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Theory of the band-tail absorption saturation in polar semiconductors
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A theory is presented which allows one to calculate the absorption and its saturation in the
band-tail region of polar semiconductors for elevated temperatures. The influence of the LO pho-
nons and of the electron-hole plasma on the dynamically broadened band tail is considered. The
problem is decomposed into the calculation of the broadening and the shift of the electron-hole pair
states. Both the broadening and the shift are temperature and density dependent, although the shift
of the 1s-exciton line depends mainly on the temperature alone. The calculation of the absorption
saturation includes a self-consistent determination of the plasma density in terms of the intensity of
the exciting laser light. The saturation of the absorption sets in after the light intensity exceeds a

critical value which increases with decreasing frequency of the exciting laser light.

I. INTRODUCTION AND MODEL

The absorption saturation plays an important role in
the nonlinear optical switching devices, which operate in
the band-tail region. ' In pure semiconductors the tail of
the linear absorption below the band gap is known to
vary exponentially with the frequency due to the
influence of longitudinal optical (LO) phonons on the op-
tically excited electron-hole pair. The exponential de-
crease of the linear absorption is called Urbach's rule'
and is found in a wide class of semiconductors. The ex-
ponential frequency variation at high temperatures can
arise frotn the influence of the LO phonon on the relative
motion and on the center-of-mass motion of an electron-
hole pair. In the first case the ionization of an exciton in
the fluctuating electric field of the phonons is the dom-
inant process. In the second case the localization or
self-trapping of a tightly bound exciton in the deformable
lattice is causing the absorption below the band gap.

In a previous investigation, it has been shown how the
I

application of a cluster expansion allows us to treat, at
least in principle, the intraband and interband transitions
of the exciton caused by the LO phonons on equal foot-
ing.

Here we will extend this treatment and calculate the
nonlinear absorption for a laser beam with arbitrary in-
tensity. It is known experimentally that the band-tail
absorption is difticult to saturate, but no detailed theoret-
ical model existed so far of this saturation process, which
is often of crucial importance for optical semiconductor
switching devices. Because these switching devices are
mainly used without cooling at room temperature, we
will make high-temperature approximations wherever
necessary to simplify the treatment.

We start from a two-band model with one electron
band and one hole band both with parabolic dispersion.
We include in our treatment the Coulomb interaction,
the interaction with LO phonons, and the coherent pump
field E (R, t ) A'= 1 is used throughout this text.

The Hamiltonian 8 is given by

H —g (Eg + sk )CkCk + g Ekdkdk + g &I bq bq
k k

+ Vq( , ck+qck qck—ck+,dk+qdk qd„d—„c„+qd„qdkc—k)
k, kl, q

+ Q Mq(bq+b q )(c„+qck dk+qd„) —g g—k[Ep(t)ckd k+~+Ep (t)d k+~ck] .
k, q k, p

k

2me

k
and ck =h

2mb

m, and m& are their e6'ective masses. E is the direct en-
ergy gap. The bare Coulomb potential is

(1.2a)

ck and dk are the annihilation operators of an electron
and a hole with momentum k, respectively, bk is the an-
nihilation operator of a LO phonon. The kinetic energies
of the electrons (e) and the holes (h) are

4m.e
V =

2

The matrix element for the Frohlich coupling is

2&e coL
2

M =
2

(1.2b)

(1.2c)
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with 1/e' =1/e„—1/eo and cot is the LO-phonon ener-

gy. eo and e„are the low- and high-frequency dielectric
constants. The electric field E(R, t) Fourier transformed
into momentum space is denoted by E (t) T. he dipole
matrix element between the valence and the conduction
band is obtained by the k.p perturbation theory as

k1+- E
2m,

(1.2d)

where g =Hn25LT/4qr and ALT is the longitudinal
transversal splitting of the lowest exciton. The field

E(R, t) is a solution of the wave equation

z pe '~ ggk(S& k+t, +H. c. ) .4qr 8;.R

c Bt k

(1.3}

Here, n is the background refractive index and c is the ve-

locity of light. The macroscopic polarization function is
determined by the macroscopic electron-hole pair ampli-
tude Sk k+p which is an appropriate average of the
electron-hole pair operator

ct
k, —k+ k —k+ (1.4)

The macroscopic electron-hole pair amplitude will be
called pair amplitude. If spatial dispersion has to be in-

cluded, the finite size of the bulk can be taken into ac-
count by using Pekar's boundary condition for the polar-
ization.

The excited semiconductor is assumed to be in a
quasiequilibrium state in which a thermal electron-hole
plasma exists whose density is given by the external field
E(R, t) Ther.efore the pair amplitude is the thermal
average of the electron-hole pair operator.

Our first aim is to calculate the broadening of the pair
amplitude. It is assumed that the broadening is mainly
due to the coupling to LO phonons and plasmons. For
this purpose we use the cluster expansion method, which
reproduces in first order the exact result for a structure-
less, localized particle interacting with phonons. Apply-
ing this method to the polaron problem, i.e., one electron
interacting with the LO phonons, gives reliable results for
the retarded electron Green's function G"(k, t)

iO(t)(c„(t—)c„(0)+ckt(0}c„(t)) r. ( . ) r denotes
the thermal average. Due to the conservation of the total
momentum of the system, the calculation is simplified
considerably.

Generalizing this approach to our many-particle sys-
tem, some simplifications have to be made in order to get
a problem, which can be solved. First, some approxima-
tions are made in our equation for the pair amplitude
which can be tackled with the cluster expansion method.
The resulting equation for the pair amplitude Sk k+~(t)
contains as an inhomogeneity the driving field E(R, t).
The homogeneous part of this equation is an effective
Schrodinger equation for one electron-hole pair interact-

N(a)' )+n(e'k+ )
+ g (M'q)

J q
Ct7+l5 E,k+ +N.

1+N(co'q) —n(e'k+ )+
CO+ t 5 Et, +q Ci)&q

(1.7)
Here, N(co) is the Bose distribution and n(s) is the Fermi
function.

One possible generalization of the cluster expansion
approach would result in the following approximation for
the retarded Green's function:

G "(k,t)= iO(t)exp —i s'„—g V n—(s'„+ ) t

+Fk(t) (1.8a)

The cumulant I"k is given by

ing with longitudinal excitations. These excitations are
the diagonalized LO-phonon —plasmon modes. The ap-
proximations are valid if the temperature is sufficiently
high.

The solution of this equation is complicated by the fact
that the relative electron-hole momentum is not con-
served. The disturbance of the center-of-mass motion of
the electron-hole pair can be treated in the same way as
for the polaron problem, but for the relative motion the
straightforward cluster expansion is not tractable. There-
fore, an effective coupling for each internal state of the
electron-hole pair is introduced. These internal states are
eigenstates of an effective Hamiltonian for the relative
motion which includes the static influence of the interac-
tion with the longitudinal excitations.

We illustrate the simplifications made in deriving the
equation for the pair amplitude for the simple model of
an electron gas interacting with phonons. The calcula-
tion of the retarded self-energy X"(k,co) gives within the
Bohm-Pines random-phase approximation (RPA) and the
screened potential approximation'

X"(k,co)= ——g V, (q, ztt)Q (k q, co—+i5 z~)—.1

, Zg

(1.5)

V, (k,zz) is the screened potential and 9 (k, zF) is the
bare electron Green's function. Both are Matsubara
functions. Here zz =i 2n qr/P is a complex boson frequen-

cy, and z~=i(2n+1)qr/P is a complex fermion frequen-

cy. The screened potential is given within the plasmon-
pole approximation" by

I

V, (q, co) = V + g (M~'q) . (1.6)

co' are the diagonalized phonon-plasmon modes and M'
are the corresponding matrix elements. Their explicit
values are of no relevance at this point. The Matsubara
sum in the above equation can then be evaluated explicit-
ly and yields

X"(k,cg)= —g V n(s'„+ )
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Fk(t)=g [M~q(q)] [N(co q)+n(ek+ )]
J q ~k +q Ek ~jq

—t(ck —
ck

—co )tk V k J9

(&k+q
—

Ek
—~,q)

+[1+N(cu,' ) —n(ok+ )] e e I

~k+q Ek +~Jq

(
e e+ )tk+q k Jql —e

(ek+ q
Ek—+~jq )'

(1.8b)

In Eq. (1.8b) the terms proportional to t give the correlation energy shift comparable to the second term in Eq. (1.7).
The broadening is mainly due to the exponential terms in the function Fk ( t). Its order of magnitude is determined by
the longitudinal excitation energies cojq the matrix elements Mjq and the temperature-dependent factors
[N(co' )+n(e'k+ )] and [I+N(co' ) n(—ok+ )]. If the temperature is sufficiently high, the relation N(to' ))n(e'k+ )

holds sufficiently well. In this case the contribution of the Fermi functions in the cumulant Fk(t) to the broadening is
negligible as can be checked numerically. Thus we use an approximation for the Green s function

G "(k, t ) = i 8(—t)exp —i ek+ gk t+Fk(t) (1.9a)

which contains two distinct parts. The self-energy contribution

Xk
= —g V n ( E'„+

q ) + g (M&'q )

q J~q
e e I

&k &k+q + jq
n(e'k+ )

Ck Ek+q NJq

(1.9b)

is the screened exchange energy. It is proportional to the plasma density. The second contribution is given by the cu-
mulant

Fk(t)= g [M~' (q)] N(co' )

k +q &k jq

~ '(~1, +q1 —e

+ [1+N(co~q )]
Bk+q

—Ck+NJq

l(EI + Fl +'co )f
1 —e

(ek+, —E'k+~,', )' (1.9c)

which depends on the density through the screened potential only. In Fk the Fermi functions of Fk are omitted. The
physical origin of the cumulant Fk is derived from the interaction of one electron with the longitudinal excitations.

For this simple example this splitting is not necessary, because one can use Eq. (1.8) directly. But for the calculation
of the pair amplitude this procedure allows the treatment of the plasmon-phonon induced sidebands. However, Eq.
(1.8) is less rigorous than in the polaron problem.

II. DERIVATION OF THE EQUATION OF MOTION FOR THE PAIR AMPLITUDE

From the Heisenberg equation for the electron-hole pair operator S one obtains the equation of motion for the pair
amplitude

Sk, —k +p ( Sk, —k +p ) T (2.1)

where ( ) r denotes the thermal average appropriate for a semiconductor which is in a state of quasiequilibrium.
The resulting equation is

t Sk k+~
——(E—g+ek+E k+p)Sk k+p+ g VqSk+q k q+~

—g ((Sk q k+~ Sk k q+t, ) q)—z.

q q

+ ggkE& (t)(5 —(d k+&d k+p ) T (CkCk+p p&
) T),

Pl

(2.2)

where gk+p p gk has been taken. The Potential oPera-P Pl
tor N is given by

q qPq ™qq
(2.3a)

with the abbreviations

Pq X (ck qck d„qd„) . (2—.3b)
k

An external charge p" is introduced whose potential is
added to 4:
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+q =+q+ ~qpq . (2.4)

The external charge p is needed to derive self-consistent
equations of motion with the functional derivative tech-
nique. Switching to a special interaction picture defined
by

the expansion of the self-consistent RPA result for the
screened interaction V,"(q, t ) (Ref. 10) in terms of the po-
larization. This derivative will be replaced always by
V,"(q, t), i.e.,

S+(t)= U(t, —~ )S+(t)U( —~, t ),
where the S-matrix U(t, to) is given by

(2.5) -5(q+qi ) V,"(q, t —t, ), (2.12)

U(t to)= T exp i —J dt, gpq(t, )[kq(ti ) —=q(ti )]
0

q

(2.6)

2

:-,(t)= — g M,,A,,(t)
j=1,2

2
I co ~ [CO ~ t +

M (e "b +e ' 'b' ).j~q
j=1,2

(2.&)

The Hamiltonian H~ for these longitudinal eigenmodes
Is

(2.8)

where T is the time-ordering operator, will allow us to
derive an effective equation of motion for the pair ampli-
tude, which contains the coupling of the pair amplitude
to the diagonalized LO-phonon —plasmon modes as has
been described in the first chapter. They are used instead
of the superposition C of charge-density excitations and
LO phonons. The potential generated from the diagonal-
ized LO-phonon-plasmon modes is denoted by
Furthermore, the sum of the potential:" and the poten-
tial of the external charge p" is called:-" =:- + V p". "
is given in terms of the phonon-plasmon mixed-mode
operators

because the full sum of the RPA should be contained in
the final results. Within the plasmon-phonon-pole ap-
proximation the dynamically screened Coulomb potential

V( q, co) can be decomposed into the sum of the bare
Coulomb interaction and the contribution due to the in-
teraction with longitudinal excitations. It is given by

V(q, co) = 4me 2 ITe 6)L 2' L
2

e*q coL (co—+i 5 )

27Te Q)p 26)q

coq co (o (co+—i5}
(2.13a)

'2
E, +E

co =co 1+ +
2 2

L

as suggested by Zirnmerman' and Rice. ' Here

(2.13b)

' 1/2
4me N

(2.13c)

In Eq. (2.13a) we neglect the coupling between plasmons
and phonons to simplify the following numerical evalua-
tion. The electron-phonon interaction is therefore un-
screened. The effective dispersion of the plasma oscilla-
tion is

The matrix elements M and the energies Njq of the
eigenrnodes are obtained from the requirement that the
responses of 4 and:- to the external charge p" are ap-
proximately the same. Thus we impose on = the follow-
ing condition:

is the plasma frequency, and

A

' 1/2
4n e (}¹BN"

, +
Bp' Bp

(2.13d)

54q(t)

5pq (t, ) T

The derivative 54/5P" at p"=0 yields

Z —p

=0. (2.9) is the inverse screening length. Therefore, the dispersion
relations cojq and the matrix elements Mjq are given for
the LO phonons by

5
U( —~, t )4, (t) U(t, —~ )

5pq (ti }
Z p

M 1q

277e COL
2

* 2
C g

(2.14a)

iO(t —t, )[C,—(t),@, (t, )], (2.10) and for the plasmons by

which is a retarded response function. In the derivation
of Eq. (2.10) we have used

27Te co

Kpq COq

C02q
—

COq (2.14b)

[4, (t, }, :-, (t, )]=0, (2.11)

which holds because " and 4 operate on different spaces
and because the time evolution of:- is determined by H~
only. The derivative 5(4")T/5p" gives the first term of

The influence of the phonon-plasmon coupling on the
first phonon-plasmon sidebands is discussed in more de-
tail in Ref. 16.

From Eqs. (2.2) and (2.6) we get the equation of motion
for (S+)T:
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t —&s„„+,&, —(—E, +Ek+s „+,)(S„„+,&,+yv (S„+, „,+, ),at

g ((Sk —q, —k+p k, —k —q+p @q )T
q

+ g gkEp (t)(5p p (d k+pd k+p~ ) T (ckck+p —
p&

) T )

Pl

S can be cast into the form

S+(t)=[Ut( co, —oo )][TS+(t)U( 00, —&x) )],

(2.15)

(2.16)

(2.17)

T denotes the time-ordering operator. U( ~, —~ ) is abbreviated by U from now on. Our aim is to calculate the
thermal average (S (t) ) T, where (S (t) ) T is the solution of Eq. (2.15). For the trace ( ) T one needs to calculate
the diagonal elements ( i lS (t) l i ). Ifp"(t) contains only frequencies which cannot induce resonant transitions, if it van-

ishes as l
t

l approaches infinity, and if the complete set of states li ) is nondegenerate, it can be assumed that

&ilU'lj & ~5,,
which gives

& i ls+(t) li &
= &i I

U li & &i I
Ts+(t) Uli & . (2.18)

The functional derivative technique is used to handle the dependence on 4 —:-in the equation for S . Let li ) be an ar-

bitrary state from the set which is needed to calculate the trace ( ) r. The following identity holds:

5&tl[S„', „+,(')—Sk k +,(t)]li&
i [Sk q k+p(t) Sk k q—~p(t)][kq(t) —=q(t)] i =i

5pq(t )

+&'l@q (t) -"q(t)l')('lSk-q, —k+p(t) Sk, —k —q+p(t)lt) .

(2.19)

d~~otes a time which is infinitesimally earlier than t The .last term on the right-hand side of Eq. (2.19) vanishes at

p =0 because

&iI:q(t)li&=0 and &i lC&q(t) li& ~5 0 for p"~0.
Equation (2.19) is introduced into Eq. (2.15). Since we do not use the resulting equation for calculating any self-
consistent relations, we can take its limit p"=0 which is

k, —k+p(t))T (Eg+ek+e —k+p)( k, —k+ ( ))T+ Q ~ ( k+q, —k —q+p(t))T
q

—g (:-"(t)[Sk k+ (t) Sk k
—(t)])r

q

l
q

1 5([Sk q „+p(t) S„k q+p(t)—] ) T

+gkEp'(t) ggkEp* (t)(d—k+p(t)d k+p (t) ) r
Pl

Z p

gk+p p
Ep* (t)(Ck(t)Ck+p p (t))T

Pl

The functional derivative 5(S ) r/5p" in Eq. (2.20) can be decomposed as

5(S„', „+,(t)&, 5ck' q(t) 5d „+p(t)
d k+p(t) + ck q(t)

5Pq(t ) p.=o 5Pq(t ) p.=o r 5Pq(t ) p =o T

The next step is to calculate the factors ((5c /5p")d ) r and ( c (5d /5p") ) T. The equation of motion for c" is

(2.20)

(2.21)

t ck(t) =(Eg +—Ek
—)ck(t)+ g ck q(t)4q(t) ggkEp*(t)d—p+„(t) .

at
q P

(2.22)

Using again the interaction representation (2.5) and the successive procedure, we find by multiplying the resulting equa-
tion with dk (t') (where t' (t) from the right
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—
1
—E—

g
—

Ek (ck(t)dk (t')) r —g (=~(t Pck ~(t)dk (t') )rat

(2.23a)dk (t') —gg«E*(t)(d ~+k(t)dk. (t'))

where we have omitted the contributions which correspond to the last term of Eq. (2.19). In the limit p ~0 its contri-
bution will be proportional to terms of the form

(2.23b)

Z

Such terms are omitted because they are of the order of the difference ( 5="/5p" ) r —(54"/5p" ) r.
We are searching for an effective one-particle equation for (c (t)d (t') ) r in Eq. (2.23a). For this purpose we use a

screened Hartree-Fock approximation. Introducing the operator

G '(k, t;k1, t, )=5(t t, }— i ——Es e—
k 5(—k —k, ) —(=k k (t))r +X(k, t;k„t, ),

t 1

(2.24)

(2.25a)

where a yet unknown self-energy X is introduced which has to describe the screened exchange with the plasma. G is

the inverse of the Green's function

G (k, t~1k„t, )= i(Tc—k(t)ck (t, ))r,
where ck(t) contains the time development due to Eq. (2.24}. Furthermore,

fdt, +G '(k, t;k, , t, )G (k„t,;k„t,)=5(t t, )5(—k —k, ),
k)

f dt, QG '(k, t;k„t, )(c„(t,)d„(t'))T=O.
kl

Using G ', Eq. (2.23a) can be put into the form

(2.25b)

(2.25c)

dt, G~' k t k, , t, Ck t, dk t' T= dt, Xk t k»t, Ck t, dk t'
k) ki

5ck (t)
+1 g dk (t') +g (=~(t)ck q(t)dk (t') ) r

k1 5Pk —k1( } r q

—g (=,"(t) ) r(c„,(t)d„(t') ) r gg„E,"(t)(d—, +„(t)d„(t')) r .
P

(2.26)
The self-energy is defined through the requirement

fdt1+X(k, t~k1, t, )(ck (t, )dk (t'))r+i g
The derivative of 6 ' with respect to p' is

5G '(k, t;k, , t, } 5(=k —«, ('))r= —5(t t,)—
5p~ (t, ) 5p~ (t, )

The derivative of Eq. (2.26) with respect to p" yields

5ck (t)
dk (t') =0 .

5p"„„(t ) r

5X(k, t;k, , t, )+
5P" (t2)

(2.27)

(2.28)

5(c„(t)d„'(t') ) r
dt] G k t k]

5P«2( 2} k~ k3

k —k ( l))tT
( ck, (t, )d«~ (t') )r.

5P«2(t2 )

5X(k „t„k3,t3 )—f dt3 g, (ck (t3)d«(t') ) r
5P«~( t2 )

+G ( ( ~~

ddt�

) ( ~x)

(~id'�

) ) G E 4 (ddt ) (2.29)
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The term containing the field E* is neglected because we are interested in the linear response of the pair amplitude
only. Correlations induced by the derivatives 5X/5p" and 5((" c d ) r —(=') r(c d ) T)/5p" are neglected as well;

they describe vertex corrections. With these approximations we find

5( k4 —k~(t4 ) )T
f dt3 QX(k„t, ;k3, t3)(ck (t3)dk. (t')&T ———/ f dt4 y G~(k3, t, ;k4, t4) (ck (t4)dk (t')&T .

(2.30)

The correlation function (5=/5p") z is the retarded dynamically screened Coulomb potential V,". We replace the re-
tarded function V, by its static limit V, which is consistent with Eq. (2.17). Taking the thermal average of the Green s
function yields finally the following approximation for ( [5c (t)/5p"(t )]d (t') ) r:

5ck(t)
dk (t') = f dt) g V,"(q, t t, )G—(k, t;k, , t, )(ck +q(t, )dk. (t'))T

5pq(t ) r

= g V, (q)G (k, t;k„t )(c„+,(t)d„'.(t'))r
kl

=LV, (q)nk(t)(ck+q(t)dk (t'))r .

Now we are able to calculate the functional derivatives

(2.31)

l
q

5([ck q(t)d k+p(t) —ck(t)d k+p q(t)]) z

5p", (t ) p

g V, (q)[in], (tq).(c (tk)d k+p(t) ) T+( —i )n" k+p(t)(ck q(t)d k+p+q(t)) r
I

q

—in (kc& +(qt)d k+p q(t))r —
( i)n" k—+p q(t)(ck(t)d k+p(t))T] X o

= —g V, (q)(nk +n"
k p Sk k+p+ V, (q)(nk+n" k )Sk"+q k+p q,

q

(2.32)

and insert the result into Eq. (2.20). The relation (:-S) r = (:-S) T holds, where the thermal average reduces there to
—PHM-

(
—

)
Tr(e =S)T— (2.33)

With this procedure we obtain the following effective equation of motion for the pair amplitude S:
~ ~ '

e e ' '
h h

Sk, —k+p Eg+ Ek g Vs, q k+q + s —k+p g Vsq —k+p —
q k, —k+p

q

hy ( Vq Vs qnk V$ qn —k+p) k+q, —k+p —
q

q

—g (:-q( )(Sk q k+p Sk k+p q))T—g(1knk n—k+p)Ep(t—) .—
q

(2.34)

The screened exchange energies' are the terms proportional to the Fermi functions nk (i =e, h ), whose quasichemical
potentials /M' are given in terms of the plasma density N=N'=gknk. The potential:- (t) contains the contributions of
the fluctuating field 3 of the LO phonons and the fluctuating plasma density p, therefore it contains among other
things the missing part of the correlation energy. If the whole correlation energy is calculated statically but on equal
footing, by choosing ==0 in the above derivation, the resulting equation for the pair amplitude is

i
~

Sk k+p= Eg+ek+E k+p
—g V, q(nk+nk) —g (Vq —V, q) Sk

q

y V q( k n —k+p)Sk+q, —k+p —
q gk( nk n —k+p)Ep(

q

(2.35)

which is the inhomogeneous integral equation for the
pair amplitude driven by a coherent field, in the form
which has been derived and investigated by Haug
et al."' and Zimmermann et al. ' In Eq. (2.34) the

I

normal static RPA self-energy shifts in form of the
screened exchange term and the Coulomb-hole term are
obtained. Naturally the procedure which gives the
Coulomb-hole term can be used only if the static limit
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g ( Vq
—V, q) = V(r =0)—V, (r =0)

q

is finite, which does not hold if the LO phonons are in-
cluded in the correlation energy. In this case the
Rayleigh-Schrodinger perturbation theory can be used to
obtain the energy shifts, as in Eq. (1.9b). Equation (2.35)
would not allow the calculation of the phonon-plasmon
sidebands, but Eq. (2.34) still contains the dynamics due
to the phonon-plasrnon excitations and thus it allows the
calculation of the sidebands. The thermal average of:"
cannot be evaluated directly, because its solution involves
correlations between = (t) and:-q (t'), whose expectation
value is nonzero, while the expectation value of:- itself
vanishes.

If Eq. (2.34) if Fourier transformed to real space, it
gives in principle the band-edge equation of Stahl and
Balslev. '

III. APPROXIMATE CALCULATION
OF THE PAIR AMPLITUDE

As mentioned in the first chapter, Eq. (2.34) is now
solved by diagonalizing the interaction of the internal de-
grees of freedom of the pair amplitude with the longitudi-
nal excitations = approximately. To facilitate the nota-
tion, we describe only the exciton-LO-phonon problem
for polar semiconductors for demonstrating the deriva-
tion of the general result. The equation to be solved is

k, —k+po ( g + sk +spo —k ) k, —k+po X Vq k+q, —k+po —
q

q

XM ( A (t)(Sk k
—Sk k ))T gk8—(t)8 e

q

(3.1)

where the explicit time dependence of the coherent field

E(R t) 6 8(t)e '-" "" 8(t)=. 1 fo 0
7 p 0 for t(0 '

(3.2)

with frequency coo and wave vector po has been inserted
into Eq. (3.1). The field is switched on at time t =0. Let
the set {g„,s„}be the exact eigenfunctions and eigenval-
ues of the homogeneous part of Eq. (3.1). Then the ab-
sorption spectra are given by

/y„(r =0)f'
a(coo) =(Im g ",5)0,

E.„coo l 5
(3.3)

where only the resonant terms have been considered.
The explicit dependence on the phonon coordinates has
to be eliminated by a thermal average The pref.actor g is
approximately given by (=Eg4qr g ao/cn, where ao is
the bare exciton radius.

Since the exact wave functions g„are unknown, one
has to express e in terms of a perturbation series. The set
of eigenfunction and eigenvalues of the Schrodinger equa-
tion for the exciton without coupling to the phonons is
denoted by {g„,s„}.The absorption constant a is now
expressed by

a(coo) =g'Im g P„(r =0)g (r =0)G„(coo+i5) . (3.4)
n, m

G„(co+i5) is the Fourier-transformed retarded one-
particle exciton Green's function, which describes the
evolution of the state P„at time zero to the state g at
time t, under the interaction with the phonons. So the
band tail which consists of the phonon sidebands is con-
tained in G„(t). A straightforward application of the
cluster expansion to the calculation of G„(t) leads to the
exponential of a time-dependent infinite dimensional ma-
trix. This matrix mixes the internal states of the exciton.

a(coo) =g'Im g ~y„(r =0)
i G ~„(coo+i5)

p=0
(3.5)

G~„ is a similar Green's function as 6„„,but evaluated
for the set {y„,v„}.y„and v„are determined by a pair
equation with the pair interaction V, =E„/soV, which
is statically screened by phonons:

2 2

v„y„(k)= E + + y„(k)

—g V, (k —k, )y„(k, ) .
kl

(3.6)

Here, p = (1/m, + 1/mk )
' is the relative mass and

M=m, +mh is the total exciton mass. The quantum
number n =p, m contains the total momentum p and the
quantum number for the internal states of the electron-
hole pair which is denoted by m. Equation (3.1) for the
electron-hole amplitude can be represented by a Hamil-
tonian &=&0+%1. In real space this Hamiltonian is
given by

% =E-
2m e

and

—V, (r, —
rk )+coL g bqbq (3.7a)

2mb

At = V, (r, rk ) —V(r, rk )— —

++M (b +b )(e ' —e ") .
q

(3.7b)

However, such a complicated form cannot be handled.
In order to overcome this problem, a statically screened
electron-hole interaction potential is introduced, generat-
ing a set of eigenfunctions and eigenvalues {g„,v„}.This
set diagonalizes Eq. (3.1) with respect to the internal
motion approximately, and results in an e8'ective cou-
pling between each of those states and the LO phonons.
With this approximation Eq. (3.4) reduces to
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Ho is diagonalized by [y,v J
=[e'P "P'(r), v' +v" ).

r =r, —
r& is the relative coordinate, and v' is the associ-

ated eigenenergy. R is the center-of-mass coordinate and
v"=p /2M is the corresponding eigenenergy. Time-
dependent first-order perturbation theory for the evolu-

I

tion of the amplitude

S (t)=e ' S (t)

gives

(3.8)

&(v v )t
1S p(t)=S p(0) i —f dt g(V, —V) e

' ' S ((})
0

1

ti+(-i)'f'«, f 'dt, y Y..(q) Y (
—q)(A, (t, )A (t, ))r

q, m&, m2

with

,p+q m p 1 m, p m p+q
(3.9)

and

I[exp[(iplm, )q r]—exp[( —iplm„}q r]) ~p ),
(V, —V). =(y. ~(V, —V)(y. ),
(Aq(t, )A q(t2))&=(N„+1)e ' ' +%Le

1N„=
L

(3.10)

(3.11)

(3.12)

(3.13}

&=fp (r) ' ' p (r)d r is the ordinary scalar product. The integration over t, and t yields

—&(v —v )t

S,(t)=S,(0)+ g ( V, —V)
m&

S~ p(0)

q, m l, m~, $
Y..(q)Y„. ( —quV, —

mm2, p m, p
(e —1)

(vms, p vm), p+q 5~L}( ~ p v~ p)

+ m NL)t

+ S p(0) .
m p, p+q 5t0L)(v~, p+q v p+5NL)

(3.14)

Here the parameter 5 takes the values +1, with N =NL and N+ =NL+1. pt is not possible to take only the diagonal
part of Eq (3 14) as an approximation because the continuum contribution would diverge. With respect to the relative
electron-hole motion the static limit is taken

ml &&v —v

which holds if E„coL. With this approximation (3.14) yields

(3.15)

S p(t) S,(0)=—
q, m, , m, , S

Y (q) Y (
—q)Xs

—i(v +
—v +5~L)t

1 —e P+q
S (0)

(v"+ —v"+5coL)

+ g gY (q)Y ( —q) „ +(V, —V)

—i(v —v )tm, p m, p
e

~m, ,p ~m p

S (0) .

(3.16}

Now the sum over m, can be carried out:

g Y (q)Y (
—q)=M [25 —2(P ~cos(q r)~P )] .

ml
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The contribution of ( V, —V) cancels a part within the large parentheses of the second term on the right-hand side

of Eq. (3.16), if the limit coL ~ oo is used. Explicitly they are

N~
lim +2Mq[P Icos(q r)IP ] „+(P IV, —VIP ) (3.17)

Q7 ~ OC
L 5, q

v v 567p s+q
2

Therefore this contribution is omitted. The remaining part in the second term is a self-energy

it—+2M
Vp Vp + q

667L
S p(0) . (3.18)

Here however, the limit toL~ ~ is not taken, because g M /coL would diverge. By this procedure one avoids the in-

troduction of a cutoff vector in the summation over q, and the localization aspect of the center of mass remains includ-
ed. The first term on the right-hand side of Eq. (3.16) is responsible for the phonon sidebands. We use the following ap-
proximation for the matrix elements

(P [2—2cos(q r)]I/ ) =25 (1—e '" )=f,„(q)5 (3.19)

The cancelations which are derived from exp I
—a q ] in the effective matrix element f (q) are necessary only if exci-

tonic bound. states with a small Bohr radius are treated. a is taken as the Bohr radius, thus f (q)—:2 suSces for our
calculations. Therefore, Eq. (3.16) reduces to

S p(t)=S p(0)+ +2M Es
q, b

tl II
vp Vp + q 5coL

l( v v +567 )t
l —e ~+

(v + vp +5cdL)
S (0)=[l+F (t)]S p(0), (3.20)

where Fz is the cumulant which is independent from m in this case. The cluster expansion is the exponential resumma-
tion of the perturbation theoretic series; this gives

and

S p(t)=e ' S p(0), (3.21)

G» (t)=exp[ iv pt+F—(t)]

for the Green's function G». The sum in Eq. (3.5) can thus be written as

I

u(coo)=(lm i f dt e " g IZ o(r=0)I e ™
0

(3.22)

(3.23)

The time-dependent integrand in the above formula factorizes into two parts. The factor in the parentheses is calculat-
ed from the set Iy O, v 0], which depends on the statically screened Coulomb potential. This accounts for the screen-
ing due to the phonons. The second factor describes an effective scattering of the center of mass, which accounts for
the localization of the center of mass. This factor is responsible for the phonon sidebands of the related spectrum.

The additional scattering due to the plasmons is easily included into the cumulant F in Eq. (3.20); it is in principle
the same calculational procedure. If the plasma density is low, the condition for the application of the quasistatic limit
is not fulfilled for the plasmon energy, which is the correspondant condition to inequality (3.15}. However, for increas-
ing plasma density the situation becomes better, because the exciton energy decreases and the plasmon energy increases.
The last task is to take the screened exchange terms of Eq. (2.34) into account, i.e., one has to calculate the set of eigen-
functions and eigenvalues I g „v' +v"

o] of the following equation:

2

o(k)= Eg+ g V q(nl +q+n k q) J o(k) g V q(1 nk n k)J 0(k+q) (3.24)

The functions n/, and g V, n/, + depend only on k . For these functions the dependence on k will be replaced by a
mean value k for all occurrences in Eq. (3.24). If y o is a bound state, k = —(y DIKING o) is used, and if y o is a
continuum solution, k =p is taken, where p is determined from the asymptotics and y o(r), i.e.,

o(r)-sin[p r+O(lnr }].This approximation is denoted by (n/, ) and (g V, n/, + ) . It is exact for zero plasma
density and for a sufticiently high plasma density in which case the Coulomb potential is completely screened. Thus Eq.
(3.24) can be transformed into real space, which yields

v' y (r)= E — g V, nf, +
2p

hg Vs, qn —k —q
m q m

0(r) —V, (r)(1—(nk ) —(n" k ) )y 0(r) . (3.25)
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The statically screened Coulomb potential V, is ob-
tained from Eq. (2.13a):

(2a +1+m) )(1—m)
bi . = —m(2am+m )

2 2

V,
QPq 67&

e0q2 m2
(3.26) if 0&j&m . (3.29d)

V, (r)=
&0 e""—1

(3.27)

where K =K can be chosen for the most purposes. Let
the bound states be labeled by m; then their contributions
to the probability amplitudes are

which can be transformed to r space directly. In order to
have analytical solutions the resulting potential V, (r) is
fitted to the Hulthen potential

4

p —m
a

2m
with P = (1 nk —n—

k ) .
(Ki)2 e m m

(3.30)

Pochhammer's symbol (z)„which occurs in (3.29c) and
(3.29d) is defined by (z)„=I (z+n )/I (z), where I (z) is
the I function. ' The parameter a, the eigenenergy v'

and the mean momenta k are given by

Iq. (r =0) I'

=(K'') N I2F)(2a +1+m, 1 —m;2a +1;1)l
(K')

&m = am
4p

(3.31)

2F, (a, b;e;z) is the hypergeometric function ' and

(3.28)
and

(3.32)
m

N
—2 y b(m)b(m)

4+K' . „0 ' " 2a +j+n ' (3.29a)

g(m)
0

(2a +1+m )
b' '=( —1)

(2a +1)

(3.29b)

(3.29c)

where the normalization constants N are obtained by
normalizing the wave functions given in Ref. 22 to unity.
The coeScients b™are

The maximum number of bound states is determined
through the condition a )0. The system of Eqs. (3.30)
and (3.31) has to be solved numerically, because they are
interdependent.

Let the states of the continuum be labeled by g. The
wave functions given in Ref. 22 are superimposed such
that they describe standing waves which are normalized
to Dirac s 5 function 5& & by using the procedure which is
described in a book of Sommerfeld. Therefore the cor-
responding probability amplitudes are

Ig
—p'lm[%'(1+y ig)+—+(1—

y
—g)]l' I«1 —2g)I'

Ix~(.=0)l =(. )'
2m2I «1+rr —C}l2 I«1 —

rg
—i4')I'

(3.33)

where the qi function ' is defined by %(z)=(d/dz)ln«z),
and the sum over g means

(2( Klt }2
V(=

2p
(3.36)

y= f "dg.
0

(3.34)
and

The parameter y&, the eigenenergy |&, and the mean mo-
menta k~ are given by

(p2 (2)1/2

i22 —(2(K )2 k2 (3.37)

with

(3.35)P = (1 n' n" —)—
( l)2

IV. RESULTS AND DISCUSSION

The resulting formula for the absorption coeScient is

I

a(~o)=(lm i f e 'd« ' g ly 0(r=0)l'(1 —
&n),'& —&n" „& )e

0
(4.1)

with

Fo(t)= g g 2M (q)Ns(co )

j,q 5=+] q /2M+5co-

—i(q /2M+5co. )t
1 —e

(q /2M+5&v)q )
XO (4.2}
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yo accounts for the zero-temperature linewidth of the ab-
sorption lines and is added phenomenologically.

In Eq. (4.2) the slow time dependence of the electron-
hole density has been eliminated adiabatically. On the
slow time scale the evolution of the density is described
through a rate equation'

Ccj
10

T=

210—
c)N(t) a(coo N(t))I(t) N(t

c}t 'r
(4.3)

For the range of excitation intensities and for the elevat-
ed temperatures which we consider, the linear absorption
is always larger than the two-photon absorption. The
last term is the rate of the electron-hole recombination,
which is assumed to be linear in ¹ ~ is the correspond-
ing decay time. For the wide-gap semiconductors under
consideration the linear decay dominates over the non-
linear Auger recombination rate at all plasma densities
which can be excited by band-tail absorption. The as-
sumed spatial homogeneity is present if the diffusion
length &Dr of the electron-hole plasma is longer than
the crystal length.

For the numerical evaluations we use parameters ap-
propriate for wurtzite CdS. We use masses and dielectric
constants which are averaged over the crystal anisotropy.
The used values are m, =0.2mo, m& =1.0mo, c.„=5.9,
co=8.6, coL =37 meV, and ALT=2 meV, where mo is the
free electron mass. The exciton binding energy obtained
from these values is 31 meV, the T =0 exciton polaron
shift 2acoL is 80 meV, where a is the exciton-Frohlich
coupling constant, which has the value of 1.1. Figures 1

and 2 show the absorption spectra of a weak probe beam
testing a sample with various given plasma densities N for
two different equilibrium temperatures. E„ is the exciton
rydberg, and E is the bare band gap. The densities are

10
3:10

E

10
1

10
0

-360 -320 -280 -2&0

v-E (meV)

-200 -160

FIG. 2. The same as in Fig. 1 but at an equilibrium tempera-
ture of 360 K.

varied over a range which does not result in optical gain.
The 1s-exciton line is smeared out. The influence of the
exchange terms on the position of the 1s-exciton line can-
cels each other to a large extent. Two other sources of
influence on its position remain, namely a red shift
caused by the interaction with the longitudinal excita-
tions and a blue shift which is derived from the decreas-
ing binding energy of the exciton. ' ' When the density
increases, phase-space 61ling sets in, causing a net blue
shift of the absorption edge. The band tail is dominated
by the energy of the LO phonons ~L, unless it is higher
than the plasmon energy co . Nevertheless, as the density
increases, the tail broadens.

In the connection with Urbach's rule one frequently
discusses the quantity cr =kit Tc}ln(a(coo))/c)coo, which is
almost temperature independent in the high-temperature
regime. kz is Boltzmann's constant. In Fig. 3 the calcu-
lated plasma density dependence of o. is shown. In the
4w-density region o is practically constant. After some
critical density has been exceeded o decreases with in-
creasing density. From Fig. 3 one obtains the heuristic
relation

10
1

10—0

-240 -200 -160

u- E (meV)

I r&)

20—

18 —g

16—

14—

10—

I I f I 1 I I r
(

CdS

T= 180 K

T-360K

ilail

& i&i I I I I I I ill I i

FIG. 1. Calculated absorption spectra at the absorption edge
for various plasma densities N with an equilibrium temperature
of 180 K. The absorption a is induced by the interaction with
LO phonons and plasmons. It is plotted vs the light energy co

measured from the bare band gap Eg .

1
016

1
017

N(cm )

1018

FIG. 3. Steepness parameter o as a function of the plasma
density N for the equilibrium temperatures of 180 and 360 K.
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cr(T, X)=cr(T, O) —0. 17 ln 1+
0

2V'o ——5 X 10' cm . (4.4)

CdS

T=360K
T= 02n

I I I I
I

a(coo, 2V'(I ) ) ~

0.37
exp

'
(a)o E+E)—

k~T

For zero plasma density and T=360 K the value of o is
1.9, which has to be compared with the experimental
value of 2.2 for CdS.

Next we calculate for a single stationary beam the ex-
cited plasma density self-consistently. Figures 4 and 5
show the resulting absorption spectra (straight lines) for
various intensities. The dotted curves are the low-density
curves from the Figs. 1 and 2, which we show in order to
facilitate the comparison. The spectra exhibit in the tail
region two distinctly different regions. The low-energy
region of the absorption tail changes very little with in-
tensity and shows no saturation. In the successive high-
energy region of the absorption tail a pronounced satura-
tion occurs with increasing light intensity. The absorp-
tion saturates in this frequency range, when it exceeds a
critical value. The parameter o is independent of the
temperature and of the density in the saturation region.
Its numerical value is 0.37+0.03.

Figures 6 and 7 show the pump-intensity dependence
of the absorption a for various pump frequencies co0. The
experimental situation equals the previous one. The
slightly increasing absorption in the low-intensity regime
is caused by the energy renormalization due to the opti-
cally excited e-h plasma. In the saturation region the ab-
sorption vanishes with increasing density as &I. In this
region the saturation is described by the heuristic formu-
la

10
2

10

10
0

I I I I, I

-360 -320 -280 -240 -200 -160

u-E (meV)

FIG. 5. The same as in Fig. 4 but at an equilibrium tempera-
ture of 360 K.

The curves in Figs. 4-7 are calculated with ~=0.2 ns.
Equation (4.4) shows how the curves will scale for
different recombination times ~. Our theoretical treat-
ment explains indeed the experimentally known fact that
it becomes increasingly difficult to saturate the absorp-
tion if the pump beam is tuned far below the band gap.
However, at the present time no systematical measure-
ments of the band-tail absorption saturation are available,
which could directly be compared to our results. The
saturation of the resonant exciton absorption has been
measured for CdS (Refs. 28 —30) and for GaAs. ' The ob-

with E =30 meV . (4.5)

10
3

Cd 5

I

- -120 ITIeV

10 =
= -155 meV

Cd J
T-180 K

T= 0 2 nse(:

10
E 10 =

-190 IT)eV
" .....-.- ~ ~ ~--".....

10—1

10 =1

u-E = -220 meV

10
0

-240 -200 -180

u- Eg(meV)

-120
10

I I I I I I I

10 1Q 1Q 10 1Q 10 10'

I (MW cm )

FIG. 4. Self-consistently calculated absorption spectra for
various light intensities with an equilibrium temperature of 180
K.

FIG. 6. Self-consistently calculated absorption depicted vs

the light intensity for various frequencies of the light. The equi-
librium temperature is 180 K.
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3 I

10
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-250

~~

meV

Y-me-

10
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u-E, = -310 meV

10 =I

10

I I I

10 10 1Q 1Q 1Q

I (MWcm I

T = 360K
&e 02nsec

I

10 10

the intensity-dependent changes of the absorption and re-
fraction.

In summary, we have calculated the band-tail absorp-
tion of a polar semiconductor for arbitrary plasma densi-
ties in the high-temperature regime, where the plasma is
generated by a stationary pump beam and relaxes fast
into a thermal distribution. For zero plasma density the
band tail is described by Urbach's rule. Our theory
reproduces the measured slope parameter o. quite well.
We have shown that under high-excitation conditions
this rule still holds, but the slope parameter 0. becomes
plasma density dependent. We are not aware of sys-
tematic measurements in order to check these results in
detail. Our theory yields the saturation of the absorption
in the band-tail region. It explains, in accordance with
the experiments, that it becomes increasingly difficult to
saturate the absorption if the pump beam is tuned far
below the band gap.

FIG. 7. The same as in Fig. 6 but at an equilibrium tempera-
ture of 360 K.

served absorption decrease determined in Ref. 29 is in
agreement with our calculations. The transmission ex-
periments on thin CdS platelets ' cannot be compared
directly with our results, because they are determined by
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