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Planar-surface charge densities and energies beyond the local-density approximation
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We present a self-consistent calculation of the ground-state properties of simple metallic planar

surfaces using density-functional theory with nonlocal exchange-correlation effects included. Our

calculational scheme closely follows the classic work of Lang and Kohn for the jellium model, ex-

cept that the exchange-correlation energy and potential within the local-density approximation

(LDA) are replaced by the corresponding nonlocal functionals of Langreth and Mehl (LM). We

also include the discrete-lattice effects, following the variational scheme of Perdew and Monnier.

The physical properties considered include the one-electron effective potential, charge-density

profile, surface energy, and work function. For each of the most densely packed surfaces of seven

simple metals with fcc or bcc structure, we find that, when compared with results in the LDA, the

Friedel oscillation in the electron density near the surface is systematically depressed as a result of
positive LM contributions to the effective potential at places where the LDA density oscillation is

peaked. We find a systematic increase in surface energies, with bigger increases for higher-density

metals. Increases are also found in the work functions. Our results and those from other density-

functional calculations are compared with results from variational treatments of the ground-state

wave function, and with experiment. We also comment upon the Fermi hypernetted-chain jellium

surface energies and work functions.

I. INTRODUCTION

Density-functional theory (DFT), following the
pioneering work of Hohenberg, Kohn, and Sham, ' has
proven to be very powerful for calculations of ground-
state electronic properties of atoms, molecules, solids,
and solid surfaces. Along the path of applying DFT with
greater accuracy to a wide range of systems, various im-
provements to this theory have been developed. One
such improvement is the nonlocal correction to the
local-density approximation (LDA) for the exchange-
correlation energy and potential developed by Langreth
and Mehl ' using the wave-vector method of Langreth
and Perdew. This correction, summarized by the
Langreth-Mehl (LM) functional, has been tested on the
ground-state properties of atoms, molecules, bulk ma-

terials, " and the linear potential model of a metal sur-
face. ' ' Recently, its spin-dependent version' has also
been tested on several systems. Significant improvements
over LDA have been found in most cases.

In this work, we present the first self-consistent
Langreth-Mehl calculations for metal surfaces. We ad-
dress not only the jellium model but also the simple real
metals, to which we apply the variational treatment of
discrete-lattice potentials developed by Perdew and Mon-
nier.

Kohn-Sham density-functional theory was first applied
to surfaces by Lang and Kohn (LK).' In that classic
work, self-consistent potentials and charge-density
profiles at the surface were obtained for nine simple met-
als within the jellium model and the local-density approx-

imation. Also calculated were the surface energies, work
functions, ' and image-plane positions, ' with the
discrete-lattice potentials treated perturbatively. Later,
Monnier and Perdew'6 (MP) generalized the work of
Lang and Kohn by treating the lattice potential in a vari-
ational self-consistent way. They found that, when com-
pared with LK results, the charge-density oscillations at
a given surface can be either enhanced or depressed, de-

pending upon the sign of their single face-dependent vari-
ational parameter. They also found improved surface en-

ergies, which resulted mainly from the variational treat-
ment of the lattice potential and partly from the inclusion
of nonlocal contributions obtained in an early implemen-
tation of wave-vector analysis.

Quite recently, as an alternative to the local-density ap-
proximation, a variational method with a trial ground-
state wave function was applied to metal surfaces by two
different groups using different calculational
schemes. This approach is appealing because it does not
assume for its a priori validity a slow spatial variation of
the electronic density (unlike most density-functional ap-
proxitnations). One of the most distinctive results of the
Fermi hypernetted-chain (FHNC) calculation is the in-

crease over LDA in the surface energy, with a larger in-
crease for the higher-density metals. In the following, we
show that a (somewhat smaller) increase in surface energy
over LDA is also obtained if the LM nonlocal functionals
are introduced into the density-functional treatment. In-
dications of such increases originating from nonlocal
effects have been found earlier. A "back-of-the-
envelope" estimate of the surface correlation energy is
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deferred to Appendix A; this estimate gives values close
to those obtained by the FHNC method. Appendix A
also presents an improved estimate of the FHNC work
function, and further comments on the surface energy.

After the LM nonlocality and the ionic potential' are
taken into account self-consistently, we find surface ener-
gies and work functions in reasonable agreement with ex-
periment for most of the metals which we consider.

Another feature of the LM correction is its inhuence
on electron density distributions at surfaces. When com-
pared with LDA, the LM functional systematically
depresses the density oscillation as judged by the height
of the first Friedel peak just inside the jellium edge. This
depression in electron density oscillation can be qualita-
tively understood from the fact that the LM correction in
the exchange-correlation potential is always positive at
the position of the peak. Such a positive correction
pushes electrons away from the peak, suppressing the
peak height.

II. METHOD

Since our calculations follow the scheme developed by
Perdew and Monnier, ' '6 which in turn was built upon
the work of Lang and Kohn, ' ' we outline only those
parts which are indispensable for the present discussion,
and refer to the earlier work by these authors for a de-
tailed description.

The total ground-state energy E of a system of elec-
trons interacting with static ions can be written as a func-
tional' of the electron number density n(r), one part of
which is the exchange-correlation energy E„,. To con-
struct the electron density n(r), one needs the one-
electron wave functions g, , which satisfy the self-

consistent Schrodinger equation E„,[n ]=E'„';"" [n]+ f dr n(r)e„",' [n(r)], (2.5)

Kohn and that by Monnier and Perdew lies in their
different ways of treating 5v(r). In the former work,
5v(r} was treated by first-order perturbation theory,
while in the latter it was incorporated variationally in the
self-consistent scheme for calculating the density and sur-
face energy of the system. Monnier and Perdew' tried
two forms for doing the variation; for simplicity and con-
sistency we will adopt only one, as both produced very
similar results. In Ref. 16, a variational parameter C was
introduced so that Ce( —x) replaces 5v(r) in (2.1).
Physically, positive C pushes electrons out into the vacu-
um region, while negative C has the opposite effect; C=0
reproduces the jellium-model result. The best value of C,
denoted by C, is determined by minimizing the surface
energy.

Our present calculation differs further from that of
Monnier and Perdew (MP) in the approximation em-
ployed for exchange and correlation. MP used the
Wigner interpolation formula within the local-density
approximation (LDA). They simply added to the LDA
surface energy the nonlocal correction obtained from ear-
lier work on wave-vector analysis, which preceded
the development of the LM functional. Here we include
the local and the nonlocal contributions of the exchange-
correlation potential both self-consistently, and examine
the corresponding change in each of the physical quanti-
ties concerned, including the effective potential, the elec-
tron density profile, the surface energy, and so forth. We
also reoptimize the parameter C.

We use the Langreth-Mehl (LM) functional3 to ac-
count for the nonlocal effects. We approximate E„, by
the sum of local and nonlocal contributions as

V +v,s.[n(r)] |t(; =e;P;,
2m

(2.1)
where e„",' [n ( r }] is the LM nonlocal exchange-
correlation energy density per particle:

n(r)= g if, (r)i
1

(2.2) [Vn(r}]
[n(r)]

(2.6)

where the effective one-particle potential v,~[n(r)] is the
sum of the ionic potential, the Coulomb potential from
the other electrons, and the exchange-correlation poten-
tial given by v „,[n (r)]=5E„,[n (r) ]/5n (r), respectively:

where

b
iVn(r)i

[n(r)] i (2.7)

v,s[n(r)]=v(r)+ fdr', +v[n(r)] .n(r')
r —r' (2.3)

and in Rydberg atomic units (rydbergs and bohrs) the
constants a and b are given by

When applied to a semi-infinite metal filling the half
space x (0, the first two terms on the right-hand side of
(2.3) can be rewritten as P[n(r)]+5v(r), where'

a =m/[8(3m ) ]=4.287X 10

b = (9m. )
'i f= 1.745f,

(2.8)

(2.9)

n (r') n+ (r')—
P[n(r)]= fdr' (2.4)

and 5v(r) is a perturbation arising from the effect of the
discrete lattice. In (2.4}, n (+r is}the density of the neu-

tralizing positive background, which for the jellium mod-
el is defined as n+(r)=n8( —x ), where n is the bulk
average of n(r). The unit step function 8( —x) is 1 for
x (0, and 0 for x )0.

One crucial difference between the work by Lang and

with f=0.17. We found that the sensitivity of the self-
consistent results to f was about the same as that found
by LM for the linear potential model, with smaller f's
still giving higher surface energies (see Appendix B}. For
the sake of consistency, ' a random-phase-approx-
imation (RPA) expression must be used for the local con-
tribution in (2.5), and in the present calculation we use
the von Barth —Hedin (vBH) parametrization.

The corresponding LM exchange-correlation potential
1s
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where K=Vn (r ) The approximation for the potential
given in (2.10) breaks down outside the charge distribu-
tion, where v„, slowly becomes larger and eventually ap-
proaches infinity. This divergence has very little effect on
the numbers obtained for the energy and density (except
in the extreme tail), but presents numerical problems.
We follow the procedure of cutting off this divergence at
a value of x so large that the difference between a finite
and infinite potential no longer has a noticeable effect.
We implement this cutoff in the same way as in previous
work, ' by multiplying (2.10) by a suppression factor
exp( —h

~
Vn

~
n ~ ). The calculations shown used

h =10 . We similarly suppress (2.6); the result is a
slight increase ( & 1% ) in the total surface energy
(column 8, Table III). If a stronger suppression factor
with h =2 ~ X 10 were used for both (2.6) and (2.10),
the total surface energies would increase further by
amounts &2%.

III. RESULTS

A. ES'ective potential

For simplicity, we have considered only the most
densely packed surfaces of the seven simple metals Al,
Pb, Li, Na, K, Pb, and Cs. We show in Figs. 1—4 the cor-
responding change in the one-electron effective potential
v,& caused by LM nonlocality for the jellium surfaces of
Al and K, and the real surfaces of Na(110) and Cs(110),
respectively. Also shown are two of the contributing
components: the electrostatic and the exchange-
correlation potentials.

Figures 1 and 2, and the corresponding density distri-
butions given later in Figs. 5 and 6, are chosen to make
comparison with previous jellium-model calculations.
From Figs. 1 and 2, we observe that in the surface region,
the nonlocal LM contribution to v,z gives mainly positive
corrections inside the jellium edge, and negative correc-
tions outside. These corrections are smaller in magnitude
for higher-density metals, and are barely noticeable in
Fig. 1 for Al. In particular, the LM corrections are al-
ways positive at places where the LDA density oscillation
is peaked. The opposite was found by Ossicini et al. us-
ing the Gunnarsson-Jones (GJ) nonlocal functional.

For real-metal surfaces where the variational parame-
ter C is equal to C, the LM correction to v,& is similar
to that for jellium surfaces, as shown in Figs. 3 and 4. In
particular, depression in Friedel osciIlation due to LM
persists as one passes from jellium to the real surface
case.

At large distances outside the surface, the LDA and
LM potentials do not behave correctly; there the image
potential —1/[4(x —xo)] should be found, where xo is
the position of the image plane. But the effect of this er-
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FIG. 1. The effective one-electron potential (u,&) for a jelli-
um surface with r, =2.07. Also shown are the classical electro-
static (P) and exchange-correlation (v„, ) contributions. The
dashed curves are calculated within the LDA (vBH); the solid
curves contain the LM corrections. All energies are given in
units of the Fermi energy, and plotted relative to the Fermi lev-

el. For details, see the text.

ror on any of the physical quantities considered here is

very small, since the image-potential behavior occurs at
distances where the electron density is nearly zero. In
Figs. 1—4, we use solid vertical lines to indicate the
image-plane positions obtained from a formula fitted to
LDA results for the centroid of excess charge [Eq. (8) of
Ref. 31]. This formula is accurate enough to serve our
present purpose, as any nonlocal effect is believed to be
small. Clearly, the unphysically high values in both
the exchange-correlation and the effective potentials,
which arise from the breakdown of the LM, begin to de-

velop well outside the image plane. For each of Figs.
1-4, we have stopped plotting both the nonlocal
exchange-correlation and the total effective potentials at
some distance away from the jellium edge; beyond this
distance, the two potentials begin to be affected by the
suppression factor introduced (see Sec. II) to simplify the
numerics, and hence are not features of the LM method

per se. We might mention that even with a much

stronger suppression factor like h =2 X 10,which to-
tally suppresses the unphysical increases in the potentials,
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Another physical quantity of high current interest is
the position of the image plane for a given surface. This
quantity is just the location of the centroid of excess
charge in the presence of a weak perpendicular electric
field. It has been calculated by Lang and Kohn within
the LDA. ' The recent development of the inverse pho-
toemission technique and measurements of image-state
properties necessitate more precise information on the
position of the image plane, and several new but
controversial calculations have appeared which include a
nonlocal potential whose behavior is imagelike at large
distances. ' ' ' In the work of Ossjcjnj et al. the
nonlocal corrections to the one-particle potential and
charge-density profile behave oppositely to our LM
corrections, and the centroid of the induced charge
moves slightly toward the jellium edge. Therefore we
expect that the LM correction should shift the centroid
slightly away from the jellium edge. Serena, Soler, and
Garcia have grafted the image-potential limit onto the
LDA potential, and thereby obtained a small shift of the
centroid toward the jellium edge. A similar shift might
be expected if this limit were grafted onto the LM poten-
tial. While the nonlocal effects on the centroid of excess
charge may be very small, the discrete-lattice effects
represented by our potential C 8( —x ) could be impor-
tant. In a future work we plane to present a calculation
of the image-plane position using a procedure which
remedies the incorrect behavior of the LM potential far
away from the surface.

C. Surface energy

Again, we consider only the most densely packed sur-
faces of the seven simple metals. The results are summa-
rized in Tables I—III.

The total surface energy contains five terms

tr[n ]=o,[n]+cr„,[n]+cr„[n ]+cr,[n ]+o,~, (3.1)

where the first three terms represent the kinetic,
exchange-correlation, and electrostatic energy contribu-
tions, respectively. When the variational parameter C is
set to zero, the sum of those three terms is the jellium
surface energy. The last two terms, the pseudopotential
energy and the cleavage energy, arise when the ion-lattice
model is used.

Table I lists the surface energies within the jellium

model (column 6). The two values in parentheses are
from a previous estimate which added the LM nonlocal
correction in the linear potential model to the Lang-
Kohn local value. Clearly these estimated values are
quite a bit lower than those from the present self-
consistent calculations. We also show results from the
original calculation of Lang and Kohn' within the LDA
(Wigner interpolation formula for the exchange and
correlation), LDA results from the more accurate
Vosko-Wilk-Nusair (VWN) formula, the RPA-based
LDA results (vBH), as well as the results from the FHNC
variational treatment of the ground-state wave func-
tion. The nonlocal exchange-correlation contribution
systematically increases the surface energy, an expected
result. ' In contrast, the nonlocal exchange-correlation
functional developed by Gunnarsson and Jones gives
negatiue corrections to the LDA surface energy. ' The
figures in the column marked VWN should probably be
considered close to the exact LDA values. The vBH
column, which is the random-phase approximation to the
LDA, was included because it represents the starting
point for the LM approximation, which was entirely
within the RPA.

The FHNC surface energies tend to be significantly
higher than the LM surface energies. According to the
analysis of Krotscheck and Kohn, ' the extra surface en-

ergy in the FHNC calculation arises from effects that are
not only beyond the LDA, but also beyond the RPA, and
thus inaccessible to the LM functional. Because this
effect depends so sensitively upon short-ranged correla-
tions, Krotscheck and Kohn were rather cautious in their
claims for its size. The FHNC surface energies are fur-
ther discussed in Appendix A.

In Table II, we give the total surface energy and two of
its components for each of the seven elements within the
ion-lattice model, for both C =0 and C =C . (The
values of C for the last four elements are somewhat
different from those found in Ref. 16). As first pointed
out by Perdew and Monnier, ' surface energies drastical-
ly different from those of Lang and Kohn can be obtained
when the discrete-lattice effects on the electron density
are not weak; for Pb this effect may even reduce the sur-
face energy by a factor of 2.

In Table III, we compare surface energies from the
present calculation with those from other calculations
and from experiment. Several observations can be made

TABLE I. Surface energies obtained in the present work for the jellium model in the LDA (VWN,
column 4), the RPA-based LDA (vBH, column 5), and with nonlocal e8'ects (LM, column 6). Results
from Lang and Kohn (LK, Ref. 17), and Krotscheck et al. (FHNC, Ref. 25) are also shown. All sur-
face energies are given in ergs/cm'. Values in parentheses are estimates of the LM surface energy from
Ref. 39.

2.07
2.30
3.28
3.99
4.96
5.23
5.63

Metal

Al
Pb
Li
Na
K
Rb
Cs

LK

—730
—184
210
160
100
85
70

VWN

—602
—101
220
164
100
87
71

vBH

—552
—60
239
176
106
93
73

LM

—484 (
—645)

—9
260
189 (179)
114
100
82

FHNC

—222
181
360
261
159
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TABLE II. The total surface energy o. obtained using LM, and two contributing components, the

exchange-correlation part o „,and the pseudopotential part o p„ for the most densely packed faces of the

seven simple metals (in units of ergs/cm ). In columns 5 and 6 we show values in the LDA (VWN) and

the RPA-based LDA (vBH).

rs

2.07

2.30

3.28

3.99

4.96

5.23

5.63

Metal

Al fcc

Pb fcc

Li bcc

Na bcc

K bcc

Rb bcc

Cs bcc

Face

(110)

(110)

(110)

(110)

(110)

C (eV)

0.0
—1.9

0.0
—6.3

0.0
—1.1

0.0
0.15

0.0
0.25

0.0
0.9

0.0
1.05

VWN
XC

2955
2573

2014
1109

546
455

262
271

113
124

92
129

69
107

vBH
XC

2989
2602

2041
1121

557
462

268
277

116
127

94
133

70
111

LM
XC

3026
2619

2071
1082

574
472

280
291

125
137

102
143

77
120

&ps

1025
848

909
—322

109
74

35
34

21
19

18
—5

17
—12

949
848

1297
659

428
407

257
256

153
152

132
122

110
97

from this table. First, compare the C=O calculations:
the LM results (which include nonlocal efFects within
density-functional theory) and the results from the
FHNC variational method are both higher than the LDA
(VWN) results. The diff'erence arises only in size of the
increase. Second, compare the C =C calculations: the
LM results are in better agreement with experiment than
the MP results at higher densities, while the MP results
are slightly better at lower densities.

Perdew and Wang have proposed generalized gradient
approximations which are often more accurate than LM
for the exchange and correlation energies, taken sepa-
rately; it should be noted that there exist new results for
the proper separation of exchange and correlation. For
the surface exchange-correlation energy, however, it is
essential to treat exchange and correlation together and in
the same way, since the strong nonlocalities of each tend
to cancel-. Thus we do not use the Perdew-Wang
functionals here; elsewhere' they have been found to

reduce the LDA surface exchange-correlation energies by
about 10%%uo.

D. Work function

Following Eq. (4.5) of Monnier and Perdew, ' we ob-
tain the work functions with the LM nonlocal functional
included self-consistently. The results are shown in Table
IV. Also shown are the results from other methods. In
comparison with the LK work function, the LM work
function is systematically larger. The major part of this
difference results from replacement of the Wigner inter-
polation formula by the vBH parametrization for the
LDA. The actual gradient terms in the LM scheme
change the work-function amount to at most 30% of the
change, and often much less. Nearly all the work func-
tions in Table IV have been calculated from the equa-
tion'

TABLE III ~ Comparison of surface energies (in units of ergs/cm ). In the treatment of discrete-lattice effects, the FHNC ap-

proach is similar to the perturbative approach of LK and VWN, while SFW (Ref. 24) is similar to the variational approach of MP
(Ref. 16) and the present work (LM).

Metal Face LK' VWN' MP vBH LMb SFW FHNC Expt. '

2.07
2.30
3.28
3.99
4.96
5.23
5.63

Al fcc
Pb fcc
Li bcc
Na bcc
K bcc
Rb bcc
Cs bcc

(111)
(111)
(110)
(110)
(110)
(110)
(110)

730
1140
380
230
140
120
100

841
1185
402
237
139
121
100

795
456
392
247
148
117
93

886/800
1213/613
404/388
247/246
147/146
131/117
110/93

949/848
1297/659
428/407
257/256
153/152
132/122
110/97

977
1118
465
264
124
107
92

1323
1737
553
318
188
119

965-1170
593-690
470-522
220-275
125-145
95-117
80-95

'Data for C=0.
Data given in the form A /B, where A is the value for C =0 and B for C =C

'Data from Ref. 24.
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TABLE IV. Comparison of work functions (in units of eV). All work functions except those of LK were computed from Eq. (3.2).

rs

2.07
2.30
3.28
3.99
4.96
5.23
5.63

Metal

Al fcc
Pb fcc
Li bcc
Na bcc
K bcc
Rb bcc
Cs bcc

Face

(111)
(111)
(110)
(110)
(110)
(110)
(110)

LK'

3.87/4. 05
3.80/3. 85
3.37/3. 55
3.06/3. 10
2.74/2. 75
2.63/2. 20
2.49/2. 25

VWN

3.79
3.71
3.25
2.93
2.57
2.48
2.37

MP

4.0
3.7
3.5
3.3
2.9
2.9
2.8

vBH'

4.22/4. 38
4.14/4. 12
3.66/3. 78
3.32/3. 39
2.94/3. 07
2.84/2. 84
2.72/2. 73

LM'

4.12/4. 26
4.06/4. 05
3.63/3. 75
3.32/3. 39
2.95/3. 09
2.87/2. 88
2.74/2. 78

SFW

3.6
5.9
3.6
2.9
2.7
2.2
2. 1

Expt. '

4.19
4.01
3.1

2.7
2.39
2.21
2.12

Data given in the form A /B, where A is the value for jellium and B for real metals.
Data for jellium only.

'Data from Ref. 25.

W=bg —E (n) —p„,(n) —(5v),„, (3.2)

&=do/dXlx o, (3.3)

the derivative of the surface energy o with respect to the
charge density X. Because (3.3) requires more laborious
calculation than (3.2), it has not been employed in Table
IV, except in the LK calculations for real metals.

IV. SUMMARY

A fully self-consistent calculation of electron densities
and energies at planar metallic surfaces has been present-
ed within density-functional theory using the Langreth-
Mehl nonlocal functional. The main effects from the LM
correction are a systematic decrease in the density oscilla-
tion near the surface region, and also a systematic in-
crease in the surface energy and the work function.
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APPENDIX A: COMMENTS
ON MANY-BODY-WAUE-FUNCTION

CALCULATIONS FOR JELLIUM SURFACES

Correlated wave functions for jellium surfaces have
been constructed by Sun, Farjain, and Woo ' (SFW)

where b,P is the surface electrostatic dipole barrier, cr(n )
is the free-electron Fermi energy, p„,(n ) is the bulk
exchange-correlation potential, and (5v),„ is the bulk
average of the discrete-lattice potential. For jellium (3.2)
is exact, but for real metals it is only approximate. A
more accurate formula for variational descriptions of
real-metal surfaces is the change-in-self-consistent-field
(hSCF) expression

and by Krotscheck, Kohn, and Qian ' ' (KKQ). The
KKQ surface energy is obtained essentially from the ex-
pectation value of the Hamiltonian, and has been chosen
in Table I as the standard against which to measure
density-functional approximations. SFW used their
correlated wave function only to evaluate the expectation
values of one-body operators; they treated the electron-
electron interaction via another density-functional model.

The difference o.FHwc o.v between the FHNC and
local-density (VWN) values of the surface energy is then
our best estimate of the contribution from the nonlocality
of the exchange-correlation energy. For six of the seven
real-metal r, values considered by KKQ, we find
o " —o + = (1520 ergs/cm ) /r, . The sole exception
is the value for r, =5.23, which is 3 or 4 times smaller
than expected. Krotscheck and Kohn ' omitted this
anomalous (poorly coverged) value in their discussion of
the physics behind their results, and we have also omitted
it in Table I.

KKQ used the Talman-Shadwick procedure to solve
the jellium surface problem essentially exactly at the
exchange-only (Hartree-Fock) level. Their Hartree-Fock
surface energies o. " have been reported by Krotscheck
and Kohn. ' We have plotted these values onto Fig. 2 of
Sahni and Ma, which displays a rigorous variational
upper bound to the Hartree-Fock surface energy as a
function of r, . The KKQ results fall near and a little
below the bound (not shown here), as expected. From
this, we conclude that the KKQ calculation is correct at
the Hartree-Fock level.

The KKQ surface energies are surprisingly large; in
fact, their surface correlation energies cr, =o" —cr

are 4 or 5 times bigger than the LDA surface correlation
energies. It is still not absolutely clear whether these
large surface correlation energies are real or merely an
artifact of the variational calculation. No hint of a large
positive correction to the total LDA surface energy can
be found in a comparison between detailed real-metal
calculations and experiment. However, we offer in sup-
port of the KKQ calculation an oversimplified, "back-of-
the-envelope" model which predicts their surface correla-
tion energies to within about 10%

Start with a uniform jellium of density 3/4~r, , in
which the correlation energy per electron is c.,(r, ). Break
it up into separated neutral "jelly atoms. " Each jelly
atom is a sphere of positive charge of radius r, and densi-

ty 3/4~r, , neutralized by a single electron. The correla-
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tion energy change per electron is —E,(r, ), and the sur-

face area created per sphere is 4~r, . In the spirit of Ref.
31, the surface correlation energy is thus

&FHNc(& )/4n. &2 (Al)

Table V shows that Eq. (A 1) successfully "explains" the
KKQ values of the surface correlation energy, from an

elementary perspective. Of course, the high level of
agreement between the left- and right-hand sides of Eq.
(A 1) is probably fortuitous.

KKQ have also reported FHNC work functions for jel-
lium. Their work functions are also surprisingly high, be-
ing as much as 1.1 eV bigger than the LDA work func-
tions. We tentatively attribute this to the fact that they
used a slab of thickness 14r,ao in place of a semi-infinite
jellium.

Consider three different expressions' '" ' for the work
function of jellium which would be equal within any self-
consistent Kohn-Sham calculation in the limit of large
slab thickness:

Method

xc
xc

2.07
2.07
4.96

Eq. (AZ)

3.75
4.80 (4.90)
2.82 (2.83)

Eq. (A3)

2.68
4.10
2.71

Eq. (A4)

2.75
2.10
1.74

TABLE VII. Work function for a jellium slab of thickness d,
evaluated from Eq. (A5) using KKQ data provided by
Krotscheck. All work functions are in eV.

rs d /r, ao

TABLE VI. Work function evaluated from Eqs. (A2)—(A4),
using data calculated by Krotscheck, Kohn, and Qian (KKQ)
for a jellium slab of thickness 14r,ao. These three expressions
should agree in the limit of infinite thickness. For r, =2.07, we
show exchange-only {x) as well as -correlated (xc) values.
Values in parentheses are from Table V of KKQ. All work
functions are in eU.

8' "" '"'=P( ~ ) —P (center) —[sF(n )+p„,(n )], (A2)

W "=P(oo ) —P(edge) —[—', sF(n )+e„,(n )],
W V ff( ae ) —V,ff (Center) eF(n )—

(A3)

(A4)

Here, P(x ) is the electrostatic potential of Eq. (2.4), eval-
uated far outside the jellium slab, or at its edge, or at its
center. eF(n ) =(3&n ) is the free-electron Fermi en-

ergy, and p„,(n ) =t)[n s„,(n )]/t)n is the exchange-
correlation contribution to the chemical potential. KKQ
used only Eq. (A2) in their evaluation of the work func-
tion. We have evaluated all three expressions using data
from Figs. 8—10 and Table VII of KKQ. The results,
displayed in our Table VI, show that different expressions
yield significantly different values. Perhaps the KKQ
slab is not thick enough to simulate a semi-in6nite jellium
in work-function calculations with Eq. (A2).

Equations (A2)—(A4) are not equal to the work function
of a slab, except in the limit of large thickness. From Ap-
pendix B of Ref. 45, the correct expression for the work
function of a slab of any thickness is

2.07

2.30

3.28

3.99

4.96

5.23

10
12
14

10
12
14

10
12
14

10
12
14

10
12
14

10
12
14

3.37
3.42
3.39

3.30
3.36
3.35

2.84
2.90
2.92

2.53
2.59
2.61

2.22
2.25
2.26

2.14
2.15
2.20

TABLE V. Comparison between the FHNC surface correla-
tion energy (Refs. 25 and 41) and the prediction of Eq. (Al). All
surface energies are given in ergs/cm . The FHNC correlation
energy per electron of the uniform gas, c,"",is taken from
Ref. 25. The LDA (VWN) surface correlation energies are
shown for comparison. Metal ~xc ~jelbum

TABLE VIII. Sensitivity of the nonlocal surface energies
(ergs/cm ) to the value off defined in Eq. (2.9). Column 4 gives
the exchange-correlation component, column 5 gives the jellium
total, and column 6 gives the total value. In all cases, C =0.

2.07
2.30
2.66
3.28
3.99
4.96

GFHNC/4 12

1158
886
612
357
214
121

FHNC
C

1051
855
598
355
221
124

LDA
C

283
208
135
72
39
20

2.07

3.99

5.63

Al

Cs

0.17
0.15

0.17
0.15

0.17
0.15

3026
3046

280
283

77
78

—484
—454

189
195

82
84

949
975

257
263

110
114
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( )
Ho (A5)

where c is the highest occupied Kohn-Sham orbital en-
ergy. Equation (A5) yields the work function of a slab be-
cause the slab is infinite in dimensions parallel to the sur-
face, and so the electronic relaxation effects after removal
of one electron are infinitesimal.

Since the KKQ slab is thick enough to produce
Hartree-Fock-level surface energies in agreement with
those of a semi-infinite jellium, it may also be thick
enough to yield the work function of the correlated semi-
infinite jellium surface. In order to test this possibility,
we have evaluated Eq. (A5) as a function of slab thickness
d in Table VII, using KKQ data kindly provided by
Krotscheck. The resulting work functions for d =14r,ao
lie about 0.3 eV loioer than the LDA (VWN) work func-
tions for semi-infinite jellium (Table IV). Although it is
not clear how to extrapolate these results to d = 00, they
do suggest that the work functions reported in Table V of

KKQ may be overestimated by 1 eV or more, due to the
fact that Eq. (A2) is unsuitable for thin films.

APPENDIX B: SENSITIVITY TO f
Here we present calculations showing the sensitivity of

our results to the value of f, for the range between 0.15
and 0.17 suggested by LM. The results are shown in
Table VIII. We remark that although the changes in the
total surface energy are not large, the percentage change
in the quantity specifically under consideration, that is,
the nonlocal component of the exchange-correlation en-

ergy, is significant (-20% ). This is because the nonlocal
component of the surface correlation energy, which de-
pends directly on f, is nearly canceled by the nonlocal
component of the surface exchange energy, which does
not, thus leaving a small denominator with which to cal-
culate percentages.
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