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Surface and thermodynamic interatomic force fields for silicon clusters and bulk phases
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We have developed new interatomic force fields which describe the phase stability of crystalline
silicon and small clusters of silicon. We show that when three-body forces are adjusted to describe
"covalent~metallic" phase transitions instead of small-amplitude atomic vibrations, a simple and
accurate force field is obtained. This force field can be easily modified to describe energies and
structures of Si„vapor-phase clusters. A key aspect of the cluster problem is the transfer of bond
strength from dangling bonds to back bonds. We expect our potential will have widespread applica-
tions to the formation and activation energies for diffusion of defects in crystalline Si and to the
structural properties of amorphous and liquid silicon.

I. INTRODUCTION

The determination of the structure of extended non-
periodic systems such as clusters, liquids, and amorphous
solids is one of the difficult problems in condensed-matter
physics. For these systems, experimental probes cannot
yield complete structural information. Probes for surface
structure now exist, e.g., the scanning tunneling micro-
scope, but not for bulk nonperiodic structures or clusters.
Current ab initio quantum-mechanical methods have
proved to be very useful for predicting the structure of
small clusters. However, they are still too cumbersome
to handle systems of sufficient size to make useful predic-
tions for amorphous solids or liquids.

It would seem that for large numbers of atoms it
should be possible to replace the complete quantum-
mechanical description by a simpler classical
interatomic-force-field model. Calculations with such a
model can be carried out several orders of magnitude
more rapidly than is possible with ab initio methods.
However, at the atomic level our understanding of the
quantum-mechanical forces is still in its infancy. While
we easily understand the tetrahedral coordination of crys-
talline Si in terms of hybridized sp orbitals, how can a
classical model describe the metallic high-pressure phases
of Si, or the Jahn-Teller reconstructions of Si surfaces'
Indeed, what can we reasonably expect from classical
forces? These questions have recently attracted much in-
terest and have been answered in several ways. Here we
present a new approach. We make detailed comparisons
of our results both with the best available first-principles
calculations and with the results obtained with other clas-
sical models. We believe that the present classical
method is the only one which has yielded accurate results
for both the bulk-phase diagram and cluster structural
trends.

Before the coming of effective methods to compute the

total energy of solids, one had to rely exclusively on an
experimental data base of elastic constants and vibration-
al spectra for silicon in the diamond structure. However,
this limited data base has changed dramatically in the
last several years. Particularly, the theoretical work of
Yin and Cohen on the high-pressure phases of silicon'
has allowed one to have access to accurate information
on more general configurations of crystalline silicon.
Also, highly sophisticated molecular-orbital calculations
exist on Si„ for n ~10. On the experimental side, mea-
surements on the vapor phases of Si„+ and Ge„+ clusters
have been reported for 2~n ~60. These developments
have produced a new battery of data on silicon which en-
compasses the range from small clusters to many crystal-
line phases.

The process of transcribing quantum-mechanical
forces into classical ones is not automatic or routine. It
will no doubt be based on intuition instead of an analytic
process. Also, considering that quantum forces are non-
linear and nonlocal, we might expect some "nonintuitive"
classical forces, e.g., larger three-body terms than two-
body terms.

Several attempts have been made to model the new
data bases. ' However, these models have met with
only limited success. For example, when emphasis was
placed on bulk phases, the resulting morphology for clus-
ters was not consistent with the quantum-chemistry re-
sults. Conversely, when emphasis was placed on fitting
structural information for silicon clusters, equations of
state for the resulting bulk phases were poorly repro-
duced. These contradictions are easily understood. If
"overcoordinated" silicon structures are fitted by classi-
cal potentials, there is no reason to suppose that "under-
coordinated" cluster structures mill be accurately repro-
duced, and vice versa. Most of the early work in this
area concentrated in fitting bulk silicon polytypes such as
the high-pressure phases, e.g., fcc and hcp structures. A
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fit to such structures may reproduce twelvefold-
coordinated silicon, but not twofold-coordinated silicon
structures. Generally, when a particular data base is
fitted, the resulting classical forces seldom prove accurate
for regimes not included in the fit.

To ensure that our model has physical content, we
demand that it provide accurate descriptions of two ex-
treme systems: small clusters and various crystalline
phases. Clusters contain many dangling bonds. We ex-
pect large reconstruction energies in the clusters owing to
incomplete coordination. Such reconstructions will be
absent in the crystalline systems. These systems primari-
ly are high-pressure phases where silicon is overcoordi-
nated. By incorporating both limits in our force-field
description, we hope to enhance our capacity to describe
systems which reside between these regimes. These inter-
mediate cases would include structural defects, liquids,
and amorphous solids.

II. CRYSTALLINE PHASES OF SILICON:
THERMODYNAMIC INTERATOMIC FORCE FIELD

A. Defining a bulk-phase force field

Bond-stretching and bond-bending classical force fields
(CFF) usually depend on the interatomic vector, R;J, be-
tween atoms i and j. These interactions are, respectively,
functions of the magnitude of this vector and the dot
product R;. R.k. A term involving cos(8;k) commonly
appears, where 8,"k is the angle between R; and R k.
The key difference between our approach and that of pre-
vious CFF's is that we choose our angular function in a
physical, rather than a geometrical way. Our function is
designed to simulate the free-energy change at a metal-
semiconductor transition. This transition is expected to
be first order. The discontinuous transition involves large
changes in the coordination and the conductivity of the
silicon phases. For example, a relevant transition may in-
volve converting the open, covalent fourfold-coordinated
diamond structure to a metallic, compact, twelvefold-
coordinated face-centered-cubic structure. An energy
function which is discontinuous in a macroscopic sense is
"S shaped" on an atomic scale. ' The smallest bonding
angle 8,"k in the phases we consider varies from m/3 in a
close-packed structure to 2~/3 in graphite. lf we use

I

cos8; k to describe angular forces, ' we are using a
function which is nearly linear in the range of interest.
However, if we instead use cos(38;.k ), then this function
varies rapidly near 8,"k =~/2, corresponding to the
metal-semiconductor transition, and slowly near
8; k

=n. /3 (metallic phases) or near 8;.k =2m/3 .(semicon-
ducting phases).

While there are obvious advantages to using the physi-
cally significant function cos(38,~k ) instead of the geome-
trical function cos8,,„, there are disadvantages as well. '3

The geometrical function is single valued, but cos(38;~k )

is multiple valued. Thus while cos(38;ik ) has the correct
qualitative behavior when 8,"k is the smallest bond angle,
if we were to use this function for all bond angles, there
would be substantial cancellation of bond-bending ener-
gies between bond pairs with larger and smaller bond an-
gles. This unwanted cancellation can be avoided' by im-

posing an angular cutoff which effectively retains only
bond-bending energies for smaller bond angles.

The angular cutoff effectively erases the long-range
phase coherence which is characteristic of quantum-
mechanical wave functions in favor of short-range in-
teraction energies. Because we are using a classical force
field, we feel that this is logically the only correct pro-
cedure. All other attempts ' to model interatomic
forces in Si have used cos8;.k summed over all bond an-

gles (small and large) without an angular cutoff. While
on geometrical grounds this approach seems safe enough,
as well shall see our quite different approach yields
dramatic improvements in the fit to the bulk-phase dia-

gram. We believe that the origin of this success lies pri-
marily in the fact that our model incorporates the basic
physics of the metal-semiconductor transition in an inter-
nally self-consistent way. We also believe that this is not
possible with cos8,Jk because this geometrical factor does
not recognize the quantum-mechanical content of the
metal-semiconductor transition which occurs between
small and large values of the smallest bond angle. Our
view is supported by the failure of many workers who
used cos8 to achieve good fits to the bulk-phase diagram,
in spite of the fact that all of them used at least as many
(often more) adjustable parameters as we have used.

The explicit expression for our thermodynamic intera-
tomic force fields (TIFF) in the crystalline state is

E[[RI]=—g [A exp( —P,R; )/R; —g;.exp( PzR; )/R; ], —1

1$J(i')

where R,. is the interatomic distance between (i,j) and
the many-body forces which are contained within the fac-
tor g, -. We wish gij to be large for covalent systems with
large bond angles resulting in a shorter bond length R;.,
as compared to metallic systems with small bond angles.

We define gij as

S,, = I+(cos(38,J„)&,

&f(8J )&=ff]/[I]

[f(8;,k )]= g f(8;,k )exp( &i8;',k )exp( —~2R,—k ),
k

(iWkWj )

g/j g0 g 1 iJ Ji

where

(2) with R;Jk=(R; +R;k)/2. This . form for f represents a
very-short-range function which has sharp angular and
radial cutoffs. The parameters (A, „A,2) are fixed to be
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FIG. 1. Equation of state for silicon as a function of atomic volume. Shown are the body-centered-cubic (bcc), face-centered-cubic
(fcc), simple-cubic (sc), and diamond structures. The volumes have been normalized to the experimental equilibrium volume of the
diamond structure. We present results from (a) the interatomic potential of Biswas and Haman (Ref. 5), (b) the quantum-mechanical
results of Yin and Cohen (Ref. 1), and (c) the present work.

(A, , ) '=(tr/2) and (A2) '=Re, where Ro is the
nearest-neighbor distance in the diamond structure. The
factor S, . ranges from 0 for metallic systems to 2 for co-
valent systetns. Also, for 8)k (n. /3 (8;~k )2~/3) we sat-
urate cos(38;.k ) so that eos(38;.I, ) = —1 (+ 1).

The parameters A, p„p2, go, and g, are determined by
fitting the equation of state at T=0 K for diamond,
simple-cubic, body-centered-cubic, and face-centered-
cubic Si structures as calculated by Yin and Cohen. '

These structures have coordination numbers of 4, 6, 8,
and 12, respectively. The equations of state for these
structures can be accurately reproduced by the Mur-
naghan form

&oV
E( V)=

Bo(BI) —1)

This is true even though the Biswas-Hamann potential
requires more parameters, and is more successful in
fitting the bulk-phase diagram than any of the other cos8
models. Specifically, the equilibrium volume and place-
ment of the bcc and fcc phases are reproduced better in
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This form requires knowing the equilibrium energy
E( Vo ), volume Vo, bulk modulus Bo, and pressure
derivative of the bulk modulus Bo. The data base from
Yin and Cohen provides roughly twice the number of
points to be fitted as parameters. The resulting parame-
ters for our interatomic potential are given in Table I.
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B. Bulk phases of silicon

Our TIFF results for the equations of state are corn-
pared in Fig. 1 to Biswas and Hamann's CFF work and
to the Yin-Cohen quantum-mechanical calculations. '

Our TIFF potential does a better job of replicating the
quantum-mechanical results than does the CFF work.
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TABLE I. Parameters for the bulk terms of our interatomic
potential for silicon. See Eqs. (1) and (2) and the text for details.

A (eV A ) = 182.44 P~ (A ')=0. 151
Pi (A )=0.550 g, (eVA)=2.644
go (eV A) =7.08 A, , =(2/ )

A~ (A )=0.1773

Volume

FICx. 2. Equation of state for silicon including the
hexagonal-close-packed (hcp) and the white-tin structure (P-Sn).
The top panel is from the work of Chang and Cohen (Ref. 15);
the bottom panel is from our interatomic field.
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TABLE II. Equation-of-state parameters for silicon in various structures. See Eq. (3). Sourcesofex-
perimental and pseudopotential values discussed in text.

Structure

Diamond
Present work
Experiment
Pseudopotential

P-Sn

Simple-cubic

Hexagonal-close-packed

Body-centered-cubic

Face-centered-cubic

Cohesive
energy

{eV)

4.62
4.63
4.84

4.33

4.21

4.13

4.13

4.11

Lattice
constants

(A)

5.36
5.43
5.45

4.64(a)
2.89(c)

2.47

2.71(a)
4.41(c)

3.03

3.81

Bulk
modulus
(Mbar)

1.01
0.99
0.98

1.50

1.47

1.81

1.90

1.80

Derivative of
bulk modulus
with pressure

5.00

4.26

5.37

5.05

6.07

4.94

our work. We also obtain the correct ordering in energy
of the bcc and fcc phases, although the energy difference
between these phases is quite small.

In Fig. 2, we compare our work to the equations of
state calculated by Chang and Cohen. 's Their work is an
extension of the work of Yin and Cohen. ' In this figure,
we have included two additional structures; the white-tin
structure (p-Sn) and the hexagonal-close-packed (hcp)
structure. We did not fit our potential parameters explic-
itly to either structure. Nonetheless, the agreement with
Chang and Cohen is quite good. In Table II, we summa-
rize the calculated equation-of-state data and compare to
other theories and experiments. For the diamond struc-
ture, our calculated values for Bo,E( Vo ) and Vo are com-
parable to the best theoretical values.

We find that the hcp structure is -0.02 eV lower than
the fcc structure and that its equation of state is almost
identical to the bcc equation of state. Chang and Cohen
find a similar placement for the hcp structure relative to
the fcc structure. They found a c/a ratio of 1.69, which
is larger than the ideal ratio, but is consistent with experi-
mental values ranging from 1.64 to 1.70. Our potential
yields an ideal c/a ratio of 1.63 to within —l%%uo. Also,
Chang and Cohen find a larger separation between bcc
and hcp than we do. To within -5 meV, we find the

TABLE III. Transition pressures and volumes for the cubic
diamond to P-Sn transition. The transition volumes (V, ) are
normalized to the experimental equilibrium volume of the dia-
mond structure (20.01 A'/atom). The pseudopotential work is
from Chang and Cohen (Ref. 15). Experimental data are from
(a) Jamieson (Ref. 17) and (b) Hu and Spain (Ref. 20).

same equilibrium energy for the bcc and hcp structures.
Our accuracy in the fitting is probably —10 meV, so we
cannot distinguish between bcc and hcp structures.

The p-Sn structure can be considered a "transition
structure" from the covalent diamond structure to a me-
tallic structure. The p-Sn coordination is rigorously four-
fold, but the two next nearest neighbors are only -5%
more distant. Thus p-Sn can be considered to be sixfold
coordinated, or a Jahn-Teller distorted octahedron. Our
equilibrium volume for P-Sn is slightly larger than pre-
dicted by Chang and Cohen. Otherwise, the equations of
state are similar. With respect to our c/a ratio, we find a
value of about 0.62, as opposed to the quantum-
mechanical prediction and experimental' value of 0.55.
Our larger c/a ratio can be attributed to the angularly
dependent energy factor in (2). A larger c/a ratio would
produce larger angles 8,jk, which are closer to the
tetrahedral angle. Perhaps a slightly weaker angular
dependence would improve the c /a values.

We have examined the stability of the diamond struc-
ture versus the p-Sn structure as a function of pressure.
We find that at —140 kbar the diamond structure will
transform to the p-Sn structure. This value is higher
than experiment, ' ' which ranges from 88 to 125 kbar,
and higher than the quantum-mechanical predictions.
The value of the transition volume for the diamond and
p-Sn structures is quite good. Given that we have not ad-
justed our parameters to the pressure data, the agreement
is surprisingly good and very much better than would be
obtained by other currently available interatomic poten-
tials based on cos8. In Table III, we summarize our pres-
sure calculations and compare to experiment and other
theories.

Present work
Pseudopotential
Experiment (a)

(b)

V,
{diam. )

0.87
0.93
0.918
0.911

V,

(P-Sn)

0.72
0.72
0.710
0.706

Pressure
(kbar)

140
93

126
113

III. SILICON CLUSTERS:
SURFACE INTERATOMIC FORCE FIELD

A. Dangling-bond corrections to the bulk force field

If we apply our TFF potentials to small silicon clusters,
we find the lowest-energy structures to be rings for Si„
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where n &8. For n ~8, we find a three-dimensional
structure where the rings are capped off. In Fig. 3, we il-

lustrate the lowest-energy structures for n & 10. We note
that for n =10 we obtain the adamantine cage. The
adamantine cage can be considered to be a diamond-
structure fragment. It is noteworthy that we obtain this
fragment, as it strongly suggests that diamond is the true
ground-state structure for our bulk-silicon potential. For
structures larger than n =10, we continue to build up
"bulklike" fragments of "diamondlike" silicon. In Fig. 4,
we illustrate typical structures for n =13, 16, and 19. Si,9
is interesting in that it resembles graphitic rings linked by
fivefold-coordinated rings. Such structural units are ex-
pected for covalent networks.

Our results based on the bulk-silicon potential are at
strong variance with the structures obtained from
molecular-orbital theory. The quantum-chemistry study
of silicon clusters by Raghavachari and Rohlfing yields
three-dimensional structures for n &5. Moreover, the
average coordination of their structures may exceed 4
(especially for n )6), which is indicative of a metallic
structure. The quantum-chemistry work is similar to
that found by other theoretical methods. ' In contrast,
the average coordination of the clusters in Fig. 3 never
exceeds 2.5.

This disagreement between the structures predicted
from our bulk-phase potential and those predicted by
quantum chemistry is not surprising. Structural features
which are associated with undercoordinated atoms, i.e.,
dangling-bond features, are not described by our bulk en-

ergy. To remedy this omission, we must modify our po-
tentials for undercoordinated species.

Specifically, the transfer of dangling-bond strength to

FIG. 4. Structures of Si„ for n =13, 16, and 19 without back-
bonding contributions. Note how these structures resemble

fragments of the diamond structure.

backbonds can produce more compact or more metallic
structures. This transfer will depend on the angle 8; be-
tween the dangling bond and backbond. Let us define a
"dangling-bond vector", D, as follows:

g R,"exp( —A, 3R; )

J
(j xi)

(4)
g exp( —

A,3R;J)

(jwi)

We expect that backbonding strengthening will vary with
the angle 8;~. For covalent systems where 8;J -2m'/3 we
expect large reconstructions. For metallic systems where
8;J-n/2 we expect much less reconstruction. We de-
scribe the backbonding stengthening by the factor

Q,~
=1+zD;sin[a(8;~ —m/3)] . (5)

FIG. 3. The structure of Si„with 3~n «10 without back-
bonding contributions. These structures disagree with those ob-
tained from quantum-chemistry calculations as the effect of
dangling bonds are not included.

For metallic surfaces where 8;.=m/2, Q;J =1. For crys-
tals, Q; =1 as D, =~D;~ is zero. D, is small in clusters,
except for surface atoms. By making clusters more com-
pact, backbonding reduces covalent interactions and in-
creases metallic interactions. To minimize the number of
parameters, we assume that for each interaction ij,

~go/go = ~gl/g 1 =P(Q JQ,

The change in (go,g, ) vanishes for crystals. We need to
determine four backbonding parameters: z, a, p, and A, 3.
We used the molecular-orbital studies of Raghavachari
and Rohlfing for structural properties and energies of
Si„clusters with n + 10 to fix our four parameters. The
parameters are given in Table IV.
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TABLE IV. Parameters for the dangling-bond corrections to
the bulk force field. See Eqs. (4)—(6) and the text for details.

A3 (A )=0.023 79

p =4.0
z (A ')=0.0951
a=1.70

One complication of this procedure is that the
quantum-chemistry clusters may exhibit Jahn-Teller dis-
tortions. Especially for small clusters, these effects may
be significant and will break symmetry. We expect the
nature of the symmetry breaking to depend on valence-
electron filling of specific molecular orbitals. Such effects
cannot be included in our classical model. However, with
increasing cluster size we expect that steric hindrance
will reduce Jahn-Teller effects. The structures obtained
from our potential should become much more reliable for
n &10.

B. Determining minimum-energy structures

For elemental crystalline matter, usually only a few lat-
tice parameters are necessary to determine the structure.
One can vary these lattice parameters to determine the
lowest-energy structure. The problem is considerably
more complex for clusters. For small clusters, it is possi-
ble to construct an inventory of structures and explore
each topologically distinct case. However, the number
of possible structures grows so rapidly that this approach
becomes impractical for more than about ten atoms.

There are several techniques to minimize a mul-
tiparameter function. We have used both a Monte Carlo
(MC) simulated-annealing algorithm and a molecular-
dynamics (MD) approach. In the MC method, we begin
by randomly placing Si atoms in a cube. Each atom is re-
quired to be at least 3.5 A from its neighbor and from the
walls. The cube is heated initially to about 5000 K. We
displace each atom in random discrete steps and deter-
mine the change in energy AE. If the energy of the clus-
ter is lowered, then the step is accepted. If the energy is
raised, the step is accepted with a probability given by
P=exp( AE/kT). At—high tetnperatures, steps which
raise the energy are commonly accepted. As the temper-
ature is lowered, eventually only steps which lower the
energy are accepted. Provided the temperature is
lowered slowly enough, and provided enough steps are
taken, the resulting structure should be a global
minimum in terms of the structural energy.

One method of determining the optimal step size is to
adjust the step size to maintain a success rate of 50% in
the steps taken. We have used an alternative procedure
which produces similar results, yet is somewhat easier to
implement. We scale the step size so that the maximum
step size 5R,„ is given by 5R,„(T)
=5R,„(T;„;„„)(T/T;„;„„)'~.This is the scaling one
would expect in a Debye solid. As the cluster condenses
into a stable state, one expects that a Taylor series of the
energy would not contain terms linear in the atomic coor-
dinates. In this regime, hE /k T=constant and
P =constant. An acceptance rate of 50%%uo can be main-
tained as temperature is lowered through a judicious

choice of 5R,„(T;„;„,~), which we find is about 0.5 A.
Our annealing scheme employed 100 temperature
divisions between T;„;„,&

and Ts„,~
(which was taken to be

100 K). The temperature anneal schedule is such that for
the Nth division T~=yT~, where @=0.96. For each
temperature division, we took 500 steps per particle. The
total number of steps was 50000 per particle with an an-
neal rate of about 10 MC steps/atom K. These parame-
ters are similar to ones used in MC work on amorphous
silicon.

To see whether this annealing process is adequate, we
performed two tests. First, we constructed an inventory
of all the structures of Si„examined in molecular-orbital
calculations. We then scaled the bond lengths in these
structures until a minimum in the energy was achieved.
This procedure resulted in an upper bound on the
lowest-energy structure. Then we used our MC algo-
rithm to determine the structure. If the MC method did
not yield a structure with a lower energy, we then an-
nealed more slowly until we obtained a lower-energy
structure. As a second test we did some MD simulations.

To set up the MD program, we embedded our cluster
in a viscous heat bath. Random initial velocities and
coordinates were assigned to each atom. The equation of
motion for the X component of the ith particle was given
by

MX/ = —BE( I R; I ) /BXi MpXJ +—G ( T),
where M is the mass of the atom, E(IR,, I ) is given by
Eqs. (1), (2), and (4)—(6), p is the viscosity parameter,
and 6 is a randomly fiuctuating force. Quite generally p
and 6 are related by the fluctuation-dissipation
theorem, i.e., the probability of a random force G is
given by P(6)=(2ne) '~ exp( —6 /2cr ), where
a = (2pMk Th '

)
' ~, and h is the time step used to in-

tegrate (7). We use the numerical integration described
by Tully et al.

The MD approach to the structure was used to check
the MC results. In the MD calculations, we started with
a heat bath whose temperature was on the order of 3000
K. The temperature of the bath was slowly lowered to
100 K. The temperature anneal schedule is similar to
that used for Monte Carlo runs, i.e., for the Nth division
T~ =y T~ „where y =0.9. Approximately 30 tempera-
ture divisions were used with about 300 integration steps
per division. The viscosity parameter was similar to that
proposed by Wang and Chen. Specifically, for our time
step we take h =300 a.u. (1 a.u. =2.42X10 ' s) and for
the viscosity p=0.001 a.u. '. Our total anneal time is
-0.1 nsec. We did not repeat the MC work for each
structure, but examined the Si„clusters, with n = 10, 13,
16, and 19. We are reasonably confident that the lowest-
energy structures we present are global minimums. How-
ever, given the possibility of large kinetic barriers, one
can never be "absolutely certain. "

C. The structure of Si„ for n ~ 20

In Figs. 5 and 6 the minimum-energy structures for Si„
for n ~ 20 are illustrated. We find a much higher average
coordination, unlike the structures with no backbonding
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The continuation of this sequence leads to the n =19
structure which is the double icosahedron, i.e., a 1-5-1-5-
1-5-1 sequence. We have preliminary results which sug-
gest that the sequence continues with a stable n =25 tri-
ple icosahedron.

Such metalliclike structures may seem surprising for
silicon clusters. Icosahedral pentagonal growth sequence
structures have occurred previously for two-body
central-force potentials, e.g., metallic or inert-gas clus-
ters. Magic numbers with n =13,19,(23 or 25), . . . , 55,
etc. have been observed for Xe and other inert-gas clus-
ters. However, our structures result from potentials
which possess strong angular character, as evidenced by
the bulk phases in Figs. 1 and 2. Our calculations show
that backbonding forces in small clusters can cause a re-
markable reappearance of these simple geometric struc-
tures.

Our model also shows for a wide range of parameters
that at n = 11, 12, 16, 17, and 18 these clusters do not be-
long to a simple pentagonal growth sequence. Instead we
have a layered character similar to that of one of the
n =10 isomers ' ' which has a 3-3-3-1 trigonal prismatic
structure. We find that n =16 corresponds to 1-6-1-6-2
and n=17 corresponds to capping off a face on the
n =16 structure. For n =18, we have a 1-5-6-5-1 stack-
ing sequence. It is tempting to suppose that the
icosahedral structures are related to the closed-packed
bulk phases, while the other uniaxial structures are relat-
ed to the P-Sn bulk phase.

In Fig. 8, we present the cluster energies as a function
of size and again compare the results to quantum-
chemistry calculations. The absolute values of the cluster
energies from quantum-chemistry calculations have been
adjusted by rescaling of the correlation energy. Owing
to such difficulties in estimating the binding energies, we
feel at this stage one should concentrate on the structural
aspects. Nonetheless, the agreement is adequate, al-
though some noticeable difference do occur. For exam-

pie, the energy of Si8 is lower per atom than the cluster
energy of Si7 in the quantum-chemistry calculation,
whereas the opposite is observed in the interatomic po-
tential work. Similar results have been observed using
other interatomic potentials. We also illustrate in Fig.
8 a liquid drop model curve fit to the interatomic poten-
tial. We used a simple expression of E(n )/n
=Eb(1 an—' b—n ) for this fit. If we fit (a,b) to
our cluster energies for n )6, we obtain an estimate for
the bulk binding energy Eb of about 4.9 eV/atom. This
value is remarkably close to the diamond-structure bind-
ing energy of 4.6 eV/atom.

From Fig. 8, we note that n =6, 10, 13, and 19 are
especially stable. This stability has been confirmed by
theory and experiment for n =6 and 10 (n =7 is also a
stable cluster). For larger clusters, so far it has not been
possible to determine which are most stable. Careful
studies of the effect of ionizing laser energy and intensi-
ty on beam distributions have revealed cluster-
fragmentation effects which are likely to be strong for
"metallic" clusters. Such an effect precludes inference of
relative cluster energies from beam distribution intensi-
ties in cases where the ionization energies I„are large (in

Si„I„)7 eV for n & 10).
In Fig. 9, we present the radial distribution functions

averaged over the clusters for n 20. We obtain a dis-
tinct separation between first and second neighbors which
allows us to make a satisfactory definition of coordination
numbers. It is interesting that the ratio of the nearest
neighbor to the next-nearest neighbor for our clusters is
similar to that of the diamond structure. In Fig. 10, we
consider how the bond length varies with coordination.
We find a somewhat complex behavior. For coordination
numbers (CN) at CN of 4 and 12, we find much smaller
bond lengths than at other coordinations, e.g. , a max-
imurn occurs at a CN of -6—8. If we consider the bond
strength to be related to a bond length, then we would ex-
pect strong bonds to be formed with CN of 4 or 12 and
weak bonds with a CN of 6-8. Again, this would reAect
our covalent (a CN of 4) to metallic transition (a CN of
12). Note that for a CN of 12, triangles of nearest neigh-
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FIG. 8. The binding energy of Si„. Shown are results from
quantum-chemistry calculations (Ref. 2) ( —~—~—), from our
interatomic force field ( —o —o —), and from the liquid drop
model ( —).
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FIG. 9. Radial distribution function for Si„averaged over
n &20.
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FIG. 10. Bond length as a function of coordination for Si„.
Note the minima at coordination numbers corresponding to the
covalent case {aCN of 4) and the metallic case {aCN of 12).

bors are formed, but not for a CN of 8. The decrease in
bond length from a CN of 2 to 4 is not expected from
quantum-mechanical calculations and is probably a fail-
ing of our potential.

In Fig. 11, we present the bond-angle distribution.
While previous potentials based on cos8 were often
designed to favor tetrahedral angles 8, [as though an en-

ergy term proportional to (cos8—cos8, ) j, there is no
such bias in our potential. We find that the bond angles
are all concentrated near 8=m. /3 (close packing) or near
8, (tetrahedral packing). Given our cos(38) functiona
form, we might have expected this behavior. However,
the virtual absence of bond angles near ~/2 reflects cer-

t
'

geometrical constraints which one might not haveain g
1
f'

anticipated. These packing constraints in effect amp t y
the significance of the "covalent-metallic" distinction.

Unlike the case of crystalline silicon, the experimental
and theoretical "data base" for clusters is quite sparse.
For crystalline silicon we have structural information
f ther complete pressure work, both experimentrom ra

s IIand theory, as evidenced in Figs. 1 and 2, and Tables
an d III For clusters we must rely on more indirect com-

el.parisons to verify the predictions of the cluster mode .
Some recent experimental data do seem to support our

predictions. The size dependence of the rate constant '

for the addition of the first C2H4 molecule on to S„+ is
shown in Fig. 12. For n 12 the rate constant k2 is an
erratic function of n, as expected from the variety of clus-
ter geometries calculated for n 10 by quantum-
chemistry methods. For n ~ 13 and n ~ 19 smooth rises
in k2 are observed. We interpret this behavior as indica-
tive of a common core with a repeated building block,
i.e., a geometric growth sequence. We suggest that the
nonreactive minima at n =13, 19, and 23 correspond to
our icosahedral structures. We expect that uncapped or
completely capped icosahedra containing only sixfold-
coordinated atoms have minimal reactivities, whereas the
CzH4 molecules will react when there are at least two

arest-neighbor fourfold-coordinated adatoms. Denot-
ing these adatoms by Si', the reactive configuration cou d
be the bridge Si*—H—CH=CH —H—Si*. If so, then
the C2H4 reactivity with one Si' adatom is little more
than that with none. In Fig. 13, we illustrate the capping
process for n =13, 14, and 15.

Our results indicate that in the range of 10 n 0,0
the Si„cluster structures oscillate between metallic pen-
tagonal growth structures and covalent molecular struc-
tures. In effect, in this range Si„clusters border on a

60'

Si„+C~H~ ~ Si„CpH~

COLL I SION
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FIG. 11. Angular distribution function for Si„averaged over
n ~20. Note that almost all the bond angles lie either at the
metallic {0=60) or covalent {0=109.5') limits.

FIG. 12. Rate constants for the addition of the first CZH4 to
Si„+ as measured by Jarrold et al. {Ref.31).
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n =15 15

n=14 n =19

FIG. 13. Pentagonal growth clusters for Si„as obtained from
our interatomic force 6eld for n =13-15, 19. For n =15 the
atoms denoted by Si in the text are shaded.

IV. CONCLUSIONS

We have presented in detail a new interatomic force
field which describes accurately both the phase stability
of crystalline silicon, as well as the structures of small
and medium-size clusters of silicon. Our force field
differs from previous work in two fundamental aspects.
First, we show that when three-body forces are adjusted

"covalent-metallic" phase transition. It may well be that
in the addition reaction, the covalent molecule C2H~
remains intact and reacts strongly only with fully co-
valent Si„structures, such as n =10 and 16, and much
more weakly with metallic structures, such as n =13 and
19. Until first-principles calculations of medium-size
clusters become available, it is diScult to say how accu-
rate our model is in calculating small energy differences
between covalent and metallic structures for a given n.
However, we have varied the magnitude of our back-
bonding term by as much as factor of 2, i.e., we have
changed p from 4 to 2, and find that our qualitative con-
clusions remain unchanged. While our model may not
yet address such small energy changes, we feel it has
achieved the goal expected for a classical model: it has
generated plausible candidate structures suitable for
first-principle calculations.

to describe a "covalent~metallic" phase transition in-
stead of small amplitude atomic vibrations, a simple and
accurate force field is obtained. As the bond angle 0
changes from metallic (8=m/3) to covalent (8=2vr/3),
we expect to see a rapid transition in the bond character.
Thus, our force field is based on an angular function
which behaves as cos(38), as opposed to cos(8). Using
this form of the potential we are able to generate for the
first time equations of state for crystalline silicon which
achieve an accuracy comparable to that obtained from
quantum-mechanical calculations. For example, we are
able to predict the diamond —to-white-tin transition
pressure to within -20-30%.

The second aspect of our work which differs from pre-
vious efforts is the explicit inclusion of a term which
transfers bond strength from dangling bonds to back
bonds. With this term our bulk interatomic force field is
simply modified to obtain energies and structures of Si„
vapor-phase clusters. Small silicon clusters would have
open polycyclic structures without this backbonding
term. From highly accurate molecular orbital calcula-
tions, we know small silicon clusters actually assume
close-packed, or metalliclike, structures. Our backbond-
ing force is able to reproduce accurately the coordination
trends obtained from the quantum-chemistry work.
Moreover, we predict surprising pentagonal growth
structures for clusters in the range n =13—25. These
structures partially explain magic numbers recently ob-
served in the addition reaction of C2H4 with Si„

We believe that the success of our interatomic force
field for silicon for a wide variety of bonding
configurations bodes well for widespread applications.
For example, one might use such a force field to study the
formation and activation energies for diffusion of intrin-
sic defects in crystalline silicon, or perhaps the structural
properties of amorphous and liquid silicon. This is the
first time a classical force field has been successful in
describing the condensed properties of any element which
is not an inert gas.
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