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The possibility and consequences of the presence of the poles of the Green s function (in the An-
derson model) in the Riemann sheets of a cut Z plane have been discussed. Such poles lack the
pure-point nature and correspond to states formed by a "confluence" of degenerate extended and lo-
calized states. The character of these states is different from the "pure" extended and localized
states both in the mathematical and in the physical sense. They form a new regime of "slow"
diffusion in the energy spectrum, which indicates that there should exist another critical energy, like
the mobility edge, that separates the new regime of the spectrum from the "absolutely continuous"
part.

I. INTRODUCTION

The electron localization (delocalization) in a medium
of random potential is mathematically defined in terms of
the convergence (divergence) of a renormalized perturba-
tion expansion of the self-energy. This definition can
equivalently be put in terms of the Green's function hav-
ing poles or branch cut along the real energy axis the
poles correspond to the discrete set of localized states and
the branch cut corresponds to the continuum of the ex-
tended states. According to the Mott-Cohen-Fritzsche-
Ovshinsky model (hereafter referred to as MCFO mod-
el) the regime of localized states and that of the extend-
ed states do not overlap and are separated sharply from
each other by a pair of energies called "mobility edges. "
This may indicate that the poles lie on either sides of the
cut and that the poles and the cut do not overlap as
shown schematically in Fig. 1(a). To test if the MCFO
model means that the poles must stay clear off the bran-
chcut as shown in the Fig. 1(a) we propose to study the
situation depicted in Fig. 1(b) where the regime of poles is
assumed to overlap with the branch cut near the mobility
edges E, and E,'.

We ask the question: can the poles appear inside the
cut, and if so what will be their nature in comparison
with the isolated poles? The answer to the first question
is that, in principle, such a possibility does exist. If we
view the branch cut as Riemann manifold, then some
poles may be found on the so-called "unphysical" sheets
lying below the top (or the physical) sheet. Then the
overlapping regions of Fig. 1(b) can correspond to such a
situation. The second question cannot be answered
straightforwardly and is the subject of study here.

We show that the poles inside the cut do not have the
pure-point nature and represent a resonance (or virtual-
bound-state) -like situation. We call them "confluence
states" supposedly formed by a confluence of localized
and extended states. Should a set of such states exist in
the vicinity of the mobility edges, it may indicate the pos-
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FIG. 1. Branch cut and poles of the disordered Green's func-
tion in the complex energy (Z) plane representing the absolutely
continuous and the discrete point spectra: (a) if they are isolat-
ed and (b) if they can overlap near the mobility edges.

sibility of existence of a pair of "pseudomobility edges"
separating thetn frotn the (pole-free) absolutely continu-
ous spectrum while the mobility edges of the MCFO
model separate them from the pure-point spectrum.

"Can localized and extended states coexist at the same
energy and at the same time maintain their respective lo-
calized and extended characters (?)" might have been the
very first question bothering Mott when he generalized
Anderson's ideas' to include the mobility edges. This
question has since been discussed several times (see, e.g. ,
Ref. 5) and always the agreeable answer given has been
that whenever such a situation arises the two states will
"sooner or later" mix and will result into an extended
state. That this indeed is the right answer is proved here
for the first time through a systematic mathematical
analysis. A localized state degenerate with an extended
state has been represented by a pole of the Green's func-
tion embedded inside the branch cut, and Anderson's
"stay-put probability"' has been calculated and found
to be zero. In the process of doing this we find an addi-
tional information about the confluence states —besides
being extended in the true Anderson sense —we find that
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the stay-put probability for them goes to zero at t ~ ~ so
slowly so that its time integral diverges. This is a non-
trivial finding as it shows that the confluence states share
properties of both —the localized and the extended—
states. This calls for a finer characterization of the states
in terms of two parameters, namely, the stay-put proba-
bility as well as its time integral. On the physical side it
sheds a fresh light on Mott's later views on conductivity
near the mobility edge and on the mathematical side it
clarifies a subtle point about the definition of localization
in terms of the Green's function.

In Sec. II we recapitulate the definitions of extended
and localized states, in particular, their meaning in terms
of cut and poles of the disordered Green's function. The
novel possibility of their sharing a certain range of energy
is analyzed in Sec. III. The physical nature of the
confluence states is discussed in Sec. IV. It is proposed in
Sec. V that a finer characterization of the energy spec-
trum of a disordered system is possible than that done in
the MCFO model. The definition of localization (delocal-
ization) in terms of the reality (complexity) of the Green's
function is reexamined in the Sec. VI and some observa-
tions of basic interest are made. Main findings and cer-
tain questions of interest are summarized in the Sec. VII.

lim [ImG00(E+is)] =0 almost everywhere,
s~O

such that

lim f dE ImGDD )0 .
s~O

(4a)

(4b)

Equation (4b) ensures that the density of states in the lo-
calized regime is nonzero and Eq. (4a) tells that it consists
of a dense set of 5-function spikes.

Thus, we see that in the energy range where Goo has a
branch cut which gives a continuum of states,
lim, „PQ(t) vanishes and so the states are extended in
space. On the other hand, in the energy range where it
has poles, the energy spectrum is discrete and the states
are spatially localized owing to the nonvanishing of
lim, „PD( t ).

lim ( ImXD/s)%0,
s~O

where Im denotes the imaginary part. It is important
that the criterion (3) is examined probabilistically for a
given eigenstate of E rather than considering the Xo in a
configurationally averaged system. This criterion can be
translated in terms of Goo as

II. DEFINITIONS III. POLES IN THE RIEMANN MANIFOLD

The basic definition of localization is given in terms of
the so called stay-put probability denoted here by P, (t)
It is the probability of rediscovering a particle at an arbi-
trary site a at time t if initially (at t =0) it was there with
probability 1. In the limit, t ~ ~, if P, (t) stays nonzero
then the particle is said to be localized in the surround-
ings of site a. A rigorous definition in terms of the
Green's function can be deduced from it by recalling that
P, (t) can be written in terms of the product of the diago-
nal parts of the Greens functions, G„(E+is),' ' as

lim P, (t) = lim —f G„(E+is)G„(E is)dE—
7~ oo s ~0 'lT

In order to concentrate on the states corresponding to a
single eigenenergy we should consider a vast region in
space instead of a site and look at the probability to stay
put in this region ' as tab oo. ' ' Denoting the "region"
by "0"we can write P0(t) as

lim P0(t) = lim G00(E +is)G0c(—E —is)
7~ oo s~0 7T

In the tight-binding model' of a disordered system the
Goo is written as

G00(E+is) = [E+is —ea —X0(E+is)]

where Xo is the self-energy and eo is the potential offered
by the region "0." By substituting (2) into (1) one can
check that the stay-put probability will be nonzero in the
limit t = ~, if

A new situation, which is the subject of discussion
here, arises if the Green s function (GF), in the region
where it has the branch cut, is analytically continued in-
side the cut Z plane (the complex E plane) into a mani-
fold %, the Riemann surface, and if it happens to have a
pole in one of the sheets of % underneath the top sheet
(the so-called physical sheet). The G00, which was nonan-
alytic along the portion of the real E axis where it had a
cut, can now be replaced by a single-valued meromorphic
function,

&oo(E)=[E—
0
—S0«)] '.

900 is analytic on % and its only singularities are poles.
The poles of physical interest will be located along those
lines in A that fall under the real E axis. We will denote
these lines by E and the individual branches by E„
The upper lip of the cut in the nth sheet joins the lower
lip of the cut in the (n —1)th sheet along the line E„
(see Fig. 2). The 900 and So are related to Goa and XQ in
the following manner for a cut of order m:

900(E0, )= lim [Go'0'(E+is)],
s~O

900(E, 2)= lim [G00 (E+is)]+2ni2)(E)
s~O

=—lim [Gz&'(E is)], —
s~O

900(E„,„)= lim [G00 "(E+is)]+2ni2)(E)
s 0

lim [ImX0(E+is) ]=0,
s~O

such that

(3a) = lim [G~)'(E is)], —
s~O
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FIG. 2. Drawing of a part of the manifold of the Riemann
surface. Analytic continuation is carried along the rays of Z,
the complex energy, one of which is shown to meet a pole at E .

zeros of 6pp and are, therefore, of no interest.
The Goo has already been stated to be analytic

throughout A except where it has poles. The So is also
generally analytic throughout % except on the points
where it has poles which are of no interest. But unlike
the property (ii) for Xo we cannot take for granted the
analyticity of So at the points where Goo has poles W. e
shall investigate this in the following. Essentially what
we find is that So is continuous across a pole in % but not
necessarily differentiable.

Consider a pole in Goo at E =(n, r, ), i.e., at r =r on
the line E„,„.Unlike Xo, which becomes real whenever

6oo has a pole on the real E axis, So stays complex at the
pole position of Goo because in A we are off the real E
axis, though infinitesimally. Take a small deviation o.

from the point E on the side of the (n —1)th sheet, so
that Sp develops an additional imaginary part and we can
write

Goo(E o) = lim [Go'0'(E +is}] .
s~p

Similarly,

So(Eo, )= lim [X(')"(E+is)],
s —+p

So(E, 2
}=lim [Xo '(E +is)]

s~p

+ lim [2n.i2)(E)/(6"'++6"' )],s~p

So(E 0)= lim [Xo' '(E+is)) .
s~p

Here

2)(E)= lim (Goo —Goo)/2mi
s~0

denotes the density of states; the superscripts denote the
diff'erent branches of Goo and Xo and the superscript +
denotes the k in the argument of the function.

In order to take into account the contributions made
by the poles along E„,„ in the R we must go from G~
to Goo. This cannot be done within the framework of Goo
alone. The poles of Goo are somewhat different in charac-
ter from those of goo which occur in the top (or the phys-
ical) sheet. Before we go into this analysis we should un-
derstand that, in general, the cuts can be arrayed arbi-
trarily, but the poles cannot be moved; however, in the
present case the cut must be kept along the real E axis in
order to yield real and positive density of states and also
because the poles of physica1 interest lie along the real E
axis.

We will now understand the analytic properties of 6oo,
Goo So and Xo. The 6oo is analytic everywhere in the Z
plane except along those portions where it has cuts or
poles. The analytic properties of Xo then directly follow
from (2) and are listed as follows. (i) It is nonanalytic
along a portion of the real E axis where it has a cut that
coincides with the cut in Goo; (ii) at places where 600 has
poles, X&& is analytic; and (iii) poles of Xo coincide with the

Coo( Eo i cr )
—= [E~ i o —eo S—o(E— i tr—) ]
= [ [E.—eo —~0(E.))

i [rr—+do(E )]I

where So(Eo icr)=—$&(Eo)+ido(E }. The do, devel-

oped due to o., must approach zero as o ~0 for the pole
to appear at E =co+$0(E ) (note that So is complex).
To study the behavior of Goo and So we will adopt the
standard method of considering a small deviation from
E on the side of the nth sheet also and then approaching
the pole from both the sides.

It is crucial for our purpose to note that the analytic
continuation along a ray of Z( =E+is) into the nth sheet
and beyond shall not be possible through the point E;
analytic continuations along other rays that pass through
its neighboring points, however close, shall not be forbid-
den. Up to the nth sheet the process of analytic con-
tinuation along the ray of Z works well and the point E
can be reached from aboue starting from the top sheet of

Since Goo can always be expressed by a convergent
power series in any arbitrary vicinity of the point E in-
side a semidisc on the (n —1)th sheet (hereafter called
upper semidisc), we can say that Q~ diverges in a continu
ous manner inside the upper semidisc. The situation is,
however, different inside the lower semidisc around E on
the nth sheet. Since the process of analytic continuation
terminates as soon as E is reached from above, the point
E behaves like a normal isolated pole when approached
from below. Consequently Goo diverges discontinuously
in the lower semidisc situated on the nth sheet. This
means that in any arbitrarily close vicinity in E, on the
side of nth sheet, the Goo remains finite (though very
large) and jumps to an infinite value at E =E . Thus, Goo
behaves asymmetrically in the two semidiscs so that its
values at (E io ) and (—E +io ) shall be different for
any o., however small. We should study this "difference"
for o. approaching zero.

Denoting the GF in the lower semidisc by Goo and the
corresponding self-energy by So we can write
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Goo(E —ia) —Goo(E +icr)=I I+[So(E i—o) S—o(E +in)]/2io I [2io Goo(E —ia)COO(E +icr)] . (7)

As o ~0, the left-hand side (lhs) remains nonzero in any
vicinity of E, but eventually at o. =O, it must yield a
complex zero. The lhs, when it is nonzero, will be~ositive
because Goo will always have to be greater than Goo for a
given o.. The reason being that the rate of divergence of
Goo should be greater than that of Coo so that it can cover
up for the discontinuous manner of divergence of 9'00.
We can, in fact, think in terms of a sequence [ri; J of very
small positive numbers obtained from the lhs of (7) for a
series of values of o approaching zero. In the case of a
normal pole this sequence will consist of zeros due to the
symmetry on either side of the pole, but in the present sit-
uation the sequence will approach zero as cr ~0
(o ~0 i increases}. The rate at which ri; approaches
zero for increasing values of i is important for us and de-
pends upon the argument of Goo and the multiplicity of
the pole (e.g., higher multiplicity will lead to a slower de-
cay to zero). Inyeneral, owing to the asymmetric behav-
ior of Goo and Goo and the discontinuous divergence of
Goo, the sequence I ri; j will approach zero at a rate slower
than that of o ~0 except when Goo and Qoo join each oth-
er smoothly at E . In the latter situation the Goo will
look similar to a parabola or a higher-order contact curve
at E, whereas, in general, the two branches, Goo and Goo,
join each other in the form of a cusp at E . In other
words Goo and Goo may either be angularly pivoted or con
tinuously pivoted at E . These lead to two physically
different situations as shown later. Hereafter, we shall
denote the two situations, namely, Ir), ] —+0 slower than
or faster than (including as fast as) o —+0, by Sl and Fa,
respectively.

Turning our attention to the right-hand side (rhs) of
Eq. (7) we see that since the lhs must become zero at
E=E, the product QooQoo on the rhs must diverge as
o.~O at a rate slower than that of o ~0. At the same
time since So must equal So when Goo= Goo the difference
(So —So) will approach zero as s ~0 at the same rate at
which I g; I ~0 for o ~0. So the first term on the rhs
will diverge in the situation Sl but it will remain finite in
the situation Fa. In either case, however, the vanishing
of the second term on the rhs ensures the vanishing of the
rhs when o =0.

The behavior of (So —So) for 0'~0 as deduced above
is of significance to us. We find that the asymmetry of
Goo and 9'oo about the point E should be reflected in the
self-energy So. This will make So nonanalytic across E
in the situation Sl—So will be continuous, but not
differentiable. In the situation Fa, however, it will stay
analytic similar to how the self-energy behaves in the case
of a normal pole. The possibility of So becoming
nondifferentiable at a pole is peculiar to the present situa-
tion under study and is the source of the special behavior
exhibited by the pole at E inside A. With particular
reference to localization, the implications of the above on
the stay-put probability and the density of states are of
importance and should be checked explicitly. Let us take
up the stay-put probability first. Its definition (1) gets

I

modified as Goo is now replaced by Goo. Considering
the product Coo(E i—a )Goo(E+i cr ) in place of
G~(E+is}GOO(E i—s) we get

[Goo(E i—o )
—Qav(E+ie)]

lim Po(t)= lim~-0 I+[So(E i—o )—S 0(E+io )]/2o'

(8)

It gets contributions only from the poles along E such as
the one at E . The above discussion shows that in the
situation Sl the stay-put probability of (8) will vanish, but
it stays nonzero in the situation Fa. Thus, the poles in A,
in general, yield a vanishing stay-put probability (except
in the special situation represented by Fa). We have
called such states formed by the coupling of poles and the
cut as the confluence states.

Turning attention to the density of states, we note that
the numerator in Eq. (8) represents the contribution to it
from the poles on E. While for a normal pole on the real
E axis a numerator of the type in Eq. (8) would give rise
to a 5-function spike, the situation here is modified by the
fact that (Goo —

Goo) becomes a complex zero for o —+0.
In the process of going round the branch point at Z=O,
i.e., in moving from E„z„,to E„,„,the Goo acquires
an imaginary part equal to the continuum density of
states which is further modified at the points like E by
the contributions that look like broadened 5 functions
and can be calculated from Eq. (6) by splitting So into
real and imaginary parts.

IV. PHYSICAL NATURE OF THE
ccCONFLUKNCE STATES"

It is clear from the above that the point E, in general,
does not bear the "pure-point" nature, consequently the
corresponding state does not retain its intrinsic localizing
character. This is because it is coupled to a state in the
continuum. Thouless has put forward elegant argu-
ments to show how electrons in the localized states occu-
pying isolated clusters of sites can be strongly coupled to
the extended states very close to them in energy and lo-
cated on infinite clusters of sites. That the localized and
the extended states cannot coexist at the same energy
without the localized states losing their localizing charac-
ter has always been understood in this manner. This has
been the reason why in the MCFO model a pair of mobil-
ity edges is taken to isolate sharply the regimes of local-
ized and extended states. In agreement with this the dis-
cussion in the preceding section shows in a rigorous
manner that if a localized state (represented by a pole)
happens to be degenerate with the extended states
(represented by the cut) then the localized state will lose
its pure-point nature and such a confluence of localized
and extended states will eventually (in the limit t 00)
evolve into a conducting extended state which is
confirmed by the fact that the stay-put probability for
such a state will approach zero for t ~ ao.
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The formation of confluence states in the manner de-
scribed above indicates that their wave function should
have a ramified shape with isolated and very pronounced
bumps of amplitude joined to a main-stream envelope
function spreading from one end of the system to anoth-
er. Consequently an electron in a confluence state spends
a significant length of time in these isolated regions, but
eventually relaxes into the main stream to conduct
through the system. This will lead to a significant slow-
ing down in the rate of diffusion. An understanding of
the dispersive transport in certain amorphous systems
was suggested along these lines by Srivastava and Cha-
turvedi. '

The situation denoted by Fa is rather strange in the
light of the above and deserves special mention. It per-
tains to the circumstance where a localized state is degen-
erate to an extended state yet, somehow, the two are
prohibited from interacting with each other. An example
of such a situation can apparently be found in the
"quantum-percolation problem, ""' where in a strongly
disordered binary system certain configurations are
known to give rise to very strongly localized states at spe-
cial energies throughout the continuum. This is not a lo-
calization in the Anderson's sense, it is instead caused by
an interesting "hop-scotch" type of exchange mechanism.
That they could be attributed to certain poles in R is be-
ing suggested here for the first time and puts them on
firmer basis.

More insight is gained into the nature of the confluence
states if we calculate the time-integral 2 of Po(t):

g—:I Po(r)dr, (9)
0

which will depend on the rate at which Po(t)~0 as
t ~ &a. For Po(t) given by Eq. (8) we can write 2 as

Qvo(E i o') —Q 0—(0E+ia)2= lim . (l0)
2o + [So(E i cr ) —So(E—+i cr ) ]

With the numerator possessing a property of the type (4)
and that described after (7), the integral diverges for
a~0 irrespective of the rate at which (So—So) ap-
proaches zero, i.e., in both the situations referred to as Sl
and Fa. Thus, the continuity of So across the pole
guarantees the divergence of 2 even ifSo is nonanalytic.

The divergence of S in a situation where Po( t) vanishes
at t=ao can physically be understood as an electron
diffusing very slowly, so that Po(t) stays nonzero inside
the region 0 for very very long times. For the confluence
states such a situation can arise in the manner discussed
above.

lim, „Pv(t)~0 which should be related to the rate of
diffusion of an electron away from an origin, and so we
can utilize it, in conjunction with Po(t), to make a finer
characterization of the energy spectrum of a disordered
system. We suggest the following.

(a)
(b)
(c)

liin, „Po(t )

0
0

&0

finite

Nature of state

extended state
confluence state
localized state

The regimes (a) and (c) are separated by the mobility edge
in the MCFO model, but the introduction of the new re-
gime (b) in between (a) and (c) modifies the picture and
suggests that the mobility edge of the MCFO model
should separate the regimes (b) and (c), and that the re-
gimes (a) and (b) should be separated by another critical
energy which we may tentatively call a pseudomobility
edge.

On a transition over the pseudomobility edge the
diffusion gets slowed down significantly making the elec-
tron quasilocalized which may have important implica-
tions in actual experiments done on finite systems over
finite lengths of time. Figure 3 shows the possible behav-
ior of the conductivity (at zero temperature) as the Fermi
level moves through the mobility edge E, . The possibili-

ty I corresponds to Mott's prediction of the minimum
metallic conductivity which is now believed to hold only
in the presence of magnetic field. ' Most of the newer ex-
periments indicate behaviors II and III. ' The reduction
in the conductivity compared to I can be attributed to (a)
the quantum interference effects leading to weak localiza-
tion, ' and (b) the presence of the confluence states de-
scribed here. The kink in the behavior II may mark the
pseudomobility edge. The behavior III, on the other
hand, may indicate that the number and strength of the
poles in % increases steadily as E approaches E, from the
extended-states side.

We may point out that the quantity 2 does not merely
produce an artifact in the form of the pseudomobility
edge that distinguishes between "fast" and "slow" con-
duction, it has a fundamental physical importance too.

V. RECHARACTERIZATION OF SPECTRUM

The interesting thing that comes out of the above
analysis is that the divergence of 2, which is necessarily
an attribute of the localized states, can also happen, un-
der special circumstances (pole in situation Sl), when the
stay-put probability vanishes. 2= ~ together with
Po(r = 00 )=0 indicates that Po(t) approaches zero
sufficiently slowly. The divergence (or otherwise) of 2
can thus be taken as a measure of rate of

E Ep

FIG. 3. Schematic depiction of the possible behavior of the
conductivity as a function of energy. o. ;„represents the
minimum metallic conductivity. E, and E~ are the mobility
edge and the pseudomobility edge, respectively.
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We show in the following that the quantity 2 has an im-
portant bearing on to the definition of localization in
terms of the GF.

In an attempt to reverse the direction of the sign "
Ishii' found that

VI. DEFINITION OF LOCALIZATION (a) lim [ImGO(E+is)]=0

In Sec. II we essentially showed that

(a) lim [ImXo(E+is)]=0
s~O

(b) lim (ImXo/s) =finite
s~O

r

(a) lim [ImGo(E+is)]=0
s~O

(b) lim f ImGodE &0
s~O

(b) lim f ImGodE &0
s~O

What we have seen in Sec. III is that S can also diverge
when the states are extended, i.e., ImGo(E+is) stays
nonzero for s~0 and Po(t} goes to zero in the limit
t ~~ suSciently slower. To synthesize the whole thing,
we have

lim [ImGo(E+is)] =0
s~O lim [Po(t}]& 0 localization

mGodE &0
s~O

(always)

lim [ImGO(E+is)] & 0
s —+O [if Po(t)~0 slowly]

lim f ImGodE & 0
s~O

lim Po(t}=0 delocalization .

There are two main outcomes: (a) the divergence of 2 is
a property of a pole and (b) that the GF has a pole is im-
plied not only by (i), but also by (ii). These conclusions
dilute the accepted notion that the poles of the GF corre-
spond to localized states. One also gets the impression
that the reality of GF (and that of the self-energy) may
only be a sufhcient condition for localization and not a
necessary one.

Consequently, it becomes necessary that one must dis-
tinguish between the two kinds of poles implied by (i) and
(ii), as well as between the spectral regions with and
without (any kind ol} poles. This is possible only if the
intermediate factor 2 is included in the definitions of the
different regions of the spectrum as is done in the preced-
ing section.

In fact, there exists a subtle difference even in the
manner in which the 2 diverges for (i) and for (ii). It is
simple to check that

lim [Po(t)]= lim [sI 0(s)]= lim s f Po(t)dt
taboo s~O s~O . 0

= lim (s2} .
s~O

If the rate of divergence of 2 is slower than that of s ~0
then Po(t) will vanish at t = oo which will correspond to
(ii); on the other hand if 2 diverges at least as fast as s ~0
then Po(t) will stay nonzero at t = ao and we will have
the case (i).

VII. CONCLUSION

A pole of the GF retains its pure-point nature only if it
is isolated from the branch cut of the GF and then it
represents a localized state in the Anderson's sense. A
pole can also appear into the cut, but then it loses its
pure-point nature. In spite of this, such a pole cannot be
taken to represent an extended state in the strict sense be-
cause it still shares a property with the pole representing
a localized state —namely, the divergence of the integral
J of Eq. (9). Such a localized state diluted in its charac-
ter by the coupling with an extended state can cause the
"absence of diffusion" only in a weak sense which should
be of importance in actual experimental conditions. In
principle, there exists the possibility that a pole inside the
cut may retain its pure-point nature, implying thereby
that a pole in a cut may not necessarily be coupled to the
cut.

It may be worthwhile examining the following ques-
tions.

(i) Is the new regime, where the poles and the branch
cut of the GF are coexisting in the same energy range,
the same as the so-called "singularly continuous" regime
of the spectrum?'

(ii) What does the extreme situation, where a large
number of poles accumulate on a particular branch of E
inside J7 to form a dense distribution (the "natural
boundary" ) correspond to?
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(iii) Is there a relationship between the con6uence
states and the "power-law states" (see, e.g. , Ref. 13)?
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