
CuMn(3 at. %) T,=20 K 1/a,=2.7X107% s
a 0.25 (3.8£1)x 107" (8+2)x 10~ 0.88+0.02
b 0.75 (2.0+0.6) X 10710 (4.0+1.2)X107° 0.49+0.01
c 0.9 (8.5+0.4) X 10710 (1.7+0.8) X 1078 0.33+0.07
d 1.0 (9.9+0.4) X 10710 (2.0+0.8)x 1078 0.25+0.04
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from the two parameters a, and A, [see Eqgs. (26) and
(30)], which are independent below 0.87, since a; is
determined by the initial slope of G (¢) at short times and
A, is controlled by the decay of the 1/3 tail (see Figs. 4
and 5). The decrease of 7. is also insensitive to the
choice of a, in the temperature range 0.47,-1.07 .
Here larger values of 7.4 would require smaller values of
a, which are hardly consistent with Figs. 9(a) and 9(b).
Below 0.47 the errors in the computation of the factor
1—gy in Eq. (30) become so large that a 10% change of
a, causes T, to vary by more than 2 orders of magnitude.
At the lowest temperature T =0.25T; in Table III also
the 7 value which is much smaller than the uSR data
seems to be quite uncertain (c.f. the corresponding value
6x in Table I).

From 7.4 we calculate a maximum value of the param-
eter a,;7.4~0.1 in the vicinity of T, which validates the
condition for rapid fluctuations of the dynamic part of
the local field [Eq. (27)].

Finally Fig. 13 shows the comparison of gy =a2/a}
and the values for gj} from Table III. The agreement is
very good below Tf, but at Tf the value deduced from
the time window considerations is too large. However,
we should keep in mind that there are no adjustable pa-
rameters for the comparison in Figs. 12 and 13 and we
have analyzed results from completely different methods
applied to different samples. If we neglect the time win-
dow, the figures show unreasonably large discrepancies
and the interpretation of the temperature dependence of
T above T, becomes considerably more difficult.
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FIG. 13. Temperature dependence of the quantity
gy =al/a} calculated from the uSR data in Fig. 9(c) in compar-
ison to the corresponding quantity ¢;}, which is computed from
the results of Sec. III (Tables I and III) according to the uSR
time window considerations discussed in the text ([J, 7, <1/a;
O, 7e> 1/ay).

VII. LIMITATIONS FOR THE MODEL
OF HOMOGENEOUS LOCAL-FIELD DYNAMICS

The results of Sec. VI are clearly at variance with our
earlier interpretation of uSR measurements on CuMn
single crystals.®%85 These former measurements were
analyzed in terms of a two phase model, which was clear-
ly superior to the homogeneous freezing model of Eq.
(25). But subsequent measurements on polycrystalline
samples showed that the ‘“inhomogeneous” two phase
model (which is different to the model discussed in Sec.
V) and the “homogeneous” model from Sec. VI could be
equally well fitted to the data.

To clarify this difference, we prepared a large number
of samples, which were subjected to different thermal and
mechanical pretreatments. Extensive sample characteri-
zation as described below singled out the large-scale
homogeneity (on cm distances) as a major problem in the
single crystals.

Information about homogeneity were obtained by three
methods: chemical analysis with atomic emission spec-
troscopy, microprobe analysis, and ac susceptibility mea-
surements. Multiple determination of the freezing tem-
perature T, for different cutoff pieces provides a sensitive
and convenient method to check the homogeneity, since
for impurity concentrations around 1 at. % the freezing
temperature varies approximately linearly with concen-
tration and can be measured with a relative accuracy
better than 0.5%. Like T, measurements the chemical
analysis probes concentration variations on mm and cm
distances, whereas microprobe analysis yields corre-
sponding information for length scales between 1 and 50
pm and is therefore sensitive below typical grain sizes in
polycrystalline material.

In single crystals we found that the Mn concentration
may vary occasionally along the axis of crystal growth up
to 10% from one end to the other. The crystals were
originally grown in the form of long slim cylinders (4 mm
diameter, 100 mm length), then cut into shorter parts and
glued together. Our judgement of the spin-glass quality
was based on the sharpness of the ac cusp and had to fail
since only one small cutoff piece was measured for each
sample. Later the chemical analysis gave a moderate
variation of approximately 5% between several parts of
the uSR samples.

In polycrystalline material the homogeneity did al-
ready depend on the way in which the raw alloy was
prepared. In most cases the constituents were alloyed by
induction heating in Al,0; crucibles under high vacuum
(<1073 Torr) and then poured into an ingot mold. The
worst homogeneity occurred, when the alloy was allowed
to solidify slowly in the crucible which resulted in rela-
tively large grains. Microprobe analysis revealed concen-
tration inhomogeneities up to 16% in these cases, which
were hardly affected by annealing. The best results were
achieved by swaging the ingots to less than 40% of their
original diameter followed by annealing at temperatures
around 900°C. This combination of severe cold working
with subsequent homogenization annealing has also
proved to be successful for other alloys. %%’

The six polycrystalline samples used in the uSR mea-
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surements in Sec. VI are characterized in Table IV. For
the samples CuMn(1.03 at. %) and CuMn(1.21 at. % ) no
concentration variation could be detected within experi-
mental resolution. Here the relative accuracies of the
methods are given as upper limits. For the sample
CuMn(0.65 at. %) only a marginal difference was found.
The homogenization procedure did work for the
AuMn(0.84 at. %) A sample also, but surprisingly not as
well for the two others, for reasons which are unclear at
present. However, the variations are still comparable to
those reported by other authors, 8%% whereas our results
for the CuMn system are clearly better.

The homogeneity did not depend on the way the sam-
ples were cooled down from the annealing temperature,
i.e., no differences were found between slowly cooled and
quenched samples. In this context we consider the an-
nealing, which necessarily precedes the quenching, to be
more important than the quench itself.”® The latter
affects the atomic short-range order,! but it is not clear
whether this should show up in a uSR measurement.

Finally the two systems seem to differ somewhat in de-
tail, because for CuMn deviations from the model of
homogeneous local-field dynamics occurred in a small
temperature interval 0.95<7T/T,<1.02 (Fig. 14),
whereas no deviations were found in the AuMn samples
in spite of their larger inhomogeneity. The maximum
normalized x? for the model function Eq. (25) found in
CuMn(1.03 at. %) at T, reduces from the value 1.6 to
1.02 if an inhomogeneous model similar to that of Refs.
8, 84, and 85 is fitted to the data. We cannot rule out re-
sidual inhomogeneities as the origin of these deviations,
because microprobe analysis only guarantees an upper
limit of 2.5% (see Table IV), but we are convinced that
the preparation can hardly be improved. In this sense we
consider spatial inhomogeneous freezing as incident to
“real life” CuMn spin glasses.
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FIG. 14. Data evaluation for the CuMn(1.03 at. %) sample
with the model of homogeneous local-field dynamics [Eq. (25)].
Shown are values for normalized y? vs the reduced temperature
T/T;. The measured relaxation function deviates from the
model in the vicinity of T, (0.95<T /T, <1.02) which is indi-
cated by the significant increase of y2.

VIII. SUMMARY AND DISCUSSION

We have presented a comparative analysis of neutron,
zero-field uSR, and ac susceptibility data for the spin-
glass systems CuMn and AuMn in the frame of the criti-
cal fractal cluster model of Malozemoff, Barbara, and
Continentino. 4647

For our purposes we reformulated the model in terms
of a probability distribution of spin-correlation times
p (7). The distribution is controlled by three model pa-

TABLE IV. Characteristic properties of the six polycrystalline spin-glass samples investigated in this
work. Concentration ¢ and freezing temperature T, are given as average values in cases of multiple
determination. The column homogeneity then should be read as approximate standard deviations to

these values.

Annealing Relative
Temp. Time c T, homogeneity Determined
Sample (°C) (h) (at. %) (K) (%) by

CuMn(0.65) 900 6 0.65 7.6 1 Chem. analysis
2 multiple T,

CuMn(1.03) 950 10 1.03 10.62 0.5 Chem. analysis
0.5 multiple 7',
2.5 microprobe

CuMn(1.21) 900 6 1.21 11.3 1 Chem. analysis
2.5 microprobe

AuMn(0.84) 4 950 12 0.84 4.05 1 Chem. analysis
1 multiple 7,

AuMn(0.84)B 930 10 0.84* 4.19 2 multiple T,

AuMn(1.15) 930 10 1.15% 5.36 4 multiple T,

*Nominal concentration.
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rameters, the lower and upper limits 7, and 7, of the
correlation time spectrum, and the critical exponent
1/(8x). Suitable approximations with respect to the time
windows of uSR and NSE allowed to calculate the spin-
autocorrelation function

S(t)=q +(1—g)S,(1),

where g =(7,/7¢)'/® denotes the order parameter of the
model and S,(7) approximately follows a power law
S,(t)<(t/75)"/®. The analysis of neutron and ac sus-
ceptibility data of Mezei and Murani® > gave the model
parameters for a few reduced temperatures 7/ T;, which
then enabled a quantitative comparison to the uSR re-
sults.

The access to impurity spin dynamics through uSR is
more indirect, since the muon is a localized probe and
sensitive to the fluctuations of the magnetic field at its
site. Therefore we had to characterize in a first step the
dynamics of this local field, which cannot be directly in-
ferred from the fractal cluster model. In a second step we
assumed that the field autocorrelation Sp(¢) averaged
over all muon sites can be compared with the spin auto-
correlation S(¢). We considered two extreme cases for
the local-field dynamics.

The assumption that contributions from a given cluster
dominate the local magnetic field at all muon sites within
the volume of that cluster has led to the model of spatial-
ly inhomogeneous local-field dynamics. This model
turned out to be inapplicable below T,. Above T, the re-
sulting temperature dependence of the averaged local-
field autocorrelation Sy(t) clearly disagreed with the
analysis of the neutron and y,_ data.

A spatially homogeneous model for the local-field dy-
namics followed from the assumption that the local mag-
netic field is essentially a superposition of many contribu-
tions from impurity spins fluctuating with different corre-
lation times. In view of the fractal cluster model this re-
sults from interpenetrating clusters with porous and frac-
tal geometry in addition to the long-ranged dipolar cou-
pling between muon and impurity spin. To evaluate the
data we have linked the fractal cluster model to

Uemura’s model of coexisting static and dynamic
fields®® 7180 and Heffner’s and MacLaughlin’s interpreta-
tion of the effective correlation time 7.5 caused by a
nonexponential autocorrelation function of the dynamic
part.’! A large amount of uSR data for six polycrystal-
line spin glasses belonging to the two systems CuMn and
AuMn allowed a conclusive scaling analysis of the model
parameters static linewidth a; and dynamic relaxation
rate A;. The scaled static linewidth a; /a, and the scaled
effective correlation time 747, of the dynamic part of the
local field are to a very good accuracy universal functions
of the reduced temperature T /T in all our samples.

The quantities g =(a, /a,)* and 7.4 play the same role
for the averaged local-field autocorrelation Sy(f) as do
the order parameter ¢ and the characteristic correlation
time 7, for the spin autocorrelation S(¢) in the frame of
the fractal cluster model. However, g5 and 7.4 cannot
directly be interpreted as critical parameters in a phase
transition picture because of two reasons. (1) The static
linewidth a;/a, is finite at T,. (2) The temperature
dependence of 7.4 above T, can be roughly described by a
power law 7 < (T /T;—1)"" with an exponent w ~2.6.
But this value for the effective exponent
w =vz(1—1/8x)=vz—f leads to appreciable discrepan-
cies to the results of other experiments, which probe
long-time scales. These values are compared in Table V.

As we have discussed, this problem can probably be
resolved by taking into account the finite time window of
the uSR method. Here the reciprocal static linewidth
1/a, sets a time scale, which divides the correlation time
spectrum into a dynamic and a static part. As a result
the behavior of the quantities g5 and 7.4 as measured by
uSR reflects the temperature dependence of the critical
parameters g and 7, only outside a certain temperature
interval around T;. The time window considerations led
to a reasonable agreement between uSR results and the
analysis of neutron and Y, data in Sec. III. However, a
precise investigation of identical samples by uSR and
methods such as relaxation of thermoremanence or dy-
namic susceptibility studies at ultralow frequencies would
be desirable to confirm that the critical temperature re-

TABLE V. Values for several critical exponents determined from scaling analyses of the experimen-
tal results. For the 3d short-range Ising model and mean-field theory (MFT) we have related 8x to the
temperature-dependent exponent y (8x =1/¥) (Ref. 36), which controls the time decay of the spin au-

tocorrelation S(z)xt ™7,

Parameter

vz B Sx=vz/B System Reference
7+0.6 0.9+0.2 7.8+2 AgMn 24,25
8.2+1 0.38+0.04 21+6 FeNiPBAlI 23
8.21+0.5 EuSrS 21

num. 3d
7.2x1 (=0.5) 1/y=15 short-range 42
Ising
at Tf
2 1 4>1/y22 dynamic 35,36
2.9-3.2 if 6x=~10 CuMn uSR: 80
~2.9 if 8x=10 CuMn uSR: this work




gion is indeed inaccessible to uSR.

Given the above restrictions, our results are consistent
with the existence of a phase transition in the spin-glass
systems CuMn and AuMn, but we cannot provide direct
evidence from our analysis. We only note here that the
large values dx = 10 obtained for CuMn in Sec. III are in
better agreement with recent experimental determina-
tions than with mean-field theory (see Table V).

The most remarkable prediction of the fractal cluster
model is that of a temperature-dependent upper limit 7,
of the correlation time spectrum, which diverges at T,
and decreases again if the temperature is lowered below
T;. Qualitatively the corresponding behavior was found
for the effective correlation time 7.4 of the local magnetic
field.
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