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Microscopic theory of optic-phonon Raman scattering in quantum-well systems
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A microscopic theory of Raman scattering by optic phonons is worked out systematically, on the
basis of recent advances in our knowledge of the electronic and phonon structure of quantum-well

systems. With our recently reformulated analytical expressions for the optical modes, explicit ex-

pressions for the Raman tensor for the various phonon modes (interfaces as well as bulklike LO and
TO modes) are derived, displaying in full the selection rules regarding polarization configuration,
phonon parity, and the phonon-scattering mechanisms. As the theoretical results show, certain
specific features of quantum-well wave functions are of special importance for a quantitative theory.
Thus heavy- and light-hole mixing e6'ects, and the angular momentum state of the excitons, can play
a decisive role in determining the predominant scattering channels. These are illustrated by numeri-

cally calculated results for various intra- and intersubband scattering channels. Special emphasis
has been given to the Frohlich-interaction-induced scattering, which is dipole allowed in multiple
quantum wells owing to the barrier penetrations and heavy- and light-hole mixing.

I. INTRODUCTION

During the past decade, extensive investigations have
been carried out on Raman scattering in quantum-well
systems. ' The observation of the effect of superlattices
on the acoustic phonons in the Raman spectrum was first
reported in 1980. The first unambiguous observation of
the confined optical modes in GaAs-Ga&, A1, As super-
lattices was made in 1984. Interface optical modes were
discovered in 1985. Several review articles on the sub-

ject were given recently by Klein, ' by Cardona, by
Jusserand and Cardona, and by Menendez, which
demonstrated that through Raman scattering studies a
basic understanding of the phonon structure of superlat-
tices was established. Besides, resonance scattering has
also been exploited in a variety of ways to gain informa-
tion on the electronic structure and electron-phonon in-
teraction in superlattices. " On the theoretical side,
phonon modes of superlattices have been calculated on
various models;' ' selection rules regarding phonon
symmetry, and the nature of electron-phonon interaction
(Frohlich interaction, or optical deformation potential),
for different polarization schemes (polarized or depolar-
ized) have been discussed in relation to experiments. ' '
Beyond these, however, the theoretical considerations
presented for the interpretation of Raman scattering ex-
perirnents are often fragmentary or speculative. It cer-
tainly appears that the lack of a systematically presented
microscopic theory of Raman scattering in quantum-well
systems is hampering further in-depth investigation on

the subject.
The fact that a proper treatment of the subject is not

already available is not altogether surprising. As we shall
see, it depends on a detailed understanding of the whole
complexity of the phonon modes and of the electronic
structure of superlattices, which received proper theoreti-
cal treatment only in the past few years. '

In the following, we shall present a systematic micro-
scopic theory for optical-phonon Raman scattering in
multiple quantum wells (MQW's). In view of the state of
available literature on the subject, we shall endeavor to
present our subject in a self-contained manner. Thus we
shall start with a description of certain relevant basic
features of subband wave functions of quantum-well elec-
trons. Analytical expressions which we have recently de-
rived for the confined bulklike optic-phonon modes in su-
perlattices, and the corresponding electron-phonon in-
teraction, are then introduced. Then explicit formulas
for calculating the Rarnan tensor are derived for Frohlich
interaction as well as for deformation-potential scatter-
ing, and for intermediate states consisting of free
electron-hole pairs. From the formulas thus derived, the
basic selection rules regarding phonon parity and scatter-
ing mechanisms in various polarization schemes follow
directly. In a separate section, corresponding expressions
for the interface modes in superlattices are presented.
For exciton-mediated scattering, we shall limit ourselves
to comments on certain main features.

The dimensionless Raman tensor for first-order pho-
non Raman-Stokes scattering is usually expressed as
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where for simplicity we have explicitly indicated only the
electronic states involved in the initial, intermediate, and
final states of the whole system (phonon + electron +
phonon), namely, ~0) for the ground filled valence-band
state and ~a ), ~P) for the electron-hole pair states. In the
formula Hzz is the electron-phonon interaction operator,
p is the single-particle momentum operator, and q; and

qf denote the incident- and scattered-light wave vectors,
respectively. Eo represents the incident photon energy,
and %coo is the energy of the emitted phonon. We shall
suppose that the superlattice (MWQ's) occupies a total
volume of N cells of volume Uo, with N cells along each
of the x,y, z directions.

The Raman tensor is made up of terms associated with
various intersubband or intrasubband scattering of an
electron or a hole. In the following, how such contribu-
tions are related to the subband structures will form the
central subject for discussion.

The Frohlich-interaction-induced scattering will be
given special emphasis as it is no longer dipole forbidden
as in bulk materials, but depends on certain specific
features of quantum-well wave functions.

Some calculated results will be given to illustrate cer-
tain basic points discussed and to compare with experi-
ments.

II. CERTAIN BASIC FEATURES OF ELECTRON
AND HOLE SUBBAND WAVE FUNCTIONS

IN QUANTUM WELLS

Our treatment will be restricted to electron and hole
states in decoupled quantum wells. The conduction- and
valence-band electrons will be treated in the effective-
mass approximation. The effective-mass wave function
for conduction-band electrons in a single quantum well
will be represented as

[El (g)) = 3 '~~e ~' q7(z)[l' ($)) y (2a)

($)) g &~2e II L i f2

(2b)

where k, is restricted to the minizone:

where 1' and 1 are spin functions parallel and antiparallel
to the superlattice axis along z. k~~ is the wave vector in
the x-y plane. A =(¹0)is the cross-section area. Nor-
mally a subband index would be appended; we shall often
omit it to reduce formal specifications to a minimum.
When we need to specify another state belonging to a
different subband, we usually just add an overbar.

To represent a superlattice system, the above
quantum-well states will be formally built into the ex-
tended Bloch wave functions. Suppose the superlattice
has a period of d =mao and N =mL, so that L is the to-
tal number of periods along z; the extended Bloch func-
tions can then be written as

k, =2m s /(Ld ), L—/2 & s & L /2 .

Owing to the fourfold degeneracy of the valence band,
the effective-mass wave functions of valence-band states
are four-component spinors. In a quantum well, there
are a pair of degenerate states for a given k~~ which can be
represented as follows:

[H-) =a-'"e' i'

'a(ki, z)exp( —i8) '

b (kii, z)

c (ki, z)exp(i8)

d (ki, z)exp(i28)

'd (ki, z)exp( —i8) '

c (kii, z)

b (ki, z)exp(i8)

a (ki, z)exp(i28)

(3a)

Several points need explanation.
With the wave vector k~~ expressed in polar coordinates

(k~~, 8), the component functions a, b, c, and d only de-
pend on k

~~.
The simple explicit dependence on the direc-

tion of k~~ through the e'" factors rejects symmetry in
the x-y plane, where we have used a somewhat modified
Kohn-Luttinger Hamiltonian isotropic in the x-y plane.
This isotropy approximation simplifies our theoretical
presentation and yet does not materially affect our main
results (referring specifically to various selection rules fol-
lowing from the Raman tensor).

The pair of degenerate states denoted by H +—differ in a
reversal of the ordering of the a, b, c, and d functions.
These functions are alternately even and odd in z. For
definiteness, we designate as the plus state that which has
first and third components odd and second and fourth
components even. In other words, in the wave functions
given in (3), a and c are odd and b and d are even.

A basic feature of the hole subbands in quantum wells
is their wave function's behavior at k~~

=O. For each sub-
band, at ki =0, only one of the four components is non-
vanishing and this component remains the dominant
component for small ki (compared with 2m/do, do is the
quantum-well width). The wave functions with first or
fourth components (analogous to +—,

' spin coinponents)
nonvanishing at k~~

=0 describe heavy holes, and wave
functions with second or third components (analogous to
+—,

' spin components) nonvanishing at ki=0 describe
light holes. The hole subbands are named heavy- or
light-hole bands according to their wave functions at the

k~~
=0 limit. For nonvanishing k~~ values, all four com-

ponents of the wave function are generally nonvanishing.
This is usually viewed as a heavy- and light-hole mixing
effect from the point of view of k.p perturbation as ap-
plied to the subbands.

Expressed formally as Bloch functions appropriate to
the superlattice, the valence-band states should be written



41 MICROSCOPIC THEORY OF OPTIC-PHONON RAMAN. . . 5827

~H+) =(L~)-'"e' ~~'

a (k„,z —id)exp( —i 8)

b (k~~, z —Id)
xW c (k~~, z —Id)exp(i8)

d (k~~, z —Id)exp(i28)
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e
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e

III. CONFINED OPTIC-PHONON MODES
AND ELECTRON-PHONON INTERACTION

(3b)

negative ions. 4„(z) describes the various-order confined
modes. Their explicit expressions are given by the fol-
lowing even or odd functions:

4„(z)=cos(nmz/w) —( —1)" ' n =2,4, 6, . . .

and

4„(z)=sin(p„mz/w)+C„(z/w), n =3,5, 7, . . .

which are supposedly confined to a layer—w/2&z &w/2, where w =do+ao. The 4„(z) func-
tions are such that they and their derivatives both vanish
at the boundaries. It follows from this that p„have the
following values close to the integers n:

p3 2 8606~ p5 4 9 18~ p7 6 95&

and C„assume the following values close to +2 or —2:

C3 1.9523, C~ = —1.983, C7 = 1 ~ 992,
Relatively realistic calculations of the phonon modes in

superlattices have become available in recent years. '

However, the use of such numerically calculated phonon
modes would make the theoretical treatment of Raman
scattering very unwieldy. The often-quoted optical
modes derived from the dielectric continuum model'
would be much more convenient to use. But, as we have
shown in a recent paper, they doe not, in fact, correspond
to the realistic modes. ' However, by following clues
suggested by results of calculations with a microscopic
model closely paralleling the continuum model, we were
able to obtain modified expressions for the optic-phonon
modes, which are still within the framework of the con-
tinuum model, yet agree closely with the modes calculat-
ed from the microscopic model (within certain limits to
be mentioned later).

As in the usual dielectric continuum treatment, the
modified bulklike modes likewise vibrate with the bulk
LO and TO frequencies and are confined to either one of
the layers constituting the superlattice. Similarly to the
case of the electronic wave functions, by introducing a
wave number k, along the superlattice axis to correlate
the phases of modes confined to different layers, the
modes can be rendered in a form conforming to the
periodic structure of the superlattice. Thus the optical
displacement vector of a LO mode has been obtained in
the following form (with the y axis taken along k) ):

u(r)=(MN I„) ' g ia4„(z——Id)/az
1

k~~4„(z —Id)

Xe " *
Q '(kn) (5)

With the y axis along k~~, the TO2 modes are polarized
along the x axis. Their displacement vectors are found to
be well described by simple sinusoidal standing waves,
namely

1/2

u(r)=(MN )
2d
N

%„(z—Id )

Q"'(k,.), (6)

I„ is a normalization constant to be determined from
4„(z) by

&„=d ' f " [k2e'„+(ae„/az)']dz .

TO modes are of two types, polarized parallel and per-
pendicular to the k~~-z plane, which we shall designate as
TO1 and TO2 modes, respectively. The TO1 modes can
be expressed in terms of the above-defined 4„(z) func-
tions as follows:

u(r)=(MN I„)
I

0

—a4„(z —Id ) /az

where %„(z) are sinusoidal standing waves confined to a
layer —w/2&z & w/2:

Xe " ' Q" (kn) (4)

cos( n m.z /w), n = 1,3, 5, . . .
4 (z)= '

sin(nmz/w), n =2,4, 6, . . . .

(7a)

(7b)

Q (k, n)=
2~1 o, n

[b+(k)+b (
—k)] .

In (4), M represents the reduced mass of the positive and

where Q (k, n) is a complex normal coordinate, related
to the creation operator b+(k) of a k mode and the an-
nihilation operator b ( —k) of a —k mode as follows:

1/2

We have verified that the above analytical expressions
for the bulklike optical modes agree closely with the
modes calculated from the microscopic model (for zero-
phonon dispersion ), so long as k~~ &n/do In other.
words, the phonon wavelength must be larger than the
confining length do. This is certainly true for phonons
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u„,=i6-'"[(x+il') 1&—2z»1&],

u, q2=6 '~ [(X iY)~1 &+2Z—»g &],

u 3&~=i2 ' (X iF)» 1 &,—

(9)

where X, Y,Z are spatial functions transforming as x,y, z
under the Td point-group operators. It can be readily
proved by the usual symmetry analysis that the only non-
vanishing integrals of the U, U, U, functions of the de-
formation potential taken between the X, Y, Z functions
are the following:

relevant to Raman scattering.
Since the 4„ functions correspond to wave vectors

nm. /do, one sees from (4) and (5) that for the relevant
long-wavelength phonon modes the LO modes are polar-
ized essentially along the z axis and the TO1 modes are
polarized essentially along the y axis. It is interesting to
note that the polarization features of these LO and TO1
modes differ radically from the case of bulk materials.
Thus, here the LO modes are polarized perpendicular
rather than parallel to the really operative wave vector k»»

(k, is purely formal), and the TO1 modes are polarized
parallel rather than perpendicular to the wave vector k»».

Next, we derive explicit expressions for the electron-
phonon scattering matrix element required to calculate
the Raman tensor; first for deformation-potential interac-
tion, then for Frohlich interaction.

The deformation-potential interaction arises from the
perturbation of the lattice-periodic potential by the
optic-phonon modes. A long-wavelength optical mode
causes a "local" change (in the macroscopic sense) in the
lattice-periodic potential, essentially the same as that due
to a uniform relative displacement between the positive
and negative ions. In linear approximations, the change
of the lattice-periodic potential can be represented as

u U(r)=u„U„(r)+u U (r)+u, U, (r) .

The effective-mass wave functions are in the nature of
envelope functions. In forming the matrix elements of
the deformation potential, we should, of course, start
with using the proper wave functions, which are the
effective-mass functions multiplied by the corresponding
band-edge functions. In evaluating such matrix elements,
the well-known practice is to neglect variations of the
slowly varying factors (in the present case, the effective-
mass functions and the phonon displacements) over a lat-
tice cell, so that the fast varying factor with the lattice
periodicity can be replaced by their integral average.
Thus the deformation-potential interaction can be
characterized by such integral averages of the functions
U, U, U, taken between the band-edge functions, which
can be represented as

&&~U»t&=U ' J dru, 'U u, , (g)

where the u„u, functions represent normalized band-
edge functions of the bands concerned. For hole scatter-
ing, the fourfold-degenerate valence-band-edge functions
can be represented as follows:

u3q2 =2 ' (X+i F)» f &,

0 —1 0 0
—1 0 0 0
0 0 0 1

0 0 1 0

(10)

0 —i 0 0
i 0 0 0

0 0 —i 0

0 0 —i 0
0 0 0 —i

i 0 0 0
0 i 0 0

(12)

Owing to symmetry, the integrals of the U functions be-
tween conduction-band-edge functions vanish.

On the basis of these deformation potentials between
the band-edge functions, explicit expressions for the
phonon-scattering matrix elements HEI can be derived.
For this purpose, a and p have to be more explicitly
specified. a stands for an electron state E(k') paired
with a hole state H +—(k) and is accordingly represented
by a Slater determinant of the filled valence band, in
which the hole wave function H —(k) is replaced by the
electron wave function E(k'). Similarly, p will stand for
an electron state E(k"') paired with a hole state H +—(k")
and is represented by a corresponding Slater determinant.
However, in specifying these states, their wave vectors
will be explicitly indicated within brackets as in the above
only when considered really necessary.

As the electron-phonon interaction is in the nature of
single-particle interaction, its matrix elements between
the p and a determinantal wave functions can be
straightforwardly worked out in terms of single-particle
matrix elements, namely

&plH la&=&„+ „+&EIH,IE&-
(13)

Consider first the LO modes. As noted earlier, for the
modes relevant to Raman scattering, they are polarized
essentially along the z axis. So for deformation-potential
scattering, we need only consider the z displacernent from
(4), namely

& 1'IU. lz&=&zlU. I»=&zl&, lx&

=&X[U, »z&

=&x/U, [r&

= &1IU. IX & =C,
where C expresses the common value of the nonvanishing
integrals. Making use of this result, one readily finds that
the integral averages taken between the four band-edge
functions (9) can be expressed in matrix form as follows:
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u, (r)=
2McoLoN I„

t 1/2

g [—84„(z—id)/c)z]
1

—ik y —ik ld0 0

Xe

X[b+(k')+b (
—k')],

(14)

tive indices (say, I, I', and I") running over the L periods.
On integration, clearly only their corresponding terms
(i.e., I =I'=I" terms) overlap and make a nonvanishing
contribution. Moreover, these contributions are readily
seen to be identical apart from a phase factor
exp[i( k—, k—, +k,")Id], which, when summed over I,
just gives a 5 function expressing conservation of the to-
tal wave vector:

where the phonon wave vector is specified as k, so as to
distinguish it from the wave vectors of the electrons or
holes. When we consider forming a matrix element
&H+IHzL IH+ & of the deformation potential caused by
u, as given in (14) between hole wave functions H+, H +

of the form (3a), they are all sums of terms with respec-

k,"=k,+k,

along the z axis. Apart from this, writing down the
scattering matrix element for LO-phonon emission ac-
cording to (13), with the help of (14), (12), and (3a) is
straightforward, giving

&PIHsL, la&Lp=i5(k" —k —k )D(N I„) '
( —&aI@„'Ic&e

' &bl—@'„ld &e
'

+&cia„la &e 'e+-&die„lb &,

where the deformation potential is characterized by
' 1/2

C A'

v'3 2McoLp

(15)

with the dimension of energy and 4'„represents the derivative of the function 4„(z).
For the TO1 modes given by (5), we need only consider its y displacement:

Q (r)=
2M co~oN I~

' 1/2

g [—iB4„(z Id)/dz]—e '~
' [b+(k )+b ( —k )] .

I

(16)

The only essential difference from the LO case is that the relevant deformation potential is now (11) for y displacement.
Thus we obtain for TO1 phonon emission the scattering matrix element:

&PIHg, la &,o, =5(k"—k —k')D (N'i„) '"(~,o/~, o)'"(&a I+'„Ib &e"—& bl@'„la &
"

—&cia'„Id&e' +&die'„Ic&e '
)5~g .

The TO2 modes given in (6) have only the x component. With a deformation potential due to x displacement (10), we
obtain for TO2 phonon emission the following scattering matrix element:

& plHELla &&pz=5(k" k k)DN — —(2d/m)' (co /cg )' (&aI+„Ib &e'e+ &bl+„ la &e

—&cl+. Id&e" &dl+. Ic&e '—
)5~@ .

It should be noted that in writing down the e'" factors in the above matrix elements, we have neglected the small
difference between k(k, 8) and k"(k",8") (they differ by the phonon wave vector k ). Strictly speaking, one should
have distinguished between e'" and e'" corresponding, respectively, to the H+ and H + holes, whereas in the above
matrix elements, such difFerences are ignored.

In the preceding, matrix elements have been written down only for H+~H + scattering. Similar matrix elements
for H —+H, H ~H, and H ~H scatterings can be directly obtained by reversing the ordering of a, b, c,d or
a,, b, c,d, or both in the above formulas.

As in bulk materials, the LO modes are associated with an electrostatic field. The electrostatic potential correspond-
ing to the LO mode given in (4) is given by

V(r) = —(N UOI„)
' [4'(coLp corp)/e„]—'~ g 4&„(z —Id)e " '

Q (k n) .
I

(19)

The Frohlich interaction with electrons is just —eV(r). By Frohlich interaction, the LO modes can scatter either an
electron or a hole, and the matrix elements can be worked out according to (13). As in the present case the electron-
phonon interaction, unlike the deformation potential, can be considered as slowly varying, so in the integration the
band-edge functions only provide an orthogonality factor between distinct band edges. We obtain directly from V(r)
given in (19) and the effective-mass wave functions (2b) and (3b) that
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&~lail&&LO, F e(& Uo~ )
' [2~(~~Lo ~so)«]' (A/~Lo)'

x [5( —k'"+k' —k') & q I e„Iq)6„„
—@k"—k —k')(&al&. Ia &+ && I& „I&&+ &cI@„Ie)+&dI@„Id) )5 —] .

IV. PHOTON INTERACTION MATRIX ELEMENTS
AND BASIC %'AVE-VECTOR RELATIONS

The photon interaction matrix element,

&uI ge" "p, IO&,

exp[i (
—k,'+ q,,+k, )Id],

which, on summing over /, gives just a factor

5( —k,'+q;, +k, ), (21)

between the a-determinant wave function and the Slater
determinant for the filled valence band reduces simply to
the single-particle matrix element

&E(k')1'&le ' plH+—(k)),
where, for later convenience, we have explicitly indicated
that the electron state may have 1 or 1 spin, just as the
hole may be H+ or H

In working out the above matrix element, the electron
and hole functions E and H as given —in (2b) and (3b) are
both sums of the terms with respective indices (e.g. , l, l')
running over the L periods. On integration, clearly only
mutually corresponding terms (i.e., I =1') overlap and

make a contribution; moreover, it is readily seen that
these contributions are identical apart from a phase fac-
tor of the form

expressing conservation of the wave vector along the z
direction. In this connection, we should note that the
hole should be associated with —k. Apart from the 5
factor (21), the matrix element is reduced to that for a
single quantum well, to be worked out with the simple
quantum-well wave functions given in (2) and (3) multi-
plied by the appropriate band-edge functions.

As before, out of H* we need only to work out explic-
itly the case of H+; the result can be easily carried over
to the H case by reversing the order of a, b, c,d.

Writing the integrals of p taken between the band-edge
functions as

& tllpl —,
' &=uo ' J druo flpu3/z

etc. , we obtain, on further integration over the slowly
varying factors,

&E(k')1 LIe ' pIH+(k)) =5( —k'+q, +k)[ & 1'llpl-,' &(a)e

+ & lllpl-, ' &(&)+ & llIpl —
—,
' &«)e'+ & 1 4 Ipl

—-', &(d)e"'] . (22)

In obtaining (22), the integration over the x-y plane just supplements (21) to give the 5 function. The z integration
lg Z

reduces to essentially overlap integrals between the electron and hole wave functions apart from a phase factor e ' . As
the photon wavelength is much larger than the quantum-well widths, this factor will be set equal to I (dipole approxi-
mation in the superlattice). For the overlap integrals, we have introduced the simplified notations

(a ):—J y*(z)a (z)dz,—d/2

etc. The photon interaction matrix element

«IXe" p, In&=&H-(k")Ie '"'plE(k- )11)&

can be worked out in an entirely similar manner, with the result

&H +(k'")Ie pIE(k'")1 1 ) =fi( —kf' —qf+k"')( & —,
'

IpI 1'l )(a *)e'

+ & —,'Ipll & &(& ')+ & —,'Ipl t'l )(c *)e

+ &
——', Ipl t 1 &(d ')e "') (23)
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TABLE I. Integral of p between valence-band-edge functions and conduction-band-edge functions.

Electron spin up
I 1

2 2

Electron spin down
1 1

2 2
—3

2

(uolp. li)
(uolp, li)
(u, lp, li )

P/&2
iP/&2

0

0
0

—iP&2/3

p/&6
—ip/&6

0

ip/&6

0
0

P&2/3

EP/&2
P!&2

0

The meaning of the symbols for the overlap integrals is

readily inferred, namely
d/2(a')= f dza*(z)y(z), etc .—d/2

Taking account of the symmetry of the valence-band-
edge functions (9) and conduction-band-edge functions
u 0 1,uo l, the above band-edge integrals of p are easily ex-

pressed in terms of the single nonvanishing parameter:

p=uo ' f druop„X=vo ' f druop I'
0 0

=U,-' f dru, p, Z
Up

as given in Table I.
In the preceding, we derived the individual matrix ele-

ments in the Raman tensor. The successive transition
matrix elements for O~a, a~P, and P~O each contains
a 5 function, expressing conservation of total wave vec-
tor. Coinbining these three 5 functions contained in Eqs.
(22), (23), and (20) [or (18), (17), and (15)], we finally have
a basic wave-vector equation, relating the wave vector of

I

the phonon, k, to those of the incident and scattered
photons, q; and qf.

(24)qf ——q,
—k'.

V. SYMMETRIZED RAMAN NUMERATOR (SRN)
AND SELECTION RULES

Apart from establishing the basic wave-vector equation
(24), in the calculation of the Raman tensor the photon
and phonon wave vectors can be considered as negligibly
small (we have already made this approximation in writ-
ing down the phonon scattering and photon interaction
matrix elements). In other words, the differences between
the wave vectors k, k', k", and k"' for the intermediate
electron and hole states can be ignored. Thus in
enumerating the intermediate states in the Raman tensor,
apart from covering the various electron and hole sub-
bands, there is only a single k to be summed over. %ith
this sum over k expressed as an integral in k space within
the minizone in the usual way, we can express the Raman
tensor as

ao

2'

2
kM

m, ' y y f dk~~ k~~t[EO
—EH(k~~)][EO EH(k) )

—f—ico()])
H, HE, E

g'-g —f«[ &H+I plE1&( &, g(K+1K„IH—+
&

+fi„+ „-+&EIH IE &)&Et lplH+ &

+ &K+Iply»( n«&H+I—H«IH+ &

+S„. .(EIH„IE&)(EglplH'&] (25)

where EK(ki) and EH(ki) have been introduced to
represent the excitation energies creating the electron-
hole pairs E(k),H(k) and E(k),H(k). g+—is used to in-

dicate that the state shown as 0+ should be summed
over the degenerate pair H , and g —indicate—s the same
with the barred states. In the formula, for later conveni-
ence, the sum over the spin-degenerate electron states is
explicitly displayed, where we have made use of the fact
that the phonon scattering does not change the electron
spin. In conformity with the isotropy approximation in
the x-y plane, the k-space integration in the x-y plane is
carried out in a circular region of radius k~ to be deter-
mined by

'2

The trio of matrix elements in the numerator of the

Raman tensor is the basic element in constructing the

Raman tensor; for want of a better name, we shall just la-

bel it the Raman numerator (RN). In expression (25) for

the Raman tensor, the sum over the intermediate state is

so ordered that the second factor enclosed in brackets is

just a sum of the Raman numerator over intermediate

states which are mutually degenerate. The degeneracies

express the symmetry inherent in the electronic structure.
Hence the sum of the Raman numerator over such de-
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generate states will show up the symmetry properties of
the Raman tensor and will be called the symmetrized Ra-
man numerator (SRN). The rest of this section is devoted
to working out the SRN for various polarization
configurations.

Following the usual convention for labeling polariza-
tion configurations, JVs~(ij ) will be used to denote the
SRN for incident light polarized along the i axis and scat-
tered light Polarized along the j axis. Thus JVsz(ij) can
be represented as

a,„(ij)=g- g — Jde[ji]( fi—„&-H'IH«IH+ &+fi„.„.&E-IH«IE &), (26)

where we have introduced the notation

[J~]=&H 'Ip, IE1&&Etlp; IH' &+&H 'Ip, IEl&&Ellp, lH'& .

Consider first polarized scattering, namely, incident and scattered photons similarly polarized. With the help of Eqs.
(22) and (23), and the values in Table I, we find for the polarized configurations

[xx]= IPI —,'((a ')(a )+(d ')(d)+ —,'(b ')(b )+—,'(c *)(c))

2i8 —2i0
+ —((a *)(c)+(b ')(d))+ ((c ')(a)+(d')(b))

2 3 2 3
(28}

[yy] = IPI' -'((a ')(a )+(d *)(d)+-,'(b ")(b )+ ,'(c '—)(c))
l

2i8 —2i8
—((a ')(c )+(b ')(d ))— —((c ')(a )+(d ')(b ))

2 3 2 3
(29)

[zz]=-,'IPI'((b *))(b)+(c*)(c» . (30)

To obtain the SRN according to (26), these have to be combined with the phonon scattering matrix element, then
summed over the degenerate states.

Consider first the case of Frohlich scattering by the LO modes. Each polarization configuration has to be dealt with
separately.

For the polarization (xx}, as the Frohlich scattering matrix element (20) does not depend on 8, the e —' terms in

[xx] drop out on 8 integration. Carrying out the sums g —+ g +—according to (26) just means summing over expressions
obtained by reversing the order of a, b, c,d and the order of a, b, c,d For electr. on scattering, the sum g —g "—with
5 + —+ just gives a factor of 2. For hole scattering, as the electron wave function remains unchanged, for the products

of overlap integrals not to vanish altogether, the parities of the H and H hole components must be mutually matched.
This means that in carrying out the sum g —+ g +—

, we need only consider simultaneously reversing the order of a, b, c,d
and a, b, c,d, which does not change either [xx] (excluding the e* ' terms) or the hole scattering matrix element (20).
So g +—g +—again just doubles the value. Thus from (28) and (20), we get

~sa' (xx) = elPI'(N" or. ) '"[4~(~Lo—~TO) ~e ] (~~2~LO)'"

X[fi„-&pie„lp&—fi„-(&ale„la &+&hie„lb &+&cia„lc&+&die„ld &)]

X[(a ')(a)+(d *)(d)+—,'((b *)(b)+(c ')(c))],

where superscripts have been appended to indicate the phonon mode and the nature of interaction (F for Frohlich).
[yy] differs from [xx] only in a change of sign of the e — ' terms, which, as we have seen, are irrelevant to the result.

So we have

Wg F(yy) =Wg F(xx) .

Working out the case of (zz) follows an entirely similar line of argument, and the following result is obtained:

JV" ' (zz)= 'elPI (N U I„) ' [4—7r(co —co )Ie ]' (A'/2' )'

X[5HH&yl+„ly& —5~E{&al@„la&+&bI@„Ib&+&cl@„lc&+&dl@„ld & }]((b ')(b)+(c ')(c)) .

(32)

(33)
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It is to be noted that the results (31)—(33) imply that
4„(z) must be even in z. For the expressions not to van-

ish, y and y, as well as the corresponding hole com-
ponents, must have the same parity; the matrix elements
of 4„(z) would thus all vanish for 4„(z) odd in z.

In these polarized configurations, all deformation-
potential scatterings are not effective. This is immediate-

1y evident with the TOl and TO2 phonon modes, for
their scattering matrix elements given in (17) and (18}
contain only terms with e +—' . When they are multiplied
to [xx], [yy], and [zz], as given in (28}—(30), the resulting
terms all contain e —' or e+—' and hence vanish on 0 in-

tegration.
With the case of LO deformation-potentia1 scattering,

we find that the scattering matrix element (15) contains
only terms with e —' factors. This multiplied to [zz],
which does not depend on 0, clearly vanishes on 0 in-

tegration. The same matrix elements multiplied to [xx]
and [yy] gives, apart from terms containing e'"e (n
denotes an integer not equal to 0), the following:

+iDIPI'(12N I„) ' [—(&a l+'„lc &+ & bi@'„ld &)

X((c *)(a)+(d ")(b))

+(&cl@'„Ia&+ &dl+'„lb &)

X((a ')(c)+(b *)(d))] .

It is readily verified that when we reverse both the order
of a, b, c,d and a, b, c,d, the above expression just changes
its sign. Therefore the sum g+—g — leads to a zero re-

sult.
Next we consider the depolarized configurations. With

the help of (22), (23), and the values in Table I, we find

[yz]=3 ' IPI [ —e' ((a *)(b)+3 ' (b ')(c))
+e 'e((d'){c}+3 ' (c')(b))],

(34)

[zy]=3 '
IPI [ e' ((b ')(a—)+3 ' (c *)(b))

+e ' ((c ')(d)+3 ' (b ')(c))],
(35)

[xz]= i3 ' I—PI [ e' ((a *)(b)+3 ' (b *)(c) )

+e ' ((d *)(c)+3 '"(c ')(b))],
(36)

[zx]=i3 '
IPI [ e' ((c ')(d)+3 ' (b *)(c))

+e '((b *)(a)+3 '"(c *)(b ))],
(37)

[xy]=—IPI'[ {a '){a)—(d *)(d )
2

+ ,'((b—'}{b)—(c ')(c))
' 'e" ((a*)(c)+(b")(d))

+ 3 '"e "'((c ')(a )+(d ')(b ) )] (38)

The Frohlich interaction of the LO mode is not
effective in any of the depolarized configurations. This is
obvious with [yz], [zy], [zx], and [xz], as they contain
only e —' terms and the Frohlich scattering matrix ele-
ment is independent of 8. [xy] and [yx] do contain the
following terms independent of 0:

+—IPI'[(a ')(a) —(d '}{d)+-,'({b '}(b)—(c ')(c))] .
2

But when we reverse both a, b, c,d and a, b, c,d, the ex-
pression just changes its sign, while the Frohlich scatter-
ing matrix element remains unchanged. It follows that
on carrying out the sum g+ g, we shall obtain terms
that exactly cancel.

The two-LO-phonon Frohlich scattering is also forbid-
den in the depolarized configuration, even when the
heavy- and light-hole mixing is taken into account. This
point was not appropriately noted in a recently published
paper, where the ignored 0 integration would have
yielded a zero result.

The LO deformation-potential scattering matrix ele-
ment (15) contains only e —+ ' terms, whereas [yz], [zy],
[zx], and [xz] contain only e+—' terms. So the LO defor-
mation scattering is clearly ineffective in these
configurations.

The LO scattering matrix element multiplied by either
[xy] or [yx] gives, apart from noncontributing terms
containing powers of e', the following terms indepen-
dent of 0:

[yx]= —IPI'[ —(a ')(a )+(d ')(d )
2

—
—,'((b *)(b)—(c ')(c))

'"e"'((a ')(c )+(b ')(d ) )

+3 '" "'(( ")( )+(d')(b))] (39)

X((a *)(c)+(b ')(d))+(&al@'„Ic&
—&bl+'„ld &)((c *)(a)+(d *)(b))]fizz .

So that the products of the overlap integrals in the above expression do not vanish, the hole components appearing in
the products must have the same parity. Therefore in carrying out the sum g —g —,the terms arising from either rev-
ersing a, b, c,d or a, b, c,d alone make no contribution. As the expression remains unchanged on simultaneous reversal
of both a, b, c,d and a, b, c,d, so the sum g —g —just doubles the expression. Thus we get
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(xy)=JV ' (yx)=D~P~ (3N I„) ' [((a~4'„~c)+(b~4'„~d))

X((c ")(a )+(d ' }(b}}+((c ~&&'„~a )+ (d~4'„~b ) )

X(( a')( c)+(b *)(d))]5~@ . 40)

It will be useful to note that the TO1 and TO2 deformation-potential (DP) scattering matrix elements (17) and (18) are
formally very similar. For deriving their SRN, the essential difference (i.e., granting that there is a trivial difference in

the normalization constants and a change from 4'„ to 4„)is a change of sign of the e ' terms.
As these scattering matrix elements contain only e +—' terms and [xy] and [yx] contain only e —' terms or terms in-

dependent of 8, the TO1 and TO2 modes are clearly not active in these configurations.
The TO1 scattering matrix element multiplied by [zx] gives the following terms not containing e' factors:

iD
~
P~ (3N I„)

COTo

' 1/2

[((d[4'„[c) —(b(4'„a ) )((c *)(d )+3 ' (b *)(c))+((a(4'„(b ) —(c(4'„)d ) )

x((b ')(a)+3 ' '(c '}(b))]5s~ .

(41)

We note that (41) vanishes at it stands, as the hole components appearing in the products of overlap integrals are of op-
posite parities. However, in carrying out the g —g, nonvanishing terms arise from reversing either a, b, c,d or
a, b, c,d. In fact, it is found that the first term in the square brackets with a, b, c,d reversed equals the second term with
a, b, c,d reversed, and the second term with a, b, c,d reversed equals the first term with a, b, c,d reversed. Therefore car-
rying out the sum g —g —is equivalent to (41) with either a, b, c,d or a, b, c,d reversed, then multiplied by 2. Thus we

get
1/2

JV ' (xz)= i2D~P~ (3N I„)
COTp

X[ ((a~4'„~c ) —(c ~4'„~a ) )

X((c ")(a)+3 ' '(b ')(b))+((d~4'„~b) —(b(@'„~d))((b *)(d)+3 ' (c ')(c))]5EE . (42)

If we change over to TO2, we find that owing to the above-mentioned sign difference in the e terms in its scatter-
ing matrix element as compared to TO1, its formula corresponding to (41) would have a negative sign in front of the
first term in the square brackets. It is readily seen that owing to such a difference, the terms arising from reversing
a, b, e, d will exactly cancel rather than equal the terms arising from reversing a, b, c,d. In other words, terms arising
from the sum g +—g *exactly cancel out; thus TO2 will not be active in this configuration.

With the case of TO1 scattering matrix elements multiplied by [xz], the situation with the summation process is ex-
actly analogous to the above case. The result is

' 1/2

JV' ' (zx)= —i2D~P~ (3N I„)
COTo

X[ (&a~4'„~c &
—(c~4'„~a &)

X((a ')(c)+3 ' (b ')(b))+((dl@'. Ib &
—&bI@'. Id &)((d ')(b)+3 '"(c ')(c))]5,g . (43)

Similar to the above (xz) case, the TO2 mode is not active in this configuration.
Working out the TO2 case with (zy) and (yz) closely parallels the case of TO1 with (zx) and (xz). The following re-

sults are obtained:

JP ' (yz)=2D~P~ (3N )
2d COLp

1/2

X[((a~+„~c)—(c~ P„~a))

X((b ')(d)+3 ' (c *)( )c) (+( )d+~ )b—(b)%(d ))((c ')(a)+3 ' (b *)(b))]5Ez,
1/2

Af ' (zy) =2D~P~&(3N3)
—1/2

2d COLO

(44)

X [ ((a~%'„~c ) —(c ~+„~a ) )

X((a *)(c)+3 ' (b ')( ))b(+(1(+„~b)—(b(%„~d ))((d ')(b)+3 ' (c *)(c))]5EE . (45)
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Polarization

(xx)
(yy)
{zz)
(xy)
(yx)
(xz)
(zx)
(yz)
(zy)

Phonon
and parity

LO even 4„(z)
LO even 4„{z)
LO even 4„(z)
LO odd 4„(z)
LO odd 4„(z)
TO1 odd 4„(z)
TO1 odd 4„(z)
TO2 even %„{z)
TO2 even %„{z)

Interaction

F
F
F
DP
DP
DP
DP
DP
DP

Formula

(31)
(32)
(33)
(40)
(40)
(42)
(43)
{44)
{45)

TABLE II ~ The allowed Raman scatterings for various pho-
non modes, scattering mechanisms, and polarization schemes.

scattering reported by Zucker et al. are of particular in-
terest. ' In this case, the possible polarization
configurations include (xx), (zx), (xy), and (zy}. In Fig. 1

the observed Raman spectra for a11 these configurations
are reproduced. The observed peaks are seen to agree
with those expected from Table II (not as claimed by
Zucker et al. , that just the bulk deformation potential
could not account for their experiments). The TO peaks
observed in (zx) and (zy) configurations should represent
the two different types of TO modes, and the LO modes
observed in (xx) and (xy) configurations should separate-
ly represent even and odd LO modes. Such differences
are, however, not well resolved.

z(x

z(

Z)y

Z)y

270 300
RAMA& SHIFT (cm-&)

285

FIG. 1. Right-angle Raman spectra by Zucker et al. (Ref.
13).

When we change over to TO1 with [zy] and [yz], we
find that owing to the sign difference originating in the
e ' terms in the scattering matrix element, the summa-
tion leads to terms that exactly cancel.

As explained earlier, the calculated SRN should show
the syrnrnetry features of the Rarnan tensor. Table II is a
summary of such symmetry features shown by the SRN
derived above. The table lists the phonon modes and
scattering mechanisms active in various polarization
configurations. The phonon parities for the depolarized
configurations are derived from the fact that the interac-
tion matrix elements are matrix elements of 4„' and 4„
between hole components of the same parity.

Practically all the experimental works on Rarnan
scattering in MQW's reported in the literature are carried
out essentially in the backscattering configuration, so the
only polarization configurations feasible are (xx}, (yy),
(xy), and (yx). From Table II, we see that only the LO
modes are observab1e. So the experimental results on 90'

VI. SPECIAL DISCUSSION
ON FROHLICH SCATTERING

Rarnan scattering due to Frohlich interaction in
MQW's is of particular interest. As in the case of bulk
materials, in the dipole approximation, Frohlich interac-
tion is not effective in Raman scattering. The results de-
duced above show apparently that even in the dipole ap-
proximation Frohlich interaction does contribute to the
Raman scattering in MQW's. However, this point war-
rants closer examination. As we shall see, nonvanishing
contribution by Frohlich interaction, in fact, depends in-
tricately on certain features of hole and electron wave
functions in quantum wells.

Thus if we ignore heavy- and light-hole mixing, the
hole wave function will reduce to its major component.
If, moreover, barrier-penetration effects are neglected,
the major hole component as well as the electron wave
function will both be associated with standing wave func-
tions along the z axis; between them, orthogonality with
respect to the subband quantum number n holds. In such
a case, as hn must be zero for both intermediate
electron-hole pairs [in virtue of electron-hole overlap in-

tegrals in (39)], the electron and hole subband quantum
numbers n must remain unchanged in the scattering. Be-
sides, for nonvanishing Frohlich scattering of holes, the
major hole components of the two intermediate states
must be matched [see Eq. (39)]. It follows from these re-
quirements that the Frohlich scattering of either' the elec-
tron or hole can be effective only within the same sub-
band (i.e., only in intrasubband scattering}.

But with the neglect of heavy- and light-hole mixing
and barrier-penetration effects, the hole scattering factor

( a
f

V[cz ) + ( b
/

V/ b ) + ( &[ V/ c ) + ( d/ V/ d )

reduces to a single diagonal matrix e1ement formed from
the major hole component, which is just the same stand-
ing wave function as the electron function. Therefore,
comparing (39) and (40), we see that even in the case of
intrasubband scattering the contributions from electron
and hole scattering cancel, leading to a zero result.

Thus, we see that finite contributions by Frohlich in-

teraction must ultimately be derived from such intricate
features of the hole and electron wave functions as heavy-
and light-hole mixing and barrier penetration. In the fol-

lowing, we shall look into the problem in more detail by
some model calculations of the symmetrized Raman
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numerator as given in (31) and (32) for LO Frohlich
scattering by the lowest-order mode (n =2 mode).

In Figs. 2 and 3 are shown the calculated SRN's as a
function of k

~~

for intersubband and intrasubband scatter-
ing between HH1-CB1, LH1-CB1, and HH2-CB1; in oth-
er words, for scattering between electron-hole pairs
formed from electrons in its first subband (CBl) and holes
in either of the three lowest hole subbands, namely, the
first heavy-hole band (HH1), first light-hole band (LH1),
and second heavy-hole band (HH2). They are calculated
with the infinite-barrier model for the quantum well, so
that barrier-penetration effects are excluded and we can
examine the heavy- and light-hole mixing effects alone.

Consider first the intersubband scattering cases illus-
trated in Fig. 2. Since at k~~ =0, the hole wave function
reduces to its major component, at this limit there is no
heavy- and light-hole mixing and Frohlich scattering is
expected to lead to a zero result. We see, in fact, that in
all three cases illustrated the curves tend to zero as
k

()

~Oo
The detailed structures are seen, however, to be very

different in the three cases, indicating their sensitivity to
specific features of heavy- and light-hole mixing and hole
subband structures. Two marked features in the figure
especially merit some comments.

We note that the LH1-CB1 and HH2-CB1 case shows
a particularly steep rise in magnitude with k~~, as k~~

in-
creases from zero, so that even at very small k~~ values it
has already reached a considerable magnitude. This
reflects a well-known feature of hole subbands for a quan-
tum well of GaAs, namely, near kI~ =0, there is strong in-
teraction and intermixing between the LH1 and HH2.
This interaction is clearly evidenced in the negative cur-
vature of the LH1 subband at k~~

=0 seen in the hole sub-
band dispersion curves illustrated in Fig. 4.

Another marked feature is the practically discontinu-
ous structures observed in the cases of LH1-CB1. to
HH2-CB1 and HH1-CB1 to HH2-CB1. By comparing
this with the hole subband dispersion curves, we see that

0. 15

HH2(CB II-HH2(CBI j

e 0.05 ~

&.05 .

W. 15
0.0 1.0

Nave Vectors k„(~/d, )

FIG. 3. Symmetrized Raman numerator for intrasubband
Frohlich scattering calculated with an infinite-barrier model.

this clearly has its origin in the sharp change of HH2 at
the point where HH2 and HH3 dispersion curves
effectively cross over. In other words, to the right of the
abrupt jumps observed in Fig. 2, HH2 is effectively re-
placed by HH3, which has a major component matched
with HH1 (both having d as the major component).

We note that the same hole mixing features are observ-
able in the intrasubband scattering cases in Fig. 3, name-
ly, the rapid rise near k~~

=0 in the cases of LH1-CB1 and
HH2-CB1 due to their mixing, and the abrupt change as-
sociated with the HH2 and HH3 interaction. In this
case, a further noteworthy feature is the considerable
magnitude of the intrasubband scattering with HH2-CB1,
even though it is a case of An%0 First, th. is means that
hole mixing effects can effectively promote otherwise for-
bidden scattering involving An %0 pairs. Second, b n&0
intrasubband scattering has, in fact, an advantage over

0. 15

100.Q

HHI (CBI j -HH2(CBI)
80.Q

a 0.05- o 60.0

&.05

LHI (CBI) -HH2(C-gf) . HHI(C8I)
—

I HI(CBII

a 40.0
45

20.0

&.15
0.0 1.0

Nave Vectors k„( r/d, I

2.0

0.0
0.0 1.0 2.0

Nave Vectors k„ l ~/d, )

3.0

FIG. 2. Symmetrized Raman numerator for intersubband
Frohlich scattering calculated with an infinite-barrier model.

FIG. 4. Hole subband dispersion curves for GaAs(150
A)/A1As(150 A) MQW's.
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FIG. 5. Symmetrized Raman numerator for intersubband

Frohlich scattering in GaAs(150 A)/A1As(150 A) MQW's cal-

culated with a finite-barrier model.

FIG. 6. Symmetrized Raman numerator for intrasubband
Frohlich scattering in GaAs(150 A)/A1As(150 A) MQW's cal-
culated with a finite-barrier model.

An =0 cases in the greater dissimilarity between electron
and hole wave functions. Apparently this reduces the
cancellation between the electron and hole scattering
effects so effectively that the HH2-CB1 pair exhibits
stronger intrasubband scattering than the other two in-
stances (involving b, n =0 pairs).

Figure 5 gives the SRN for intersubband Frohlich
scatterings similar to that in Fig. 2, but calculated with a
finite-barrier model (with parameters simulating GaAs-
A1As MQW's) with a well width of 150 A. They are seen
to be fairly closely similar to the results calculated with
the infinite-barrier model. This shows that the intersub-
band scatterings are predominantly determined by hole
mixing effects; barrier penetration plays only a very
minor role.

Barrier penetration can, however, be important in in-
trasubband scattering. Thus in the intrasubband scatter-
ing results calculated with the finite-barrier model, as il-
lustrated in Fig. 6, one sees that the HH1-CB1 result is
very different from the corresponding result in Fig. 3.
The difference is seen to be not so much a change of
shape of the curve, but rather a vertical shift of the curve.
This is what is to be expected, as the important effect of
barrier penetration is a change in the net charge (electron
plus hole) enclosed in the well region, which alone is
effective in interacting with the strictly confined LO
mode.

2 +6 2

cos(k, d) = sinh(kiddo)sinh[k1(d —do)]
2E'E'

+cosh(

kiddo

)cosh [k1(d —d o ) ] . (46)

Letters with or without an overbar are used to label phys-
ical quantities for the two materials. Thus e, e are the
dielectric functions of the two materials:

neglecting phonon dispersion). " For the sake of simpli-
city, in the following we shall discuss scattering by the in-
terface modes, quoting needed results from the continu-
um model without proof. Moreover, we shall suppose the
superlattice to have layers of equal thickness do for the
two materials, with do related to the superlattice period d
by d =2do. With superlattices like the GaAs-A1As sys-
tem in mind, we shall suppose the co„o-~To gaps of the
two materials to be nonoverlapping.

For such a model, for a given wave vector k, there are
four interface modes with frequencies given implicitly by
the following equation:

VII. SCATTERING BY INTERFACE MODES

COLo Q7
2 2

e(co) =e„
~TO

—2 2
CO Lo CO6~)=e„

According to the dielectric continuum model, in a su-
perlattice there are, besides the confined bulklike modes
discussed in Sec. III, also a number of so-called interface
modes. ' We have shown that, unlike the bulklike
modes, these modes are unambiguously determined by
the continuum model and agree completely with results
calculated from a parallel microscopic model (also

In the LO-TO gap of each material fall two of the solu-
tions, which approach separately the LO and TO fre-
quencies as k approaches the z axis (i.e., kj~ ~0).

The optical displacernent of the interface modes can be
generally expressed in terms of their normal coordinates
as follows:
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u(r)= (8MN )
' [1—cos(k, d)] ' [(e —e)(eS —eS }1 [kiido/sinh(kiid)]'

X g S(co) i(Ae Ii ' B—e " ')
I kz] kzi—(Ae " '+Be ' ')

+S(m) i ( Ae I' ' —Be» ')

—(Ae II ~+Be II I) z&=z —ld —do

e " ' Q(km), (47)

where m = 1,2,3,4 labels the four solutions of (46). For brevity, we have introduced the following notation:

, zz (~uLo ~ro}2 2 ]/2

S(co)=e'„i
COTO CO

, , (~Lo ~ro)S(co)=e'„
CO To CO

We note that z1 and z1 are used to represent the z coordinates within the 1th layer of the two materials; therefore the ex-
ponential functions should be considered as only defined with ~zl~ &do/2 and ~zi~ &do/2. The coefficients A, B, A, B
are given by

A =(e—e)exp( 0 5kiido}+(e+e)exp(1. 5kiid, )
—2eexp( 0 5kiido)exp(ik, d),

exp "Iid, )+(e+e)exp( —l. 5kiid, ) —2e exp(0. 5kiid, )exp(ik, d),
(e e)exp k

Ii
d, )

—(e+e)exp( —1.5k
ii
d, )+2«xp(0. 5k

ii
d, )exp( ik, d ),—

(e e)e p( 0'5klldu) (e+ e)exp( 1.Skiido)+2e exp( —0.5kildo ) "p( ' d)

The electrostatic potential associated with the mode is given by

V(r) = [m. /(2N uo)]' [1 cos(k, d—)]' [(e e)(eS —eS )] '—[kiido/sinh(kiid)]'

)(k —
& y [(Ae II'I Be II'I)+(A II'I Be il'~)]e '

Il~
' * Q(k m)

l, m

(48)

As we shall be interested in modes with very small kd, we shall express V(r} as series expansion in kiido, kiiz&, kiiz, ,
and k, d, and concentrate on the lowest-order terms that give nonvanishing scattering. The lowest-order terms in the
expansion of V(r) turn out to be to the power —1 of k, namely,

V, (r)=(2mN uo ')' (e+e)[(e e)(eS e—S )] ' —k, 'e 'I ' Q(k, m), (49)

in the Ith period, where the suffix —1 attached to V(r) expresses that only terms of the order k ' are included. Equa-
tion (49) tells us that the lowest-order terms represent a constant scattering potential within a period of the superlattice.
Thus neither electron nor hole intersubband scattering would be possible, owing to the orthogonality between wave
functions from different subbands (for the same k). On the other hand, for intrasubband scattering, the scattering inter-
gals for holes and electrons reduce simply to +e multiplied by the same constant potential and hence exactly cancel,
leading to a zero result. In other words, to this order Frohlich interaction is ineffective.

The next-higher-order terms correspond to zeroth power of k, namely,

Vo(r) = id (2mN 'uo ' }' [(e e}(eS —eS )]—
z1

do z —ld

zl—+e
dO z, =z —ld do

e Ii' Q(k m) . (50)

As we have seen in Sec. V, for nonvanishing Frohlich scattering, the interaction potential must be even in z in the
quantum well. Therefore only the constant parts in the expression can be active in Raman scattering. We note that the
essential difference of the constant potentials in (50) from the previous V, potential is that now the constant potentials
in the two materials are different. However, if we neglect the penetration of the carriers into the barriers so that the
carriers are strictly confined in one material, they would see only a constant potential and hence could not induce
scattering just as in the case of t/', . Thus, to this order, scattering occurs solely in virtue of the partial penetration of
the carrier wave functions into the barrier regions.

For the consideration of deformation-potential scattering, we express the optical displacement (47) as a power series
in k. We find that the lowest-order terms in this case correspond to the zeroth power of k, namely,
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up(r) = (2MN )
'~ [(e—e)(rS2 —eS 2)]

X g S(co) i (e+e) +S(co) i (e+e)
I

e 'i ' Q(km) . (51)

l2E 12E'

(H +~HzL ~H+) = D(2N )

Using the deformation potentials (11)and (12), the hole scattering matrix element can be written down exactly analo-
gously to the derivation of (15) and (17) for the bulklike modes. Thus we get

1/2

S [(e E)(—eS ES—)]

X[2e[e ' ((a/c)+(b[d)) —e ' ((c[a)+(d/b))]

[k~~(—e+e)lk, ][e' ((a[b ) —(c/d ) ) —e ' ((b/a ) —(d/c ) )]J, (52)

where we have taken the quantum well as located in the material designated by letters without an overbar.
Since in the case of wave vector k parallel to the z axis the interface modes are no longer distinct from the bulk fre-

quencies, the usual backscattering configuration would not be suitable for investigation of interface-mode scattering.
Explicitly, we shall consider 90 scattering, which will be the y direction by our convention and the phonon vector will
be along a 45' direction with k,

~

=k, . For such 90' scattering, only the polarization configurations (xx), (xz), (yx), and
(yz) need be considered. We can work out the JVs7t(ij ) for these polarization configurations according to (26) with the
help of (ij ) given in Sec. V exactly in the manner of the bulklike modes. We shall not go into details. It is found that
the interface modes give nonvanishing scattering only in the polarization configurations [xz] and [yx]; for these two
cases the SRN's are found to be given by

1/2

(xz) = —i 2D~P~'(6N3)
—in S(e+e)[(e e)(eS' eS')]—

X[((a~c ) —(c~a ) )((c ')(a)+3 ' (b ')(b))+((d~b ) —(b~d ) )((b ')(d)+3 ' (c ')(c)) ]5@z .
]/2

&'"D (yx)= i2D~P~ (6N ) Seg (e—e)(eS' —eS )]

X [((a~c )+ (b~d ) )((c ')(a )+(d *)(b))+((d~b )+ (c~a ) )((b *)(d)+(a ')(c))]5@z .

It is easily verified that these SRN's should be compa-
rable to those pertaining to the bulklike modes in magni-
tude. however, it is very regretable that the only results
on 90' scattering given by Zucker et al. ,

' as already cit-
ed in Fig. 1, cannot provide positive evidence for
scattering by interface modes. The GaAs(96 A)/
Gap 7/Alp 29As(98 A) superlattice specimens have their
GaAs-like modes so close in frequency to the modes of
the GaAs layers, one can hardly expect the peaks due to
the interface modes to be clearly resolved from the bulk-
like modes.

VIII. COMMENTS ON EXCITON-MEDIATED
SCATTERING

To be accurate, one should, of course, take into ac-
count the Coulomb interaction between the electron-hole
pairs. The most important consequence is that the
electron-hole pair can be bound to form discrete exciton
states, which are basic to the consideration of resonant
Rarnan scattering. A theoretical treatment of Raman
scattering based on discrete exciton states as intermediate
states has been recently published by the present authors

in a separate paper. In the following, we shall just com-
rnent on certain main features of exciton mediated
scattering.

The basic feature to be emphasized is the complex an-
gular momentum structure of the quasi-2D excitons in
quantum wells. ' Namely, the four hole components
of the exciton wave function are associated with different
orbital angular momenta in the x-y plane representable as
fi(j —jp), where j labels the different hole components.

jo serves as a parameter specifying the angular momen-
tum of the exciton as a whole; once jo is given, the angu-
lar momentum associated with each hole component is
specified. jo itself has a simple meaning, it is just the la-
bel for the component with zero angular momentum.

The angular momenta of the intermediate discrete ex-
citons play a decisive role in all three matrix elements in
the Raman numerator.

(1) The two photon interaction matrix elements are just
the optical transition matrix elements relating to usual
exciton absorption and emission processes. It can be
readily proven that only the jo component of the exciton
wave function contributes to these matrix elements.

In the theoretical treatment of quasi-two-dimensional
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(2D) excitons in quantum wells, we have found it con-
venient to introduce conventional orbital angular
momentum designation to specify 2D excitons, namely,
we specify an exciton as in s,p, d, . . . states in the con-
ventional way according to the angular momentum asso-
ciated with its dominant hole component. Thus it follows
that, from the point of view of the photon interaction ma-
trix elements, a and P should be s-state excitons to give
the largest SRN. In other words, important resonances
are expected to be associated with s-state excitons.

(2) The angular momenta of the a and P excitons also
play a decisive role in the phonon-scattering matrix ele-
ment. With Frohlich interaction, the scattering is non-
vanishing only when jo for a exciton and jo for P exciton
are equal. In other words, the angular momenta of the
corresponding hole components of the two excitons must
be completely matched. This is related to the fact that
the Frohlich interaction potential is slowly varying and
the integration over the band-edge functions results in
orthogonality factors which couple together only the cor-
responding hole components of the two excitons.

That jo must equal jo, coupled with the requirement
that both excitons should be s-state excitons, implies that
excitons important to resonance scattering should be
formed from hole subbands with similar dominant hole
components.

In contrast to Frohlich scattering, we see readily from
Eqs. (10)—(12) that the deformation-potential interaction
couples together hole components of the two excitons,
which are relatively shifted by one (for x and y displace-
ments) or two (for z displacements) places. From this it
follows that for nonvanishing scattering, the angular mo-
menta associated with the hole components of the two ex-
citons must be subject to such "shifted matching. " In
other words, for deformation-potential scattering by LO
modes (z displacements) we must have jo =jo+2 and for
scattering by TO1 and TO2 modes, we must have

jo =jo+1. Now if a and p are both s-state excitons for
strong resonance, the above requirements mean that their
dominant components should be relatively shifted by one
or two places. This circumstance implies that the two ex-
citons must separately be heavy- light-hole excitons.

Calculations of SRN have been carried out for various
possible exciton pairs in a number of superlattice struc-
tures. Table III gives the results calculated for Frohlich

scattering by the LO mode in a GaAs(102
A) jAlo z7Gao 73As(207 A) superlattice. Listed in Table
III are the 10 cases, which give the largest SRN.

The results are seen to verify that in most cases these
strongest resonances are associated with s-state excitons.
Cases 1, 7, and 10 appear to violate this rule, as they in-

volve 2p excitons. This actually expresses an effect of ex-
tra strong heavy- and light-hole mixing. As we have ern-

phasized earlier, even for very small k~~, LH1 and HH2
subbands are strongly intermixed. Vfe note that the
second hole component b is the dominant component of
LH1 holes, and the first hole component a is the dom-
inant component of HH2 holes. As the listed LH1 2p has
its first component with s angular momentum, intermix-

ing of HH2 has the e8'ect of greatly strengthening this
component; the net results make the LH1 2p acquire the
typical character of HH2 ls (i.e., strong first component
with zero angular momentum). With this understanding,
the apparent anomaly of cases 1, 7, and 10 is naturally ex-
plained.

According to the above discussions about Frohlich in-

teraction, the dominant components of the a and P exci-
tons should be mutually matched . As HH1 and HH3
both have their fourth components d as their dominant
components, and HH2 and HH4 have their first com-
ponents a as their dominant components, we see from the
above table that the dominant components of a and P ex-
citons do match in all cases, except cases 7 and 10. But
as we have explained the excitons listed in LH1 2p in
cases 7 and 10 apparently assume to a large measure the
typical character of HH2 1s. Regarded in this light, we

might consider these two cases as also fulfilling the above
matching condition.

Table IV gives similar results calculated for
deformation-potential scattering by the LO mode (both
tables deal with the lowest-order modes of the required
symmetry). In the table are again listed 10 cases which
give the largest SRN. The tabulated results verify that all
cases except nos. 3, 4, and 10 are derived from intersub-
band scattering of s-state excitons between heavy- and
light-hole subbands. The apparent deviation of cases 3, 4,
and 10 from this rule is readily understood in terms of the
strong intermixing between the LH1 and HH2 subbands.
Apparently, owing to this mixing, the listed LH1 2p in

cases 3 and 10 assumes very much the character of HH2

TABLE III. The ten Frohlich scattering channels {via first
0

AI phonon mode) for the 102-A-wide sample, which gives the
largest SRN.

TABLE IV. The ten scattering channels through
deformation-potential interaction {via first B2 phonon mode) for

the 102-A-wide sample, which gives the largest SRN.

Case no.

1

2
3
4
5

6
7
8
9
10

LH1-CB2 2p
HH I-CBI Is
HH1-CB1 1s
HH3-CB3 1s
HH2-CB2 1s
HH2-CB2 Is
LHI-CB2 2p
HH3-CB I Is
HH3-CB1 1s
LH I-CB2 2p

LHI-CB2 2p
HH3-CB1 1s
HH1-CBI 1s
HH3-CB3 1s
HH2-CB2 Is
HH4-CB2 1s
HH4-CB2 Is
HH3-CB1 1s
HH3-CBI 1s
HH2-CB2 1s

SRN

—169.6
138.6

—118.9
—96.5
—90.4

64.8
39.8
39.8,

—37.9
33.3

Case no.

1

2
3
4
5

6

8
9
10

HH1-CB1 1s
HH2-CB2 Is
LH1-CB2 2p
HHI-CB1 1s
HHI-CB1 2s
HH2-CB2 2s
LH2-CB2 1s
HH3-CB2 1s
HH1-CB1 1s
LH1-CB2 2p

LH1-CB1 Is
LH2-CB2 1s
LH2-CB2 1s
HH2-CB1 2p
LH1-CB1 2s
LH2-CB2 2s
HH4-CB2 1s
LH3-CB2 1s
LH1-CB1 2s
LH2-CB2 2s

—75.28
—22.95
—11.8
—7.486
—7.395
—3.998

3.937
—3.311

3.275
—3.038
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zero. In calculating the resonant profile we have includ-
ed all the confined subbands and used a damping factor
to simulate inhomogeneity effects.

IX. CONCLUSIONS
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FIG. 7. Calculated squared xx component of the Raman ten-
sor for the GaAs(50 A)/A1As(150 A) MQW's associated with
the n=2 phonon mode vs the incident energies. The intermedi-
ate states are discrete excitons (solid line) and electron-hole
pairs (dashed line).

1s and the HH2 2p assumes much of the character of
LH1 1s.

As an example, we calculated the resonant Raman
profile for GaAs(50 A)/AlAs(150 A) MQW's in the
z(xx)z configuration. We have taken both the free
electron-hole pair and discrete exciton states to be inter-
mediate states. The intermediate exciton states are calcu-
lated by using the variationa1 method of Ref. 23. As
shown in Fig. 7, the most obvious resonant peak is con-
tributed by the HH1-CB1 1s excitons, while some peaky
structures at higher incident energies are derived from
the electron-hole pair. One interesting point is that while
the exciton-related peaks are located at energies of either
excitonic transition or that with one phonon energy
higher, the peaks derived from the electron-hole pair are
not always at the subband edges, the reason being simply
that near k~t

=0 intersubband Frohlich scattering tends to

Microscopic theory for optic-phonon Raman scatter-
ing in MQW's has been worked out systematically both
for free electron-hole pairs and for discrete exciton states
as intermediate states. The contributions by the
electron-hole pairs show strong characteristic depen-
dence on their parallel wave vector k~~. They are closely
related to the subband structures of the quantum wells, in
which heavy- and light-hole mixing plays an important
role. Exciton mediated scattering bears a close relation
to electron-hole pair contributions of small k~„e.g. , with
respect to relative contributions from different subbands,
and to variations with quantum-well parameters, etc.
However, a distinguishing feature of exciton-mediated
scattering is the decisive role of the angular momentum
state of the intermediate excitons; namely, s-state exci-
tons predominate in the scattering.

Scattering through Frohlich interaction is no longer di-
pole forbidden in MQW's. As this marks an important
difference from bulk materials scattering, more space has
been given to the discussion of this type of scattering,
showing that it depends ultimately on barrier penetration
and hole-mixing effects. Owing to this difference from
bulk materials, the special role of Frohlich scattering
close to exciton resonance scattering in bulk materials is
absent in MQW's.

ACKNOWLEDGMENTS

This work was supported by the Chinese National Nat-
ural Science Foundation.

'M. V. Klein, IEEE J. Quantum Electron. QE-22, 1760 (1986).
2M. Cardona, Superlatt. Microstruct. 5, 27 (1989).
B. Jusserand and M. Cardona, in Light Scattering in Solids V,

edited by M. Cardona and G. Giintherodt (Springer, Berlin,
1989), and references therein.

4J. Menendez, J. Lumin (to be published).
5C. Colvard, R. Merlin, M. V. Klein, and A. C. Gossard, Phys.

Rev. Lett. 43, 298 (1980).
B. Jusserand, D. Paquet, and A. Regreny, Phys. Rev. B 30,

6245 (1984).
7A. K. Sood, J. Menendez, M. Cardona, and K. Ploog, Phys.

Rev. Lett. 54, 2115 (1985).
E. Zucker, A. Pinczuk, D. S. Chemla, A. C. Gossard, and W.

Wiegmann, Phys. Rev. Lett. 51, 1293 {1983);Phys. Rev. B 29,
7065 (1984).

J. E. Zucker, A. Pinczuk, and D. S. Chemla, Phys. Rev. B 38,
4287 (1988).

' A. K. Sood, J. Menendez, M. Cardona, and K. Ploog, Phys.
Rev. Lett. 54, 2111 (1985)~

S. Zhang, T. A. Gant, M. Delaney, M. V. Klein, J. Klem, H.

Morkog, Chin. Phys. Lett. 5, 113 (1988).
' R. Fuchs and K. L. Kliewer, Phys. Rev. 140, A2076 (1965).
' W. E. Jones and R. Fuchs, Phys. Rev. B 4, 3581 (1971).
'4G. Kanellis, J. F. Morhange, and M. Balkanski, Phys. Rev. B

28, 3406 (1983).
'5S. K. Yip and Y. C. Chang, Phys. Rev. B 30, 7037 (1984).
' E. Richter and D. Strauch, Solid State Commun. 64, 864

(1987).
' Shanf-Fen Ren, Hanyou Chu, and Y. C. Chang, Phys. Rev.

Lett. 59, 1841 (1987).
8Kun Huang and Bangfen Zhu, Phys. Rev. B 38, 2183 (1988);

38, 13 377 (1988); Bangfen Zhu, ibid. 38, 7694 (1988).
' E. Zucker, A. Pinczuk, D. S. Chemla, A. C. Gossard, and W.

Wiegmann, Phys. Rev. Lett. 53, 1280 (1984).
To our knowledge, an important attempt at a systematic
theoretical treatment of the subject has been made by J.E.
Zucker, Ph.D. thesis, Columbia University, 1985, available
from University Microfilms International, Ann Arbor, MI
48106, U.S.A.
Y. C. Chang and J. N. Shulman, Appl. Phys. Lett. 43, 536



5842 KUN HUANG, BANG-PEN ZHU, AND HUI TANG 41

(1983); Phys. Rev. B 29, 1807 (1984); 31, 2068 (1985); J. N.
Shulman and Y. C. Chang, ibid. 31, 2056 (1985).

~ L. J. Sham, Superlatt. Microstruct. 5, 335 (1989), and refer-
ences therein.
Bangfen Zhu and Kun Huang, Phys. Rev. B 36, 8102 (1987).
Bangfen Zhu, Phys. Rev. B 37, 4689 (1988);38, 13 316 (1988).
Hui Tang and Kun Huang, Chin. J. Semicond. 8, 1 (1987).
Bangfen Zhu, Kun Huang, and H. Tang, Phys. Rev. B 40,
6299 (1989).
R. Loudon, Proc. R. Soc., London, Ser. A 275, 218 (1963).
R. M. Martin, Phys. Rev. B 4, 3676 (1971).
For finite phonon dispersion, the interface modes are partially

mixed with the bulklike modes with nearby frequencies, lead-

ing to different expressions for the displacement and potential
of optical modes in superlattices, especially for the zz back-
scattering configuration, where the parallel component of the
phonon wave vector, k~~, is effectively vanishing, and the in-

terface modes actually vibrate at frequencies close to the bulk
phonon bands. Thus, the z displacements of LO modes, in-

cluding bulklike and interface modes, will behave like
sinusoidal standing waves, and the n=1 mode has, in fact,
evolved from the interface mode.
A. Alexandrou, M. Cardona, and K. Ploog, Phys. Rev. B 38,
2196 (1988).


