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The electronic density of states of silicon nitrogen and germanium nitrogen alloys are calculated
for the whole range of N concentrations. Also calculated are the local density of states at Si (Ge)
atoms, at N atoms, and at sites with several configurations of dangling bonds. As single-site
effective-medium theories are not applicable to semiconducting amorphous alloys due to the low
values of the average coordination number (3 < (z ) <4), we apply here a real-space renormalization
formalism that produces accurate results with little computational effort. This formalism simul-
taneously includes diagonal and off-diagonal disorder, short-range order, and the charge-transfer
effect. The results obtained here compare well with the experimental measurements.

I. INTRODUCTION

Semiconducting amorphous alloys are materials of in-
creasing interest in recent years mainly due to their appli-
cations in microelectronics and solar-cell devices. Re-
cently! samples of a-Ge,_,N, have been grown for
which an optimum gap size for solar-cell applications (ap-
proximately 1.6 eV) can be tailored, because its extremum
values are about 1.1 eV for pure a-Ge:H and 4.3 eV for
stochiometric a-Ge;N,. The alloy a-Si; _, N,:H (Ref. 2)
has been used as a dielectric in thin-film transistors® and
it is also the basis of nonvolatile metal-nitride-oxide-
semiconductor (MNOS) memory devices.> Due to the
fact that a-Si; _,N,:H has a gap size E, strongly depen-
dent on nitrogen concentration*? it can be used as an op-
tical window for solar cells® and to prepare amorphous
superlattices.®*”® @-Si,_ C,:H (Ref. 9) and a-Si,_, O :H
(Ref. 10) can also be used as optical windows, and
a-Si;_,Ge,:H has been studied experimentally!! as a
variable-band-gap material.

In order to understand the physical properties of these
materials, it is necessary to study their electronic struc-
tures, and in particular the variations of the gap sizes
with concentration and the existence of gap states due to
dangling bonds, impurities, and other defects. These gap
states can be traps for electrons or holes'? and therefore
they are important for the study of transport properties.
They also control the doping properties of these materi-
als. The Si dangling bond in silicon nitride can also be
the memory trap in a MNOS device.!3

The theoretical study of the electronic properties of
semiconducting amorphous alloys is a hard task. These
systems present both structural and chemical disorder.
An idealized description of these materials is given by the
continuous random network (CRN) (Ref. 14), which can
be constructed by geometrical analogy'® or computer
simulation.'® The calculations of the electronic proper-
ties of a CRN is highly expensive for actual computers.'’
For amorphous alloys this network is characterized by a
strong structural short-range order (SRO), a chemical
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short-range disorder, and no long-range order. A real
material can be thought of as a CRN with a distribution
of defects: dangling bonds, vacancies, voids, impurities,
etc.

Simplified disordered networks have been introduced
in order to cope with the difficulties appearing in the
CRN. The widely used Bethe lattice!® (or Cayley tree)
can be easily treated (for chemically ordered materials) by
transfer-matrix techniques.’® This pseudolattice is also
useful as a boundary condition in clusters to study SRO
properties of materials and defects in the so-called
cluster - Bethe-lattice approximation?® (CBL). Related
structures such as Husimi cacti*"*? or gaskets®>?* were
used as better approximations to the CRN.

The treatment of substitutional disorder is an old prob-
lem. Effective-medium theories were widely applied to
study the electronic properties of metallic alloys. In or-
der of increasing accuracy, they are the Nordheim-Mato
virtual-crystal approximation (VCA), the Korringa
average—f-matrix approximation (ATA), and the Seven-
Taylor coherent-potential approximation (CPA).%> The
last one is a self-consistent procedure that gives the
correct limits for both very low and very high concentra-
tions. In spite of this fact it can be shown that the CPA
is a zeroth-order theory in powers of 1/z (where z is the
coordination number). It gives good agreement with nu-
merical simulations for a fcc lattice (z=12), but it
disagrees completely with ‘“‘exact” histograms for one-
dimensional random binary alloys (1D RBA) (Ref. 26)
(z =2), and it yields very rough results for square and di-
amond lattices (z =4). This is due to the fact that the
different chemical configurations of its neighbors produce
very different local modes which cannot be averaged for
low z. An alternative method to these single-site approxi-
mations consists of the exact treatment of small clusters
as in the Bethe-Peierls approximation,?”?® leading to
good results when self-consistency is applied to a bound-
ary site.’® However, even the molecular coherent-
potential approximation (MCPA) is not capable of repro-
ducing the singularly continuous spectrum®® of a 1D
RBA.
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We will describe in this paper a method useful in treat-
ing the substitutional disorder even for low values of z.
This method is based on a real-space renormalization pro-
cedure® applied to disordered chains by Gongalves da
Silva and Koiller*' (GK). The GK average procedure
was widely discussed® ™% mainly within the context of
1D disordered systems. This procedure was extended to
disordered Bethe lattices®! and Husimi cacti??> and was
used to study the electronic properties of a-Si:H.3**2

The paper is organized as follows. In Sec. II we
present a self-consistent formalism to treat Bethe lattices.
In Sec. III the extension of the simplest renormalized
average method for a Hamiltonian with several orbitals
per site is presented. In Sec. IV the limitations of that
method are discussed and a new procedure is introduced
to cope with them. The effects of short-range order and
charge transfer are studied in the same section. Section
V is devoted to show the procedures utilized to calculate
local densities of states at atoms with dangling bonds and
other defects. In Sec. VI the numerical procedures are
briefly described. The results for a-Si;_,N,:H and
a-Ge,;_,N,:H are presented in Secs. VII and VIII, re-
spectively. Finally, conclusions and comments are made
in Sec. IX.

II. DECIMATION OF A DISORDERED
BETHE LATTICE

The method will be illustrated here for the case of
a-Si; _, N, :H, but it could be applied to a wide range of
alloys.

Diffraction experiments*>** show that bond-length and
bond-angle distributions in a@-Si;N, (amorphous silicon
nitride) are centered at the same position as in B-Si;Ny,
with a very small bond-length fluctuation. In this phase
of crystalline silicon nitride, Si occupy slightly distorted
tetrahedral sites and N are at planar or near-planar trigo-
nal sites. The symmetry seems to be similar in a-Si;N,. 2
It has been shown that a nitrogen impurity in crystalline
silicon is a deep donor with C;, point-group symme-
try. 4546

The 8—n Mott rule establishes that N is threefold
coordinated in an a-Si;_,N,:H for the whole range of
concentrations 0 <x < 4.

Assuming this, we represent silicon and nitrogen by a
fourfold-coordinated N and a threefold-
coordinated diagram, rspectively. The connec-
tivity of the lattice considered is illustrated in Fig. 1.

This lattice is a tree in the graph-theoretical sense that
no loops or circuits (i.e., closed rings) are present in it.

The Hamiltonian describing the amorphous alloy is
represented on a tight-binding basis with several orbitals
per site:

H= 3

(i,j).m,n

limYvi"jn) , (1)

where i, j indicates the site and m,n the orbital.

Four orbitals are used for both nitrogen and silicon
atoms. For Si they are the standard sp? orbitals, and for
N they are three sp? coplanar orbitals and a perpendicu-
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FIG. 1. A scheme of a Bethe lattice with a variable coordina-
tion number.

lar 7 orbital that participates in the bonds but in whose
direction there is not a nearest neighbor.

Silicon-silicon and silicon-nitrogen bonds are illustrat-
ed in Figs. 2 and 3, respectively. The 7 orbital in Fig. 3 is
represented by a point, indicating that its positive part is
pointing outwards. In this model topological®? and quan-
titative*’ disorder are neglected. Therefore, dihedral an-
gles are fixed. We adopt for the Si—Si bond the stag-
gered configuration as in the crystalline case and for
Si—N the configuration which is dominant in 3-Si;N,
(i.e., orbitals i, and j; of Fig. 3 are in the same plane).
There is strong evidence that nitrogen pairs are not
present in the alloy.*?

The local energies of the isolated atoms and the hop-
ping matrix elements between them are represented by
4 X4 matrices.

e V, VvV, V¥
Vi, ¢ V, ¥V, \/
E=lv, v, ¢ v,|T— >
Vi, vV, V, ¢
e, 0 0 O @
0 €y V6 V()
Ex=10 v, e, V6=—l—’
0 Ve Ve &,

V=
Si-N Ve Vo Vie Vi

In order to illustrate the method, we consider first a
Bethe lattice representing a fourfold-coordinated material
without chemical disorder (a simplified model for an ideal
a-Si) in which, as is shown in Fig. 4, the tree is arranged
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FIG. 2. The hopping matrix elements between two Si (or Ge)
nearest neighbors.

as a linear chain of lattices. Each element of the linear
chain of Fig. 4 can be represented diagrammatically as is
shown in Fig. 5, where the arrows represent the self-
energies associated with the network attached to the
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FIG. 3. The hopping matrix elements between a Si (or Ge)
and a N atom.

bonds. We assume first that this network is not neces-
sarily a piece of Bethe lattice, but is an arbitrary one.
The self-energy of a chain constructed with these ele-
ments is

.o 4)

¥ I
N .
5 5

t

It can be seen that only the Bethe lattice satisfies the fixed-point condition*!

S=3=3*.

For a Bethe lattice with only one orbital per site this condition can be solved analytically.

known self-energy for an ordered Cayley tree,

_ z
)=

(0—e)+[(0—e)—4(z —1)V?]?) |

(5)

4l The result is the well

(6)

in which ¢ is the energy of the isolated atom, ¥ the hopping element between nearest neighbors, and z the coordination

number.

For a system with four orbitals per site, Eq. (4) has to be solved numerically. The standard transfer-matrix (TM)
method also requires a numerical solution. The solution of Eq. (4) can be obtained as well by decimation, which re-

X

T> < LLL> T> =
O Koo D K

FIG. 4. A Bethe lattice represented as a linear chain of Bethe
lattices.

FIG. 5. A Si (or Ge) atom with two orbitals bonded to some
lattice and two dangling bonds. This is the basic element of the
linear chain used to solve the Bethe lattice.
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quires far fewer iterations than the TM equation. This is due to the fact that decimation incorporates atoms at a
geometrical rate, in contrast with the TM formalism, which does it arithmetically (the continued fraction).

Recently a diagonalization method to solve the ordered Bethe lattice with several orbitals per site was developed*
which is clearly faster than both decimation and TM methods. However, it will be probably very difficult to develop an

extension of this diagonalization method for alloys.

In the case of a-Si;_ N (Ge,_,) we have two kinds of sites, namely, 1 for Si (Ge), 2 for N and two self-energy ma-

trices. Equation (4) looks now as

) z, z, )
R B s B

L L
N
L 1

, (7)
t

and we have a similar equation for N. Therefore we have self-energy matrices 2{, 2‘{, where a=1,2,3,4 and =2,3,4

indicate the bond.

III. FIRST AVERAGE PROCEDURE

In order to quickly and accurately solve Eq. (7) we first
adopt the GK average decimation procedure’! 3 extend-
ed to treat matrices. This approximation has proven to
be much better than any of the known mean-field approx-
imations, at least for low-coordinated systems, such as
the case we are studying.

As we are working with 4X4 matrices, we take the
simplest version of it for the sake of reducing the comput-
er calculations. In order to derive the decimation recur-
sive relations for an alloy with four orbitals per site, we
label the basis orbitals:

1 3
E,= \/
7 r
3 (8)
E,=
2 1 4

such that the chain defined in Eq. (4) follows always the
sequence - - 2424 - .
Its elements are

|

(=g PV Vi —g v ReViE G, —(g FV g Vik)Gy — (g XV gV )G, =g M5,y ,

where the indices n and s correspond to sites i +2 and
i —2, respectively.

The renormalized virtual crystal method (RVCM) (Ref.
35) takes the average of this equation over the decimated
degrees of freedom.

The remaining equations reproduce a new disordered
system with its parameters renormalized. As the disor-
dered is maintained at each step, this procedure takes
into account chemical fluctuatiorfs at all orders.

We define matrices
M =1—g VgV g VgV

m r

(14)

and make the decoupling

H”=E,+2]+3}
1

z \/ 2
I 9)
2 4
HY'=E,+33
23
- __l__ : (10)
2 1 4
from which we can calculate the Green function
g¥ =(wl—H) . (1)

The self-energies are obtained from the equation of
motion for the Green’s functions which are solved using
the decimation procedure

G, =g V/Gn =8 VNG =g 8, (12)
were subindices ¢, m, and n correspond to sites i, i +1,
and i/ — 1, respectively, and can take the values 1 for Si
and 2 for N. The index (k) labels the decimation step.

Now we use the equations corresponding to sites i — 1
and 7 +1 to eliminate G,, and G,, and we obtain

(13)

r

_
(M®),(G,)—(g VL glVE(G, )

— (VYNNG = (g4, . (15)

Now we multiply by ((M'¥’),)~! to obtain an equa-
tion that will be isomorphous to the initial one, provided
we define new g and V through the following recursion
relations:

2
V(/km+1)= z P/n(V(/kn)g'(lk)V’("l;)) , (16)

n=1

which can be represented diagrammatically as
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FIG. 6. The histogram represents the exact partially cumu-
lated density of states (Ref. 61) PDCOS of an 1D RBA with one
orbital per site (Ref. 27). The smooth curve is the approximated
result obtained using CPA (Refs. 25 and 27). The curve with
sharp peaks was obtained through the GK average procedure
(Refs. 32 and 34).

P U ~e ~e
L n = £ m n (17
and

g({k+l)=(<M(k))/)Alg(/k) . (18)

This last relation is equivalent to the definition

2
2!}(k+1):2‘}(k)+ 2 P(/kn)( V(/kn)gr(lk)lVr(r,;)) , (19)

n=1
with a diagrammatic representation given by

: - — + L) ]

t ) £~—"n . 0
In the diagrams above a point represents a site, a line

represents a hopping transfer matrix V, and a double-line

symbol represents a renormalized diagram. Here P, is

the probability of the first neighbor of ¢ being of n type.
In order to use Egs. (16)-(20), g\’ is taken from Eq.

(11), where

H(/k)=H(/k)+2‘}(k)+23(k) , @n
and the initial values H'? are given by Eq. (9) and

30=q,
When Eqgs. (16) and (18) are iterated, the renormalized
hopping diminishes, and for some k * the condition
> v l<e (22)
iLj,l ,m
is satisfied, and we obtain

ca oK
(=270 (23)
We can calculate now from Eq. (15) and i =0
(G, )y=g" . (24)

For the sake of comparison we show in Fig. 6 the den-
sity of states (DOS) for a one-dimensional random binary
alloy (1D RBA) with one orbital per site.

IV. SECOND AVERAGE PROCEDURE

It can be seen from Eq. (12) that the GK procedure
takes the average on the self-energy =. It is well known
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that this kind of average produces, in the case of
effective-medium theories, spurious densities of states in
the gap.* The same problem appears in renormalization
theories, as can be seen in Fig. 8.

In order to cope with this problem, a new renormaliza-
tion formalism was proposed in a previous paper”° which
takes the average of the Green’s function and produces
better results even for an 1 RBA with only one orbital per
site, as is shown in Fig. 7.

The formalism used here cannot be easily described in
terms of renormalized g and V. It is better to rewrite Eq.
(12) as

G,—M} G, —MFG =d¥s, , (25)
where
MO =gV, 4P =g 26)

Now Eq. (13) is written as
LY, G —M MG, — MM G =dF s, 2D
where
LY, =1-MEME —MEM} . (28)
We first multiply Eq. (27) by (LX) )~! and we take the

‘mr
average. The renormalized equation will be isomorphous
to Eq. (25) if we define

M= UL ML M) 29)
and
d(fk+“=<(L(/k,:|,)_ld(/k)> . (30)

The formulae obtained now are as simple as in the first
procedure, but we need to invert eight L matrices before
averaging, in contrast with two for the GK method. We
need further to invert matrices to get the =’s required to
construct the Bethe lattice. This makes this second
method computationally more expensive.

In order to construct the Bethe lattice we repeat this
process beginning now with X in the initial condition (9)
until condition (5) is satisfied. All the steps in this pro-
cess are very fast, except the inversion of the matrix re-
quired by Eq. (11).

To study semiconducting alloys as a-Si;_ N,:H,
short-range order (SRO) and charge-transfer effects shall
be included.

plw)
0.8

04

0.0

FIG. 7. The same as Fig. 6 but the curve with sharp peaks
was obtained making the average on the Green function (Ref.
50).
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It was pointed out at the beginning of this section that
no nitrogen pairs are present in the alloy. This condition
inhibits the possibility of having an alloy with concentra-
tion higher than x =2 (that corresponds to the
stoichiometric compound a-Si;N,:H) if we neglect the
presence of nitrogen hydrides.

The nitrogen concentration x’ in the associated chain
from which we constructed the Bethe lattice with vari-
able coordination number is given by

x'=3x/(4—x) . 3D

At the first decimation step, the conditional probability
of having a silicon atom as the nearest neighbor of silicon
is

PO =(1-2x")/(1—x"), (32)

while the probability of silicon being a nearest neighbor
of nitrogen is

P =1 (33)

The first suffix refers to the atom at one site and the
second to the atom at the neighbor site. Naturally

K=1-PK . (34)

However, after the first decimation step, this restric-
tion does not hold any longer. The probability of having
a renormalized silicon as a nearest neighbor of another
renormalized silicon, P(,Zl), is now the probability of these
two silicon atoms to be second neighbors in the original
chain. A simple probability calculation yields the result

P =PYPY+POPY , (35)

and for the k + 1 step of decimation
(k+1)— pk)p(k) 4 plk) (k)

PJ =P;{ P+ P, P} (36)
Therefore, the P,-jk’ matrix satisfies the relation

P(k+l)=(P(k))2 37)
that is equivalent to the scalar ones:

P(2];+l) :P(ZI;)(D”()+ 1) ,

(38)
PY+U=plk+1 4 plk+n)

where D'® is the determinant of P’ that obviously
satisfies

D*FN=(Dk)z (39)

Relations (38) and (39) together with (34) and the initial
conditions (32) and (33) properly take into account pair
correlations for a-Si; _ N, :H alloys.

The other important effect to be taken into account for
the alloy is charge transfer. Nitrogen has an electron
affinity greater than silicon. Therefore a nitrogen atom in
a pure silicon matrix will get an electronic charge greater
than 5 (corresponding to pure covalent bonding). The ex-
tra charge comes from the silicon atoms whose charge
would be approximately 4 if they are surrounded only by
silicon, or less depending on the number of nitrogen
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atoms bonded to them. This charge transfer introduces a
strong dependence upon local configuration of all
nearest-neighbor matrix elements. For simplicity we con-
sidered this effect in an approximate way by taking the
orbital energy € as a function of concentration which is
equivalent to a Hartree-Fock approximation for local
electronic interaction. The charge transfer has been
shown to be an essential ingredient to describe the experi-
mental gap bowing for a-Si; _, N, :H.

V. DEFECTS IN AMORPHOUS ALLOYS

The knowledge of the self-energies 2 permits the calcu-
lation of the total electronic density of states (DOS) as
well as the local densities of states (LDOS) at different de-
fects and impurities present in the amorphous alloy.

Representing the self-consistent self-energies by a full
arrow X*= —»  the Green’s functions can be calculated
using Eq. (6 from the diagrams

HSI =

)

\/
I (40)

The imaginary part of the trace of the Green’s-function
matrices gives the LDOS at the silicon or nitrogen sites
and their average the total DOS. A simple linear trans-
formation from the silicon sp® and the nitrogen sp?,p.,.
bases to the s,p,,p,,p, ones gives a new representation
for the Green’s function from which the s, po, and p,
components of the spectrum can be obtained for both sil-
icon and nitrogen.

The LDOS corresponding to one and two dangling
bonds (DB) at Si or nitrogen sites are calculated from the
diagrams

H_g= \/
H_ = | @1)
]H[=51= V_, s

(42)
H_ = I

Similarly, if we represent by a circle the self-energy due
to an hydrogen atom (or F, Cl, etc.) = — O, the LDOS at
a hydride configuration can be calculated from

: I o - (44)

The very interesting effect of doping impurities can
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also be studied. Phosphorous in a-Si;_,N,:H can be
threefold (P;) or fourfold (P,) coordinated. The richest
configuration is the first one. Using a dotted diagram for
phosphorus, the LDOS at these impurity configurations
can be obtained from

in which the self-energy at the impurity atom X' can be
easily related to the self-energies =. The LDOS for other
impurities, such as B;, Ga;, As;, Asy, etc. can be calculat-
ed in the same way. Results on hydrides and impurities
will be published elsewhere.

VI. NUMERICAL PROCEDURE

The local density of states corresponding to the orbital
¢ at atom (or defect) i is calculated from the Green’s-
function matrix defined in (11):

p/i(w)=—$lm[(g/),~,«] . (46)

The calculation of the H, corresponding to the six dia-
grams (40)-(42) can be carried out from the self-
consistent solution of Eq. (5) 2*(w), satisfied only by the
Bethe lattice. This solution can be achieved iteratively in
few steps if the starting point is sufficiently close to the
solution. In each iteration step a random chain has to be
solved, which can be done quickly and accurately by the
decimation process described by Eqgs. (16) and (18) or (29)
and (30).

For a given concentration we start the calculation at
an energy o below the lowest band. For this energy
2(w)=0 and then H,=E, is a good initial condition.
This solution 2(w,) is a better starting point for
0,=wyt+Aw if Aw is small. For w,=w,;+Aw we use as
initial Z(w,) the linearly extrapolated value obtained
from =(w,) and 2(w,), and for all the other energies we
made quadratic extrapolations using the results obtained
for the three previous points.

Unfortunately, the number of iterations required to ob-
tain convergence increases rapidly near the band edges.
In order to cope with this problem we perform Padé ex-
trapolations for each element of 2, matrices. Both nor-
mal and Padé sequences are calculated at each frequency.
The iteration procedure is stopped when anyone of the

sequences reach convergence. About four iterations are
needed inside the bands where the density of states is
smooth. This number is reduced to one or two for points
far outside the bands and augmented to about nine near
the peaks. Finally, almost at the band edges up to twenty
steps are necessary to get convergence of the Padé se-
quences, while more than 150 would be needed for the
normal one. The convergence condition is defined by

S IEW),—(=F )] <e, . @7)

il
We have taken €,=0.1 eV, which warrants a precision
of 1073 in the densities of states. Within this accuracy, a
value of Aw=0.05 eV will be necessary. Lower values of
Aw makes the extrapolation process uneffective due to
numerical noise. On the other hand, greater values for

Aw would not resolve the reach peak structure present in
the LDOS.

VII. RESULTS FOR a-Si;_,N,:H

The parameters used in the calculation are shown in
Table I. In the limit x =0 (i.e., for pure a-Si:H) only €
and V|-V are needed. They were taken from the work
of Singh.”' The standard correction factor 4/V'12 was
used to compensate the spurious band narrowing due to
the finite surface size of the Bethe lattice. The values for
€4,€, and V-V, were obtained from Robertson’? after
transforming the s,p,,p,,p, basis into the sp? (for Si) and
the sp2,p, (for N). The energy of the sp> orbitals was
taken to be a function of concentration &(x)=—0.75
eV+(0.43 eV)xP'} as was explained in Sec. IV.

In order to get numerical convergence near the band
edges a small imaginary part 7 is added to the energy w.
This produces band tails, and the isolated modes outside
the bands are transformed from & functions to narrow
Lorentzians of width 7. A similar effect is present in ac-
tual systems due to quantitative disorder. Due to numer-
ical considerations we have taken 7=0.04 eV. The finite
value of 7 permits also the visualization of the relative
strength of the gap modes in the LDOS.

In Figs. 8—14 we present the results obtained through
the first procedure, where the average is taken on the
self-energy 2. The results for x =0 and x =2 do not de-
pend on the average, thus they coincide with those ob-
tained by the second method and will be discussed there.
For intermediate concentrations the results are less reli-
able, and in particular when the concentration changes
from x =0.4 to x =0.5, it can be seen in Fig. 8 that a
spurious density of states is moving from the valence
band to the conduction band. As was discussed in Sec.

TABLE I. Tight-binding parameters for a-Si;_ N, :H (in eV).

£ €, € v, v, v, Vs Ve
—-0.75 —3.00 —17.54 —1.90 —4.65 -0.23 0.95 —0.67 —5.25
V7 VX V‘) VIO Vll VlZ V13 VM
1.02 —17.33 —1.18 —0.20 0.66 0.73 1.11 —0.62
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FIG. 8. The total DOS of a-Si,_N,:H calculated through
the GK method (Refs. 31 and 33) (i.e., by taking the average on
the self energies ). Note the spurious density of states travers-
ing the gap for 0.4 <x <0.5.
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FIG. 9. The LDOS at a Si atom in the alloy.
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FIG. 10. The LDOS at a N atom.
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FIG. 11. The LDOS at a Si atom with a DB (=Si).
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FIG. 12. The LDOS at a N atom with a DB (=N).

IV, this is a characteristic of methods that take the aver-
age on X. It was pointed out in the same section that the
results obtained by the second average procedure (i.e., by
taking the average on the Green’s function G) are better
than the previous ones. Due to this fact we will restrict
the discussion to Figs. 15-21, which present the results
obtained through the best procedure.

In Fig. 15, x =0, is shown the DOS for pure a-Si:H
which presents the well-known characteristics of Bethe-
lattice calculations of this system.>**3 The orbital energy
€ was chosen in order to get the energies equal to zero at
the center of the gap. The tops of valence and conduc-
tion bands are p type and the energy gap is E, =1.6 V.

On the opposite side, for x =0.57, it shows the total
density of states for stoichiometric a-Si;N,:H. The calcu-
lated value of the gap E, =5.3 eV coincides with the ex-
perimental results.*® It can be seen that the top of the
valence band is at the position of the p_ nitrogen level
(e,=—3.00 eV). Both valence and conduction bands
present three peaks, as was obtained in Ref. 50, but we do
not believe that our results for the conduction band are
reliable because we have not taken into account the s * or-
bital.**> The differences between our results and x-ray
photoemission spectroscopy (XPS) measurements®® are
due to the large differences in the XPS matrix elements.
This curve compares well also with the measurements ob-
tained using synchrotron radiation®® and qualitatively
with the calculations of Ren and Ching.’
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FIG. 13. The LDOS at a Si atom with two DB ( =S8Si).
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FIG. 14. The LDOS at a N atom with two DB (—N).

In the curve corresponding to x =0.1 we can see a
third band that arises up below the valence band (VB),
due to the N s orbital placed at o, = —18.04 eV. The po-
sition of this band remains almost fixed for all the con-
centration range and it coincides with the position of the
strong peak observed by Kircher et al. %

For concentrations between x =0.2 and x =0.4 the de-
velopment of the p, peak and a slow broadening of the
band gap are observed. The main transformation occurs
for concentrations between 0.5 and 0.571.

In Fig. 16, x =0, the LDOS at a Si atom coincides with
the total DOS (Fig. 15, x =0). This figure shows that the
contributions of the N s and p, levels are very small for
all the range of concentrations. At high nitrogen concen-
trations the Si LDOS is big for the conduction band (CB)
and small otherwise.

We show in Fig. 17 the LDOS of a nitrogen atom in

x=0.50

r=h(l.
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o VA

x=0.30
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FIG. 15. The same as Fig. 8 but calculated by taking the
average on the Green’s functions G (Ref. 50).
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FIG. 16. The LDOS at a Si atom, obtained making (G ).

the alloy. x =0 corresponds to the LDOS of a N impuri-
ty in pure a-Si:H. The N s orbital bound to three Si sp’
ones produces a localized mode at w=—19.7 eV. We
can also see there two localized states corresponding to
the bonding and antibonding modes with 4, symmetry
between the impurity and the lattice. The lowest (bond-
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s
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FIG. 17. The LDOS at a N atom.
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FIG. 18. The LDOS at a Si atom with a DB ( =Si).

ing) state is located at = —12.4 eV, whereas the highest
(antibonding) one is inside the gap 0.45 eV below the bot-
tom of the CB.*® This last peak is at the same place
where it was experimentally found by Brower,**¢ and
that means that a nitrogen impurity is a deep donor. The
small intensity of this gap mode at the nitrogen site is due
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FIG. 19. The LDOS at a N atom with a DB (=N).
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FIG. 20. The LDOS at a Si atom with two DB ( =Si).

to the fact that it is localized mainly on the first Si neigh-
bors.®® We can see also a strong resonance at the bottom
of the VB. For concentrations greater than x =0.2 the
A, peaks disappear and the p, peak develops. For
x >0.3 a second peak develops at the VB. The contribu-
tion of the N LDOS to the lowest and valence band is

a
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FIG. 21. The LDOS at a N atom with two DB (—N).



big, and it is very small at the beginning of the CB.

In Fig. 18, x =0, we can see in the gap 0.43 eV above
the top of the valence band the well-known strongly lo-
calized state of a Si dangling bond (DB). This peak
remains contaminating the gap for the whole range of
concentrations.

Figure 19 shows the LDOS at a N atom with a dan-
gling bond. The curve x =0 shows that such an impurity
in pure Si has its lowest localized state shifted to
@=—19.05 eV. There is an enhancement of the density
of states near the p_ level. As in the case of a N impuri-
ty, we can see also the resonance at the bottom of the VB,
but no gap states are localized at this defect.

We can see in Fig. 20 the results for the LDOS at a Si
atom with two DB’s. The interaction ¥V, splits the gap
state in two modes. The lowest mode merges slightly (0.2
eV) into the VB and the highest one enters the CB (0.3
eV, approximately). It can be seen that this defect also
contaminates the gap for the whole range of concentra-
tions.

At a N impurity with two DB’s in pure a-Si:H—Fig.
21, x =0—the lowest mode is shifted to o= —18.65 eV,
and the peak near the p,_ level becomes stronger. This
impurity does not produce states in the gap.

VII. RESULTS FOR a-Ge,_,N,:H

The tight-binding parameters for Ge-Ge were obtained
from the work of Harrison,>* whereas those correspond-
ing to Ge-N were obtained by scaling the Si-N ones (de-
scribed in the preceding section) following the d ~% law.”
These parameters are shown in Table II. As in the case
of a-Si;_,N,:H it is supposed that the role of hydrogen
in the material is essentially to terminate the dangling
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FIG. 22. The total DOS of a-Ge,_,N,:H calculated also by
the second average procedure ((G ).
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FIG. 23. The LDOS at a Ge atom.

bonds (mainly N).%

Figure 22 shows the DOS of a-Ge;_,N,:H. For x =0
corresponding to pure a-Ge:H, the gap obtained is
E,=1.1¢V in agreement with the experimental results.*
The centers of the valence and conduction bands are less
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FIG. 24. The LDOS at a N atom.
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FIG. 25. The LDOS at a Ge atom with a DB (= Ge).

separated than in the case of a-Si:H, because the separa-
tion is determined by V,. For increasing concentrations
we can observe the development of the N s and p . peaks.
The gap remains unaltered up to x =0.5 and after that it
grows quickly to reach the value E, =4.7 for x =3.

structure of

The electronic stoichiometric
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FIG. 26. The LDOS at a N atom with a DB (=N).
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FIG. 27. The LDOS at a Ge atom with two DB (= Ge).

a-Ge;NyH—Fig. 22, x =0.57—is similar to that of a-
Si;N,:H except for an additional peak in the middle of
the conduction band. The top of the valence band is a
lone pair N p,. peak.

In a first global calculation we found the gap contam-
inated by numerical noise, which was further eliminated

FIG. 28. The LDOS at a N atom with two DB (—N).
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TABLE II. Tight-binding parameters for a-Ge,_, N, :H (in eV).
€ o €y Vl Vz V3 V4 V5 V6
—0.75 —3.00 —17.54 —2.15 —4.03 —0.27 0.39 —0.39 —5.25
Vi Vs Vs Vio Vi Vi Vi3 Vi
0.81 —5.84 —0.91 —0.14 0.51 0.56 0.85 —0.48

in a more detailed (and slow) calculation for this region.

We present in Fig. 23 the average LDOS at a Ge atom
for several N concentrations. The qualitative aspects of
these curves are very close to those of a-Si;_ N, :H de-
scribed in the last section.

In Fig. 24 the LDOS’s at a N atom in the alloy are
shown. The A, bonding and antibonding levels merge
into the valence and conduction bands, respectively. For
pure a-Ge:H the distance between the antibonding level
and the bottom of the conduction band is too small to
confirm whether a N impurity is a donor or not because
this situation may be modified by small changes in the
tight-binding parameters.

The LDOS at a Ge atom with a DB for pure Ge (Fig.
25, x =0) shows the characteristic peak at the center of
the gap, but it disappears for N concentrations higher
than x =0.4.

We can see that the qualitative behavior of a N atom
with a DB in a-Ge,_,N,:H (Fig. 26) is the same as in
a-Si;_, N, :H (Fig. 19).

A Ge atom with two DB’s does not produce states in
the gap for stoichiometric a-Ge;N,H (Fig. 27, for
x =0.57), as is the case of silicon nitride (Fig. 20,
x =0.57).

Figure 28 shows the LDOS at a N atom with two
DB’s. By contrast, with the case of Si (Fig. 21) it can be
seen that for pure Ge the 4, bonding state does not ap-
pear as an isolated mode. The same occurs with the peak
at the center of the conduction band for the
stoichiometric compound.

IX. CONCLUSIONS

The accuracy of calculations of the electronic proper-
ties of semiconducting amorphous alloys is limited, in
most cases, by the treatment of disorder. The standard

single-site effective-medium approximations (like the
CPA) are not reliable when the coordination number is
small. On the other hand, the recursion method yields
better results than the CPA, but is computationally slow.
The real-space renormalization method used in our calcu-
lation incorporates in a natural way diagonal and off-
diagonal disorder, short-range order, and charge-transfer
effects, and is at least as good as the recursion method,
and it is much faster.

The shortcomings of our calculation come mainly from
the choice of the tight-binding parameters, the use of the
Bethe lattice, and the treatment of the electronic repul-
sion, the average procedure being a minor limitation.

The results obtained for pure Si (Ge) and for
stoichiometric nitrides compare well with the experimen-
tal measurements. For intermediate concentrations, the
calculated band structure of a-Si,_, N:H agrees with the
measurements of Kircher et al.*® as was discussed
above.

As we have not considered explicitly the excited (or the
s*) orbitals, our results for the conduction band are not
accurate.

To the best of our knowledge, for the case of
a-Ge,_, N, :H no experimental data are available to com-
pare with our theoretical results. Our calculations for a-
Ge, _,N,:H show no major qualitative differences with
respect to a-Si;_, N, :H, besides the fact that the energy
gap is smaller for low nitrogen concentrations. This
property could be very useful for solar-cell applications of
this alloy.
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