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Wave propagation in a nonlinear periodic medium
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The propagation of electronic and electromagnetic waves in a periodic, nonlinear medium is de-

scribed in terms of a discrete dynamical system represented by a universal, area-preserving map of a
plane onto itself. The map is characterized by two control parameters: the wave vector k and the
current density j. The dynamics of this Hamiltonian map is very complex admitting periodic, quasi-

periodic, and chaotic orbits bifurcating and resonating at various points of the two-dimensional pa-
rameter space (k,j). The analysis of this dynamical system is based on the pattern of strong reso-
nances and then applied to the problems of electromagnetic-wave propagation through a superlat-
tice characterized by a strong excitonic nonlinearity and the ballistic transport of electrons in spa-

tially periodic media.

I. INTRODUCTION

There are many very interesting phenomena associated
with the propagation of electromagnetic and electronic
waves in spatially periodic, nonlinear media. Recently, a
number of these phenomena have been studied. In par-
ticular, Delyon et a/. ' have shown that a periodic modu-
lation of a finite one-dimensional nonlinear medium in-
duces multistability in the transmitted wave intensity,
while Mills and Trullinger, and Coste and Peyraud have
examined the localized, solitonlike structures associated
with these systems. We have also studied these phenome-
na from the point of view of applications to the ballistic
transport in semiconductor superlattices and nonlinear
transmission of light through multiple-quantum-well sys-
tems. ' Here we shall concentrate our attention on the
universal dynamics underlying these problems.

In particular, we are investigating the interplay be-
tween nonlinear effects and spatial periodicity in such
materials to understand the transition from ordered (or
even localized) to chaotic behavior of propagating waves.
The inA&ence of periodicity on stochastic phenomena can
be emphasized by imposing discreteness on the system in
the form of an array of very narrow layers of a nonlinear
material embedded in a linear material. A model with
these properties is proposed in Sec. II and is reminiscent
of the Kronig-Penney model of solid-state physics. The
5-function periodic potential allows an easy reduction of
the continuous problem to a discrete mapping of the
plane onto itself, and we derive an appropriate Hamil-
tonian map in Sec. III, employing an interesting analogy
between the wave equation and mechanical system of an
isotropic harmonic oscillator periodically kicked with a
nonlinear force.

The dynamics of the resulting map is then carefully ex-
amined in Sec. IV. A wide variety of behaviors ranging
from the emergence of strong resonances, their growth,
overlap, and ultimate destruction, to period-doubling cas-
cades, are observed and discussed. Although many of
them are already known as leading to stochasticity, new
kinds of behaviors were also discovered.

We shall argue that the discrete dynamical system de-
rived here is of general importance to the understanding
of chaos in many systems such as a nonlinear
Schrodinger equation, optical nonlinearities, periodically
driven harmonic oscillators, and a general class of sys-
tems described by four-dimensional symplectic maps.
However, only one type of these applications is discussed
in detail. In Sec. V, our findings are applied to a couple
of specific transmission problems, namely optical
transmission through a superlattice with a nonlinear
dielectric constant and transport of ballistic electrons in a
tight-binding model. Finally, in the Appendix, we pro-
vide another derivation of the discrete map, trying to
identify the origins of a standing controversy in the
literature (compare Refs. I and 7 in contrast to Refs.
4—6).

II. THE WAVE EQUATION

The propagation of a stationary wave in a one-
dirnensiona1 spatially periodic medium is described by a
wave equation of a Schrodinger form

—P,„+V(x; P)P= k g,
where the wave function 4(x, t)=g(x)e' '+c.c. is time
dependent with relativistic spectrum, co=ck, and the sub-
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scripts x stand for spatial derivatives. The periodic
modulation of a medium is modeled by an array of 5
functions through a nonlinear potential

V(x; g ) =2a (p+ ugly* )+5(x —na ), (2)

where a is the lattice constant, while p and o. are linear
and nonlinear modulation parameters, respectively. The
system described by Eqs. (1) and (2) can be physically
realized by a set of very thin nonlinear layers embedded
in a linear material as, for example, in semiconductor su-

perlattices or multiple quantum-well systems, or by the
tight-binding model for ballistic transport of electrons.
For realistic systems, both p and o, parameters can be
wave-vector dependent reflecting, for instance, the
dispersion of the nonlinear dielectric constant.

The continuous Eq. (1) can be integrated across the
mth singularity, assuming continuity of the wave func-
tion P(ma —0)=f(ma+0)—:g and a linear propaga-
tion between kicks, to obtain a discrete dynamical sys-
tem,

given by the field momentum density

j=—2(4'W. —A.*) .

In the continuum limit [a —+0 or p(x) and a(x) const],
the problem is completely integrable. " For negative
nonlinearity (a &0), it possesses both soliton and soliton
lattice solutions, ' " while for positive nonlinearity
(a & 0), the model does not have a discrete spectrum (no
solitons) for zero asymptotics (k =0) of g. However, for
a nonzero condensate described by "chemical potential"
p, kink as well as kink-antikink lattice solutions exist, '"
but only for current j below a critical value. " Conse-
quently, the full problem, Eqs. (5) and (6), a priori nonin-
tegrable, is particularly suitable for the study of the inter-
play between nonlinearity and discreteness imposed by
periodicity of the underlying lattice.

At this point it is useful to introduce a mechanical ana-
log for the Lagrangian of Eq. (5) by assigning the role of
time to the spatial coordinate x. Writing the complex
field g in polar coordinates,

with

+,+$,=2(a+a~/
~ )fm (3)

g(x) = A(x)e'~'"'

and defining canonical momenta (p,j) corresponding to
the amplitude A and phase (() degrees of freedom as

s =cos(ka)+ p, p —=A„,
(9)

p p 2 sin(ka)
a & ka

This is just the nonlinear tight-binding Schrodinger equa-
tion previously studied' for k =p =0. It couples
(g +&, g ) to (P,f, ) and is therefore a discrete
complex map on C . This map, when written in terms of
real and imaginary parts of g, can also be viewed as a
measure-preserving symplectic diffeomorphism on R,
and, as such, its dynamics is of considerable interest by it-
self. There are additional symmetries (to be discussed
shortly) of the map given by Eq. (1), which allow the
reduction of dimensionality of this map from four to
three or even two dimensions. This reduction has been
incorrectly accomplished previously' and thus has creat-
ed considerable confusion when applied to magnetic su-
perlattice problems. We shall discuss this issue in the
Appendix. Here we take a different approach.

First notice that Eq. (1) can be thought of as the
Euler-Lagrange equation of motion for a complex scalar
field g(x) in one dimension. The corresponding Lagrang-
ian density can be written as

,'[0.*0. [k' 2V-(x) ~(x—)A*—]44*)

with

j=A p„,
we obtain a two degree of freedom Hamiltonian

'2

H= —p + ~ +[k —2p(x) —a(x)A ]A
2

(10)

Now let us proceed with the reduction of the above equa-
tions to a two-dimensional discrete dynamical system.

III. REDUCTION TO A DISCRETE MAP

Obviously, the phase coordinate P is cyclic, and thus the
above Hamiltonian is effectively of a single degree of free-
dom, but "time" dependent with additional, "centrifugal
barrier" potential. Consequently, one can interpret the
Hamiltonian of Eq. (10) as describing an isotropic har-
monic oscillator periodically kicked with a nonlinear
force. Thus, the current j can also be viewed as the angu-
lar momentum of this oscillator.

The equations of motion resulting from the nonauto-
nomous Hamiltonian of Eq. (10) are

=p,
(11)

p„=—k A+ 3+2a(p+aA )A+5(x —na) .
n

Xa+5(x na) . —
a(x) a (6)

Note that between the 5-function kicks, the equations
of motion, Eqs. (11),have a solution:

'2

In the above stationary form, this model is invariant
under the noncompact, unitary group U(1, 1). Associated
with this global gauge invariance is a conserved (diver-
genceless) current of which the time component is just
the charge density f/*, while the space component is

A (x)= sin( kx )
A Ocoskx +po

'2 1/2j sin(kx)
Aok
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Integration of Eq. (11) across the (m +1)th 5 kick with
A —= A (ma +0), p —=p(ma +0), and a continuous am-

plitude gives

S J
Am+i= Am+ —

pm +
A

exists only for —1 & c (1.
Finally, for nonzero current J, it is convenient to sym-

metrize the map of Eqs. (16a) and (16b) shifting the
momentum Q and scaling the charge R as

A

Am+1
cA +—p

S

where s =sinka, c =coska,

sin(ka) aj,
ka

$
p +i —2(E+aA +i )A +) cA

(12)

(13)

r =—czR,

p—=aJ .

The dynamics of the resulting map,

r=r(E+r+q) +p /r

q
= —q+ (1 r /r )(s+—r +q+ r )

(19)

(20a)

(20b)

and E and a are defined by Eq. (5). This two-dimensional
(2D) map is area-preserving and conservative for a given
value of the current j. Notice that for j =0, the field g
can be taken as real, and Eqs. (12) become an amplitude-
only 2D map:

A +i= —A )+2(a+a A )A

Since the zero-current map has already been extensively
studied, ' we shall concentrate on the nonzero-current
problem instead.

The map given by Eqs. (12) can be further simplified by
a transformation to a new pair of canonically conjugated
variables

R=A, Q= +c.
kA

is studied in the following section.

IV. DYNAMICS OF THE MAP

r=rS:
q= —

q

(2 la)

(21b)

The dynamics of the map F is quite intricate since it
depends on two parameters s and p, while the two-
dimensional Hamiltonian maps previously studied' '
had one-dimensional parameter space. We begin by iden-
tifying the symmetries of the map F.

The map F can be written as composition of two invo-
lutions, F=Po S, defined as

M: ~

R=R Q+ J
R

(16a)

Introducing a compact notation (R,g ):—(R, Q),
(R +„Q+, ) —= (R, Q ), one obtains a map M, defined by

and

P: r=r(E+r —q) +p /r

q=q+(1 r/r)(—s+r —q+r) '

(22a)

(22b)

Q=2(E+aR )
—=Q

R
(16b)

This map preserves the sign of the "charge" variable
R, and is symmetric under the transformation
(s,a, g)—+( —E, —a, —Q). Therefore, it is sufficient to
study it for positive nonlinearity (a )0) only, while the
negative cz case can be easily obtained by changing
c~—c in the parameter space.

The fixed points of the map M are given by

Qf =s+aRf and the positive roots of a quartic equation

(s+aRf ) + (17)

(18)

Also, for future reference, note that the linear solution

while the linear map (a=0) has a single elliptic fixed
point

Clearly, the dominant symmetry line of the map F is
given by fixed points of the involution S, i.e., by the q =0
axis, while the complimentary symmetry is specified by
the involution P, i.e., by the union of curves

q+ =s+ r+ +1 (P/r)— (23)

Moreover, the map F is invertible with an inverse
F '=So Fo S.

The fixed points of the map F lie on intersections (if
any) of the P and S-symmetry -lines, and thus are of the
form (rf, 0). Analytical expressions for those fixed points
are not very illuminating since they come as solutions of
a quartic equation, therefore we shall not quote them
here. There are none or two fixed points —one elliptic
and one hyperbolic —of the map F. For p«1 they can
be approximately written as

( 1 E2)
—1/2p

fi 1 E

Their linear stability is decided' by the value J7 of the
residue of the Jacobian determinant DF of the map:
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A =[2—tr(DF)]/4. When evaluated at the fixed points,
this residue is given by

Af =1—(E+rf )(e+2rf ) . (24)

The fixed orbit is stable (elliptic) for 0 &Rf & 1, and un-

stable for Af &0 (inversion hyperbolic) and %f) 1 (ordi-
nary hyperbolic). ' As the map parameters e and P are
varied, the fixed points rf move and their residue, Eq.
(24), changes. Whenever the residue passes through one
of the values

Rf(v)=sin (nlv) (25)

the fixed point suffers Birkhoff multifurcation, ' and two
periodic orbits of period v, one elliptic and one hyperbol-
ic, are born by the fixed point. The so-called strong reso-
nances are especially important to the study of the transi-
tion to chaos. '" They occur at the values of the winding
number v=1,2, 3,4, and corresponding values of
Af =0, 1, —,', —,'. These resonant curves can easily be locat-
ed in the (e,P) parameter space of the map F. From Eqs.
(17), (24), and (25) we have

r„+= —,
'

I
—3ak+e +8[1—sin (n 1'v)]I,

(26)P„=+r„+[ I (s+ r„+) ] .—

right. Associated with the hyperbolic point is a separa-
trix (homoclinic orbit) which, for the values of e close to
the (1+ ) curve, can be well approximated by the separa-
trix of the continuous system (i.e., the sech-like soliton
solution). All orbits outside of this separatrix are un-
bounded, whereas those inside it are quasiperiodic and
nearly integrable, resembling the soliton lattice solutions
of the continuous system (see Fig. 2).

As c. decreases further, the separatrix s~ells in size and
begins to break up into high-order periodic islands and
chaotic orbits. Crossing of the (5+) curve is accom-
panied by emergence of two period five orbits (elliptic and
hyperbolic). Each has one point on the S-symmetry line
and one on the P-symmetry line as seen in Fig. 2. Both
orbits move radially away from the elliptic fixed point.
Heteroclinic orbits connecting the five-periodic hyperbol-
ic points quickly break up and become chaotic. Yet, for a
while, they remain bounded by higher quasiperiodic or-
bits. As we cross the (4+ ) of Fig. 1, both stable and un-
stable period-four orbits are born of the elliptic fixed
point. The elliptic period-four orbit has two points on P-
symmetry line, while two points of the hyperbolic orbit
lie on the S-symmetry line. Again, heteroclinic orbits
quickly become chaotic —bounded at first and then join-
ing the surrounding stochastic sea.

The multifurcation curves of Eqs. (26) are illustrated in

Fig. l.
Based on the analysis of the strong, primary reso-

nances, the dynamics of the map F for a fixed value of P
can now be described as follows (cf. Fig. 1). For large
positive values of c there are no fixed points of the map,
and thus all orbits are unbounded. As c decreases past
e = 1 and we cross the (1+ ) curve of resonance v= 1, two
fixed points are born on the r axis of the (r, q) phase space
and move apart as the symmetry line q of Eq. (23) shifts
below the r axis. The stable elliptic fixed point moves to
the left, while the unstable hyperbolic one moves to the
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FIG. 1. Resonant curves in (c.,P) parameter space of the map
F Shown are the p„+.curves of Eqs. (26), labeled (v+) for
v= 1,2, 3,4 (strong resonances) and v=5, —,

' (for five-periodic or-

bits). The curve PD marks the onset of instability of the
period-two orbit while the 2L curve signifies the set of parame-
ters for which the fixed point of the linear map belongs the
period-two orbit of the full map.

FIG. 2. The basin of stability of the elliptic fixed point of the
map F for P=0. 1. (a) For a=0.5, narrow resonances (5+) and
(4+) are visible as marked by solid dots. (b) For @=0.3, strong
resonance (3+) orbits have been born out of the elliptic fixed
point. On both figures, the solid line indicates the P-symmetry
line.



41 WAVE PROPAGATION IN A NONLINEAR PERIODIC MEDIUM 5787

Similarly, as we cross the (3+ ) curve, the elliptic fixed
point gives birth to resonance-three orbits (see again Fig.
2) which in turn move away from the elliptic fixed point,
then begin to overlap with higher resonances, and finally
join the chaotic sea. This situation repeats itself at the
( —', +) curve when the other resonance five is born.
Furthermore, we observe that all periodic orbits follow
the same rule two or no points of each even orbit and
one or no points of each odd one lie on any given (S- or
P-) symmetry line. This observation makes the numerical
search for the periodic orbits significantly easier.

The (2+) curve of p= —e marks the beginning of the
period-doubling (PD) cascade. At these values of the pa-
rameters, the elliptic fixed point looses its stability and
hands it over to an elliptic period-two orbit (see Fig. 3).
This orbit can be found analytically as

the right with decreasing c. On the other hand, the two-
periodic points of Eqs. (27) move along the P-symmetry
line [cf. Eq. (23) and Fig. 2] until they loose their stability
at the curve p=(E —

—,
'}'~ marked PD on Fig. 1. Thus

the period-four elliptic orbit emerges in this second step
of the period-doubling cascade. We shall not follow this
route here, leaving its study to future publications, as this
region of phase space is not relevant to applications dis-
cussed in the following section. Instead, we return to fol-
low the faith of the original fixed point.

The next event takes place as we cross the (2—
) curve

of Fig. 1. The now-hyperbolic fixed point changes its sta-
bility again as it becomes elliptic, giving birth to a hyper-
bolic period-two orbit in an inverse period-doubling pro-
cess (see Fig. 3). This newly born orbit is given by

r = —c2

+[1 (Py )2]1/2
(27)

r» =
—,'[ —e+(s +2+1—4P —2)' ],

err =o .
(28)

At this point, the by-now hyperbolic fixed point lies on
the q+-symmetry line of Eq. (23) and thus reverses the
direction of motion along the r axis and begins to move to
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FIG. 3. The stability basins of (a) the period-two orbit of the
resonance (2+) (note that the elliptic fixed point has just lost its
stability) and (b) the elliptic fixed point, which regained its sta-
bility in the inverse bifurcation process. The stability islands of
the (2+) resonance are still visible. The solid curve again marks
the P-symmetry line and the (ce,P) values are noted in the corre-
sponding panels.

Clearly, the inverse period-doubling process preserves the
symmetry of the original fixed point as the hyperbolic
points stay on the S-symmetry line moving apart on the r
axis. At the same time, the heteroclinic orbits interpolat-
ing between the hyperbolic points form a separatrix
which continues to grow in size (see Fig. 3). Close to the
(2—

) curve, this separatrix is well approximated by the
continuous system with its tanh-like kink solutions and
kink-antikink lattice solutions inside the separatrix.
Soon, however, the separatrix begins to break up as
strong resonances emerge from the elliptic fixed point.

The "negative" resonances are formed in a sequence
reversed to that of "positive" resonances described above.
First, the resonance five is born at ( —,'—} curve, followed

by resonance three at the (3—
) curve crossing, followed

by resonance four at (4—) curve of Fig. 1 and so on. The
stability basins of the elliptic fixed point in the presence
of resonances ( —', —) and (3—) are illustrated in Fig. 4.
The general pattern of the negative resonances' behavior
is the same as for the positive resonances. Soon after for-
mation, both stable and unstable periodic orbits move ra-
dially away from the elliptic fixed point. Their hetero-
clinic orbits break up and become chaotic as the reso-
nances overlap, finally giving rise to isolated islands of
stability as they join the surrounding chaotic sea. Note,
however, that the specific position of periodic points be-
longing to negative resonances is also reversed with
respect to those of positive resonances. Compare, for ex-
ample, the resonance (3—

) on Fig. 4 in which "triangle"
of the elliptic orbit points to the left, while that of reso-
nance (3+) of Fig. 2 points to the right: the elliptic and
hyperbolic periodic orbits are exchanged for positive or
negative resonances.

It should be apparent by now that the dynamics of the
map Fof Eqs. (20a) and (20b) has all the intricate features
known from other nonlinear Hamiltonian maps. '

Particularly interesting seems to be the inverse period-
doubling phenomenon not found in previous studies. Its
origin can be traced back to the symmetry of the map F
mentioned just after Eqs. (16a) and (16b): the dynamics
of the map F for positive nonlinearity differs from the
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V. THE TRANSMISSION PROBLEM

Let us apply the general considerations of the preced-
ing sections to a transmission problem defined as follows.
Consider a plane, monochromatic wave of wave vector k
(either electromagnetic wave or ballistic electron wave
function) incident upon a spatially periodic (in x direc-
tion) nonlinear medium. If the nonlinear medium is of
finite extent, this wave would be partly reflected and part-
ly transmitted. The transmitted wave then continues to
propagate as a plane wave. To determine the transmit-
tivity of the nonlinear medium as a function of intensity
and the wave vector of the incident wave, we reverse this
situation, asking under what conditions the intensity of
the transmitted wave remains bounded when propagated
backwards. '

We assume that the propagating wave is described by
the wave equation, Eq. (1) with Eq. (2). Consequently, in
the language of the resulting map, Eqs. (16a) and (16b), or
Eqs. (20a) and (20b), one can restate the general problem
as follows. For a given set of parameters (a,p, a) charac-
terizing the medium, find a set of transmitted wave inten-
sities T and wave vectors k, for which an initial point in
the phase space of the map M, or F, corresponding to the
linear (a=0}, stable fixed point of this map, belong to a
bounded orbit of the map.

Now recall that the linear fixed point of the map M is
given by Eqs. (18) and thus, after the rescaling of Eqs.
(19), the linear fixed point of the map F is

FIG. 4. The stability basin of the elliptic fixed point for
P=0. 1. (a} For e = —0.48, i.e., soon after the emergence of the
( —,
' —) resonance, most of the orbits are nearly integrable, while

the period-five orbit is visible near the elliptic fixed point. Also
note the spread along the P-symmetry line, barely discernible
stability island of the period-two orbit around r =0.5. In (b) the
period-three orbit of the resonance (3—) is shown for
e.= —0.75.

negative nonlinearity in that the former case the map has
a "natural" hyperbolic fixed point due to a local max-
imurn of the effective potential in the Hamiltonian of Eq.
(10), while in the latter there is only a single minimum of
the potential (elliptic fixed point} and the pair of hyper-
bolic points emerges as turning points of the potential.

The existence of the negative resonance sequence in
limited parameter range implies that for values of p less
than about 0.45 (cf. Fig. 1), the transition to complete
chaos in our dynamical system takes place via a rnecha-
nism of primary resonances overlap, whereas for larger
values of p, the elliptic fixed point does not regain its sta-
bility which it loses at (2+) resonance, and the ensuing
period-doubling cascade becomes the only route to chaos
on the entire parameter space.

Since the dynamics of our map is so complex, we do
not pretend to have a complete understanding of all its
details. Nevertheless, what we have established about it
so far should be sufficient to apply the map F to the
description of the transmission problem which follows in
the next section.

2
)
—1/2p

ql
—rI .

(29)

0.6

04-
2+

3+

5/2-

-0.5 0.0 0.5 1.0

FIG. 5. The set of parameters {s,P} for which the fixed point
of the linear map (r~, q&) gives rise to a bound orbit under the
map F. The dark tongues of this diagram are marked with
resonance's indices according to the location of the initial point
of the bound orbit in the corresponding stability basin of a given
resonance.

The set of parameters (e,p) for which an orbit of the map
F originating at the initial point (r&, q&) remains bounded
under iteration is shown in Fig. 5. The dark regions
represent transmitting states. For low values of p
(p & 0. 1) the system is transmitting for nearly all energies

As p increases, several gaps in the transmission spec-
trurn are opened and they grow in size. For larger values
of p (p) 0.6), none of the states is transmitting. The ori-
gin of the gaps can be elucidated based on the analysis of
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the dynamics of the map F in the preceding section.
The right-most edge of the dark region of Fig. 5 can be

associated with the (1+) resonance curve of Fig. 1. This
is where the first bound orbits of the map F appear as
contained within a rather small separatrix. Therefore,
for larger values of P, the linear fixed point, Eqs. (29),
falls outside the separatrix and thus generates unbounded
(nontransmitting) orbits. This transition from a non-

transmitting to transmitting state with decreasing c. is
very sharp since, as remarked before, in the neighbor-
hood of the (1+) resonant curve the system is nearly in-

tegrable and hence has fairly sharp separatrix. Similarly,
the second sharp edge of the dark region, extending in
the range of P=0.2, —0.8 & s & —0.3, relates to the for-
mation of the "negative" separatrix spanned by the two-
periodic hyperbolic points of the resonance (2—) (cf. Fig.
1). Again, this edge is sharp since the system is almost
integrable there and has a well-defined heteroclinic orbit.
As the linear fixed point crosses this orbit, there is a
sharp transition to the transmitting state.

All the other dark tongues and white gaps can also be
explained by referring to the analysis of the strong reso-
nances (see, for example, the curve 2L of Fig. 1). In go-
ing from right to left at P=0.4 of Fig. 5 the first narrow
tongue encountered is identified with the linear fixed

point entering, and then leaving, the stability basin of the
(4+) resonance. The next, wider tongue relates to the
stability basin of the (3+) resonance and is followed by a
narrow resonance ( —,'+) tongue. Subsequently, one en-

counters the largest tongue of Fig. 5 which relates to the
primary resonance (2+). Similarly, moving vertically
down at fixed s= —0.9 we pass through the (barely dis-
cernible on Fig. 5) tongues of resonances ( —,

' —), (3—),

and (4—).
The above comments explain the most apparent attri-

butes of Fig. 5. However, then examined in more detail,
this figure exhibits even more salient features. For exam-

ple, all the right edges of the positive resonance tongues
are sharper than the left edges. This is due to the fact
that with decreasing c the expanding resonances are
catching up with the linear fixed point and, being less
developed at larger c, they have sharper boundaries. In
contrast, the left edges of the tongues correspond to the
by-now strongly fragmented resonances passing by and
leaving the linear fixed point in the wake of stochastic
layers of secondary resonances. Hence, the left edges
have more structure. Particularly fragmented is the left
edge of the largest (2+ ) resonance tongue. There the el-
liptic fixed point of the map F looses its stability bifurcat-
ing into a two-periodic orbit with initially large basins of
stability —hence, this tongue is rather wide. However,
these basins of stability quickly contract in size as the
secondary resonances "eat away" the heteroelinic orbits.
The surrounding phase space is full of chaotic orbits,
with some of them bounded and some unbounded. Thus,
in this region, the map is extremely sensitive to initial
conditions and the boundary between the transmitting
and nontransrnitting states is very ill-defined.

Moreover, at yet smaller scale, all the boundaries of
Fig. 5 are even more intricate and reveal a complex frac-
tal structure as should be evident from Fig. 6. This struc-

(a)

0.45-

0.40 -:.', :. , ,
:.
,
.:

0.35
-0.3 -0,2 -0. 1

I

0,0 0. 1

0.35

tllk jg Ill ICIC IC'Ill't I Cltgt lfl'

0.30-

0.25-

0.20
-Q7 -0.6 -0.5 -Q4 -0.3

FIG. 6. Fractal structure of the transmitting states boun-
daries. Shown are two enlarged regions of Fig. 5: (a) the region
of the (4+) and (3+) tongues and (b) interior of the largest gap
between the (2+) and (2 —) resonances. On both panels, a
number of narrow tongues corresponding to secondary reso-
nances can be identified.

P=ka+1 sgT, cs—s(ko).a (30)

Replotting now the dark points of Fig. 5, which represent
transmitting states, on the ka versus g T axis set, one can
reproduce Fig. 1 of Ref. 5. Subsequently, following the
procedure outlined in that reference, one can establish
multistability of the transmission spectrum as a function

ture has its origin in a complicated pattern of secondary
resonances and bifurcations suffered by the elliptic points
of the strong primary resonances. We shall not further
investigate this matter here, leaving it to future studies.

To translate the information contained in Fig. 5 into
the transmitted wave intensity versus the wave-vector
dependence, one has to know how, specifically, the medi-
um parameters, IM and a, depend on the wave vector of
the incident wave. As a first example, consider a plane
electromagnetic wave of wave vector k incident from vac-
uum upon a superlattice with nonlinear dielectric con-
stant. ' The transmitted wave is then of the form
g(x) = Te'"", and the conserved current j of Eq. (7), relat-
ed to the energy How along the superlattice is j =kT,
specifying the map parameter J defined in Eq. (13) as
J =sin(ka)T . If, in addition, we set @=0 and assume
that the nonlinearity parameter is wave-vector depen-
dent as a=gk we obtain from the definition of Eqs. {4)
and (19),
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a aT =P(1—s ) ', e=cos(Ka) . (31)

of incident intensity. Moreover, notice that keeping the
linear modulation parameter p nonzero would allow us
also to study the transmission of waves from outside of
the allowed band of the linear medium.

For a second specific example we turn to the tight-
binding model' with its application to the transport of
ballistic electrons through a nonlinear superlattice. Ad-
justing the parameters of the map E to describe this situa-
tion we note that, since the vacuum is now periodically
modulated, k =0 in the original Eq. (1) and the plane
wave in the periodically modulated medium is of the
form g =Te' ' . Thus, the discrete current, Eq. (Al),
is now given as J =sin(ka )T, leading to
p=a sin(Ka)aT . Moreover, requiring that the propa-
gating waves describe electrons from the allowed band
only, i.e, . with energies s=l+p=cos(Ka), the sought-
after transmission diagram can be obtained from Fig. 5 in
new variables,

Let us call R, b, and J the charge, bond charge, and
current, respectively. It is clear from the above
definitions that the following identity holds:

R +)R =b +J (A2)

Moreover, multiplication of Eq. (3) by f' and its com-
plex conjugated by f and subsequent addition of the re-
sulting equations gives

b +b )=2(E+aR )R (A3)

while subtraction yields just current conservation
J =J &=const. Equation (A2) together with Eq. (A3)
constitute a two-dimensional map for the charge and
bond-charge variables. Note, however, that this map is
not area-preseruing, i.e., the charge and bond-charge vari-
ables are not canonically conjugated. To establish a one-
to-one correspondence between the map defined above
and the map given by Eqs. (16a) and (16b}we replace the
bond charge by a new variable

The resulting figure is given in Ref. 1 and thus will not be
reproduced here. All the dark tongues and white gaps
have their origin in the effects already discussed in the be-
ginning of this section.

The tight-binding model of the last example, being in
principle quantum mechanical, can provide an interesting
bridge connecting spatial chaos phenomena of classical
systems to the quantum chaos, if such exists. Again, we
leave this fascinating perspective to future investigations.

b

m

The resulting map now reads

J
R +)=R~ Q +

R

R
Q +i=2(s+uR +i)—

Q
Rm+1

(A4)

(A5)

ACKNOWI. KDGMENTS

APPENDIX

Here we give a different derivation of the map of Eqs.
(16a) and (16b) to further clarify the relationship between
the discrete, complex map of Eq. (3) and the equivalent
Hamiltonian system introduced in the main text. We be-
gin by defining three discrete variables based on the wave
function P

R

,'(4' 0 + i+ 0*—+—i4» (Al)
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and is identical to the map of Eqs. (16a) and (16b) with
discrete definitions of the canonical variables and con-
served current given in Eqs. (Al) with Eq. (A4).

The maps given by Eqs. (16a) and (16b) or Eqs. (A5)
cannot be reduced to a two-point map in charge variable
only as done previously' by elimination of canonical
momentum Q. Attempting to reduce the map of Eqs.
(A5) to a form similar to that of Refs. 1 and 7 we obtain

R +, =R )+4(e+aR )

X [(c,+aR )R

—sgn(Q, )QR R,—J ] .

(A6)

Hence, the momentum variable Q enters the map in a
nontrivial way and has to be recalculated according with
Eqs. (A5) at every successive step of iteration. Ignoring
the sgn(Q) in Eq. (A6) as done in Refs. 1 and 7 leads to a
map with completely diferent dynamics than that of the
map described by Eqs. (16a) and (16b).

'Franqois Delyon, Yves-Emmanuel Levy, and Bernard Souil-
lard, Phys. Rev. Lett. 57, 2010 (1986).

2D. L. Mills and S. E. Trullinger, Phys. Rev. B 36, 947 (1987).
3J. Coste and J. Peyraud, Phys. Rev. B 39, 13086 (1989).
~P. Hawrylak, M. Grabowski, and P. Wilson, Phys. Rev. B 40,

6398 (1989).

~Pawel Hawrylak and Marek Grabowski, Phys. Rev. B 40, 8013
(1989).

Pawel Hawrylak and Marek Grabowski, Surf. Sci. (to be pub-
lished)

L. Kahn, N. S. Almeida, and D. L. Mills, Phys. Rev. B 37,
8072 (1988); A. Mauger, N. S. Almeida, and D. L. Mills, ibid.



41 WAVE PROPAGATION IN A NONLINEAR PERIODIC MEDIUM 5791

38, 1296 (1988).
Jian-min Mao and Robert H. G. Helleman, Phys. Rev. A 35,

1847 (1987).
V. G. Makhankov and V. K. Fedyanin, Phys. Rep. 104, 1

(1984).
Piotr Garbaczewski, Classical and Quantum Field Theory of
Exactly Soluble Nonlinear Systems (World Scientific, Singa-

pore, 1985)~

~ 'Marek Grabowski (unpublished).
' J. M. Greene, R. S. McKay, F. Vivaldi, and M. J. Feigen-

baum, Physica D (Amsterdam) 3D, 468 (1981).
Tassos C. Bountis, Physica D (Amsterdam) 3D, 577 (1981).

' R. H. G. Helleman, in Fundamental Problems in Statistical
Mechanics, edited by E. G. D. Cohen (North-Holland, Am-
sterdam, 1980), Vol. 5.




