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The atom-superposition and electron-delocalization band theory introduced recently for covalent

solids is tested on metallic and ionic solids.

Full details of the method are given. Its merits and

demerits are discussed. Atomization energies, bulk moduli, energy gaps, and electronic densities of
states are compared with experimental and other theoretical results where available.

INTRODUCTION

The semiempirical atom-superposition and electron-
delocalization molecular-orbital (ASED-MO) theory"? is
used to calculate structures, vibrational force constants,
stabilities, reaction energies and pathways, and electronic
properties of molecules and clusters of atoms. For deter-
mining solid-state properties cluster models have been
used, for example, to calculate lattice constants and force
constants for covalently bonded solids,? and for predict-
ing defect structures in cation-deficient ionic-transition-
metal monoxides.* Interfacial adhesion of metal and
ceramic surfaces has also been modeled® 7 as have many
chemisorption phenomena.®

A band version of this ASED method has recently been
developed and applied in predicting structural and elec-
tronic properties of C, Si, and some simple polytypes of
SiC.° The comparison of ASED band-structure results
with results of other semiempirical methods and with ab
initio methods based on the Hohenberg-Kohn-Sham
density-functional approach was very favorable for these
covalent materials. The band version of the ASED ap-
proach is preferable, in principle, to the ASED-MO
cluster-model approach for calculating properties of
solids and surfaces. The CaF,/Si(111) interface has been
characterized recently'® using ASED band and cluster
MO models. Interestingly, the slab band calculations
confirmed the applicability of the use of small-cluster
models for studying interfacial binding.

This paper presents the details behind the earlier com-
munication® and tests the method on oxides (BeO, MgO,
and FeO), on an ionic material (CaF,), on a ferromagnet-
ic metal (Fe), and on relatively-free-electron metals (Al,
Ni, and Cu).

METHOD

The atom-superposition and electron-delocalization
molecular-orbital theory is based on a charge-density-
partitioning method. The electronic charge density of a
molecule or a solid can be partitioned in any number of
ways. In the present theory partitioning is into
perfectly-following (on the nuclei) spherical atomic com-
ponents and the non-perfectly-following remainder. The
theory is most easily demonstrated for a diatomic ab,
from which the generalization to triatomics or to bigger
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clusters or to solids is straightforward.
The molecular charge density for the diatomic mole-
cule ab is given by

PR, R, )=p (=R, )+p, (r—=Ry)+p,,(r, R, Ry ),
(D

where r and R are electron and nuclear coordinates with
respect to an arbitrary origin. When assigning the origin
of coordinates to nucleus a, the electrostatic force on nu-
cleus b is given in terms of two components as follows:
F(R,)=F(Ry,p,,Z,)+F(Ry,p,,r) - (2)

The integration of Eq. (2) yields the energy of interaction:

E(Rb)=ER(Rb)+E,,pf(R,,) , (3)
where
Pa'r)
Ex(R,))=2Z, |—/— (4)
R b f |r—Rbl

is the electrostatic energy of nucleus b in the presence of
fixed atom a, and Z, and Z, are the respective nuclear
charges of atoms @ and b. This part of the energy is al-
ways positive (repulsive), hence the subscript R. The
second term in Eq. (3) accounts for the energy due to the
electronic charge rearrangement attendant to bond for-
mation and is given by

b
-z LR —L arar;
npf (R bf prf b de IR, —1| b

(5)

E

For infinite separation of the atoms, E (R, ) is taken as
the isolated-atom energy. The size of Ex and E,,/, of
course, depends on which of the two nuclei is fixed as the
reference point; the total energy is, however, invariant.
Ep is readily calculated from available atomic-orbital
wave functions. E,,, requires knowledge of p,,,, which
is not available. It has been shown' that an extended
Hiickel-like delocalization energy is generally a good ap-
proximation of E,,,. In this approach the diagonal ele-
ments HZ° are set equal to the negative of the measured
1omzat10n potential (Vp) of valence level i on atom a.
The off-diagonal elements on the same atom are zero by
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orthogonality, i.e.,

Hi#=—=8,;(Vp). (6)
The remaining off-diagonal elements are

H{P=1.125(H 2+ H[?)Siexp(—0.13R ) , (7)
with

Sab={(yily?) 8)

being the overlap integral between the ith atomic orbital
on atom a and the jth orbital on b, the latter being a dis-
tance R, (A) away. In summary, one can write the
Hamiltonian, from which E,,, is obtained by diagonali-
zation, as

A=3 H ) (il + g"H,«‘;’W?Mwﬂ. C)
ia a,b,1,j

When this approximation to E,,, is used, results are gen-
erally more accurate if the two-body energy, Eg, is calcu-
lated using the charge density of the more electronegative
atom for p, in Eq. (4). Slater-orbital basis functions have
been employed in the present as well as in past work.
The semiempirical ASED-MO theory is a way of generat-
ing molecular properties from atomic data. Small
changes in the parameters may be required and rules for
this have been developed. This is discussed later.

The ASED valence-band calculations for bulk solids
use the Hamiltonian given by Egs. (6)-(9) in the usual
tight-binding way.!' {¢,¢,,...,¥,} is the set of
Slater-type orbitals (STO’s) centered on nuclei of the
primitive unit cell. A set of Bloch functions
{d1(k),dy(k),...,d,(k)}] are constructed from them:

N
Bu(r =% 2 'kR”tlJ#(r—R

) (10)

where N is the number of primitive unit cells in the sys-
tem. The band orbitals y,(r,k) (j =1,2, ..., n) are given
by a linear combination of these Bloch functions:

=3 C,d,(r.k) . (1)
p=1

The Cs are generated during the diagonalization of the
secular determinant,
|H (k)—S#V(k)a(k)]=O , (12)

uv

which also gives the band energies of €,(k), 7 being the
band index (n=1,2,...,n). The (uv)th matrix element
of the Bloch Hamiltonian is given by

H (k)=<¢#(r,k)lﬁ|¢v(r,k)>

uv

The matrix elements of the operator H on the right-hand
side are the same H/ given by Eq. (7). The overlap in-
tegral is
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S, (K)=(g@,(r,k)|é(r,k))
L s MRy (R )G, —R,))
=N 3 e Y r—R))[¥(r—R,
pg=1
N
=_1A7 2: e,k.mq—nﬁsm. (14)
Again, ST is the same as given by Eq. (8).

The energy, E}, per primitive unit cell is found by in-
tegrating:

[ 3 niei(k)dk
Ef=—"r— (15)
? [ dx

The integrations are over the first Brillouin zone, i spans
the band index, and »; are the orbital occupation number
(0, 1, or 2). In terms of density of states, g (&) (which is
proportional to the inverse of the gradient of energy with
respect to the wave vector), Eq. (15) can be written as

——-Y;—Enifeig(e, de, | (16)

keeping in mind that the electronic states are evenly dis-
tributed in k space. The integration range is from — oo
to the Fermi energy, Ep. For a solid, the atomization en-
ergy per primitive unit cell, E”, can now be given as

EP=Ef+Ef— 3 3 neg® (17

where E ,’{ is the total two-body repulsion energy, Ej,
from summing the pairwise interaction within the primi-
tive cell and half of the pairwise interactions between the
atoms of the primitive cell and those of the neighboring
ones. €40 is the atomic valence-state ionization energy of
the ith level on atom a within a primitive cell. E} as
defined by Eq. (15) or (16) is calculated either by integra-
tion in half of the first Brillouin zone or with help of the
special k points as prescribed by Chadi and Cohen'? and
by Cunningham.'® Bulk moduli of the materials can easi-
ly be calculated using the relation

9P *EF
Yoy =Vo ov?
where V), is the equilibrium volume of the primitive unit
cell. For some simple crystal structures, working formu-
las to obtain bulk moduli are given in Table I.

For all the properties calculated, the overlap integrals
in the Bloch Hamiltonian were evaluated for centers up
to 10 A apart, except for BeO and MgO systems, for
which 15 A was used because Be* and Mg™ valence or-
bitals are relatively large. Except for the hexagonal sys-
tems, special k-point sets were employed. For three-
dimensional (3D) hexagonal systems the integrations
were done in a quarter of the first Brillouin zone and for
2D systems in half of it.

B,= , (18)

COMPARISON OF ACCURACY
USING SPECAL k POINTS
VERSUS THE FULL BRILLOUIN ZONE

Energy, charge density, dipole matrix elements, etc. are
periodic functions of wave vector k in the Brillouin zone
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TABLE I. Working formulas to calculate bulk moduli of
some simple crystal structures. E is the total energy per primi-
tive unit cell, and x .is the nearest-neighbor distance between
two atoms in the crystal. The values obtained are in eV A ~3,
and can be expressed in GPa upon multiplication by 160.2.

Crystal structure Working formula

— 2Ep
Zinc-blende structure (16\/3)*‘i Q—ET
x Ox
— 2P
Waurtzite structure (32\/3)‘li a_Ez
x ox
L P
Sodium chloride structure (18)7ll a—EZ
x Ox
~ 1 3’EF
b 4/3) '+
cc ( ) e
= o1 9E’
f V2/9—
cc / e,
-1
— 2P
hep 2|ov3e | 12E
x 9x?

(BZ). For example, to get the energy per primitive cell
involves averaging (k) over the BZ. Besides translation-
al invariance, these functions can be invariant under cer-
tain point-group or space-group operations or both, de-
pending on the nature of the Bravais lattice. Using these
properties, the BZ can be reduced to smaller zones. An
irreducible (smallest) wedge of the BZ contains most of
the information on the full BZ. Using this fact, Chadi
and Cohen!? have determined certain special-k-point
sets for crystals with cubic and hexagonal 3D Bravais lat-
tices. Using their scheme, Cunningham'® has obtained
some special-k-point sets in the two-dimensional BZ for
oblique, centered-rectangular, primitive rectangular,
square, and hexagonal lattices. Averaging over this 2D
BZ is needed for calculations such as the surface mean-
square displacement, the surface Debye-Waller factor,
and, as demonstrated recently, for adhesion and interface
studies. !® Averaging of any such property can be done
by calculating its local values at these special k points
and summing them with proper weighting factors.

The accuracy of results based on these special k points
has been checked for various lattices. It is found that the
10 special k points for a fcc-lattice material gives bond
lengths precise to 0.01 A, energy to 0.01 eV, and bulk
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modulus (or second derivative of the energy with respect
to nearest-neighbor distances) to within 0.5%. The same
is not true for the hexagonal (2D or 3D) systems studied.
This is demonstrated here for cubic and hexagonal struc-
tures of Si. The results are presented in Table II.

For cubic Si the atomization energy based on the
10-special-k-point set is 3.744 eV, essentially the same
as the converged result of integration in half [since
E(k)=E(—k)] of the first BZ. The bond length and
bulk modulus also remain unchanged. For hexagonal Si
the 12-special-k-point set gives an atomization energy
which is 7% higher than the converged integrated result.
The bond length is 0.01 A shorter and the bulk modulus
is overestimated by 3%.

For Fe in the bcce structure, the eight—special-k-point
set of Chadi and Cohen gives, to three significant figures,
the same atomization energy and bulk modulus as the
converged values. However, this special-k-point set also
gives an equilibrium bond length 0.01 A larger than the
converged result, which is a difference in the third
significant figure.

RULES FOR THE PARAMETER SELECTION
IN GENERAL

The gas-phase free-atom Slater exponents, £’s, for non-
transition elements are taken from Clementi and Raimon-
di.'* Where exponents for p orbitals are not available,
they are usually assumed to be 0.3 a.u. smaller than the
corresponding s orbitals. For the first-row transition-
metal atoms, the exponents are from Richardson et al.'®
with 4s exponents taken 0.3 a.u. larger than the reported
ones and 4p ones taken 0.3 a.u. smaller than the 4s ex-
ponents used, the usual practice for ASED-MO calcula-
tions. For the d orbitals, double-{ functions from Ref. 15
are used. The change, if required, to get the proper bond
length, is made only to the s, p, and the smaller of the two
d exponents. The valence-state ionization potentials
(IP’s) are taken from Lotz!® and from Moore.!” Clementi
and Roetti'® have also reported the multi-¢ exponents for
cations, anions, and neutral atoms. Since the ASED-MO
and band programs use single-§ s and p functions, a sim-
ple averaging is done by weighting the multi-{ exponents
with the corresponding coefficients.

In the process of doing band calculations, the dimer or
diatom properties are studied first using the ASED-MO
method. These include the bond lengths, dissociation en-
ergies, charge transfers (for binary systems, based on

TABLE II. Comparison of results for cubic and hexagonal Si, and for bee Fe, based on special k points of Chadi and Cohen (Ref.
12) and on converged numerical integration in the first BZ. R, (A) denotes bond length, E 4, (eV) atomization energy, and B, (GPa)

the bulk modulus.

Cubic Si results

Hexagonal Si results

bee Fe results

10 special Converged 12 special Converged 8 special Converged

k points values® k points values® k points values®
R, 2.36 2.36* 2.35 2.36° 2.48 2.47
E, 3.744 3.743 3.987 3.737 3.503 3.504
B, 112.5 112.7 116.0 113.1 202.0 201.9

*Around 1000 points in the BZ give the converged values.
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Mulliken population analysis), and occasionally the vibra-
tional force constants. These properties are compared
with the experimental results, where available. The cal-
culated charge transfer is compared with an ionicity
versus electronegatively difference relationship. Fre-
quently, for ionic and sometimes also for covalent materi-
als, a change from the experimental Vp input parame-
trization is required to get the proper charge transfer.
This is usually done by increasing the smaller V,p and de-
creasing the larger Vp by the same amount in steps of
0.1 eV. The exponents are scaled at the same time to get
the correct experimental bulk bond length.

For oxides such as BeO and MgO, the cation ex-
ponents are taken from the literature'® and the literature
oxygen exponents'* are scaled to get the correct nearest-
neighbor bulk distances. All the parameters used are
given in Table III. The specific procedures for individual
solids are given with each case study below.

RESULTS

First, we discuss equilibrium bond lengths, atomization
energies, bulk moduli, band gaps, and charge transfers
(Table IV). The results for diamond, graphite, silicon,
and a- and B-SiC were reported earlier,” where compar-
isons were made with unadjusted parameters and also
with empirical and theoretical calculations of others.
The results for Fe, FeO, MgO, BeO, CaF,, Al, Cu, and
Ni, presented in Table IV for the first time, are similarly
compared with the literature here. Calculated electronic
densities of states are given in Fig. 1 for some of these
systems, with comparisons to available experimental re-
sults; this is discussed at the end of the paper.

A scalmg factor of 1.13 for the s and p exponents of
carbon gives bond lengths of 1.53 and 1.42 A, respective-
ly, for diamond and graphite compared to the observed
values of 1.54 and 1.42 A. In agreement with experi-
ment, graphite is calculated to be more stable than dia-
mond. The calculated atomization energy, E ,, for dia-
mond is 10% larger than the experimental value. The
bulk modulus, B, and the band gap are 22% larger and
43% smaller, respectively, compared to the experimental
results. For graphite the atomization energy is 12%
larger than the observed value and the energy-band gap is
correctly predicted to be zero. Not mentioned in Ref. 9
is the finding that the hexagonal structure of diamond is
energetically 0.33% less stable than the cubic structure,
and its bond length is 0.12% larger as well.

For Si a scaling factor of 1.04 gives a bond length of
2.36 A, which is within 0.01 A of the observed value.
The atomization energy is 20% smaller and the bulk
modulus is 14% larger than the experimental values. The
energy gap is 1.74 eV compared to the observed value of
~1.17 eV. The cubic structure of Si is more stable than
the hexagonal structure, in agreement with experiment
(Table II).

For diatomic SiC the IP’s of Si are increased by 1.3 eV
and those of C are decreased by this amount to get a
charge transfer close to the expected ionicity based on the
electronegativity difference. To approach the observed
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bulk bond length of 1.89 1&, C bulk exponents and Si bulk
exponents were, as discussed above, multiplied by and di-
vided by 0.9, respectively. This can be thought of as
making the C atom bigger in the crystal and the Si atom
smaller. These parameters give the bond length to within
0.01 A. The cubic B-SiC structure is calculated to be
more stable than the wurtzite a-SiC structure, which
agrees with experiment. The atomization energies for
both structures are underestimated by 6%, whereas the
bulk moduli are overestimated by 17%. The energy gap
obtained is 55% larger for the cubic structure, whereas it
is only 8% larger for the hexagonal (2H) structure.
There is an electron charge transfer of —0.47 from Si to
C, and only —0.2 for diatomic SiC.

For bulk bce Fe the spin polarization is 2.12.'° This
can be thought of as 5.06 of the eight valence electrons in
the primitive cell having spin up in the s-d —hybridized
band and 2.94 having spin down. Keeping this in mind,
the right-hand side of Eq. (16) is integrated (using
Simpson’s rule) up to some intermediate-energy value,
lower then E (the Fermi energy), with double-electron
occupation and then up to E with single-electron occu-
pation. A scaling factor of 1.07 to the exponents (except
for the contracted d one, which we do not usuall
change) gives a bulk bond length of 2.47 A, within 0.01 A
of the experimentally observed value. For the purpose of
calculating the two-body energy per primitive cell, Ef,
the initial Fe-atom orbital occupation is taken as 4s'3d .
Compared to experiment, the predicted atomization ener-
gy and bulk modulus are 18% lower and 20% higher, re-
spectively.

For diatomic FeO, an increase in the Fe IP of 1.9 eV
and a decrease in the O IP of 0.4 eV gives a charge
transfer close to the desired value. With these IP’s and
the scaled exponents, where Fe exponents are multiplied
by 1.10 and O exponents are divided by 1.10 (or multi-
plied by 0.91), the bulk bond length obtained is the same
as the experimental bond length, and the atomization en-
ergy is two-thirds of the experimental value. For bulk
FeO the spin per primitive unit cell has been taken as 4 in
order to occupy the d band up to the top. The Fe 4s band
is destabilized and remains unoccupied. This gives an Fe
3d-4s band gap of 6.3 eV, a bulk modulus of 123 GPa,
and a charge transfer of 0.55 e ~ from Fe to O.

For MgO the Mg exponents are taken as those for
Mg?t. Clementi and Roetti'® have given multi-{ ex-
ponents for the Mg and Mg™* 3s orbitals. The difference
of the average of these two, 0.13 a.u., is added to the
single-§ exponent for the 3s orbital for Mg as given by
Clementi and Raimondi'* to approximate for Mg™ 3s
single-{ exponent. Since the 3p-orbital exponent is not
available, it is taken as the same as 3s. The diatomic
MgO calculation suggests that an IP increase of 3.4 eV
for Mg and the same amount of decrease for the O IP
give a charge transfer close to the expected value. Hav-
ing these parameters fixed, the O exponents are scaled to
get the observed bulk bond length. A scaling factor of
0.89 gives the bond length to within 0.01 A. The energy
gap is overestimated by 17%. There is a charge transfer
of 0.95 ¢~ from Mg to O and the calculated bulk
modulus is 111 GPa. The atomization energy turns out
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to be only one-fourth of the experimental result. For
highly ionic systems like this, the ab initio pseudopoten-
tial method within the local-density theory of Chang and
Cohen? is more accurate.

For BeO the Be* 25 exponent is obtained by adding
0.13 a.u. (assumed to be the same as in the case of Mg) to
the Be 2s exponent. Again, the 2p exponent is taken to be
the same as the 2s exponent. Shifts of 1.3 eV in the IP’s
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of Be and O towards each other give the proper charge
transfer for the BeO diatom. A scaling factor of 0.87 to
the O exponents gives a bulk bond length the same as the
observed value of 1.65 A. The structure is taken to be
ideal wurtzite with a c/a ratio of V'8/3. The atomiza-
tion energy per chemical formula is only underestimated
by 14% this time. The calculated bulk modulus is 210
GPa and the band gap is 9.3 eV, which is within the ex-

TABLE IV. Results for graphite, diamond, Si(cubic), cubic (3C) B-SiC, hexagonal (2H) a-SiC, Fe,
FeO, MgO, BeO, CaF,, Al], and Cu. R, (A), equilibrium bond length; E , (eV), atomization energy
(without zero-point corrections); B, (GPa), bulk modulus; AE (eV), band gap; q (e), atomic charge from
Mulliken partitioning. The numbers in parentheses are experimental values.

Crystal R,? E,* By® AE® q

Cl(gra) 1.42 8.23 0
(1.42) (7.37) 0)

C(dia) 1.53 8.05 539 3.07
(1.5414) (7.35) (442) (5.4)

Si 2.36 3.74 113 1.74
(2.3516) (4.68) (98.8) (1.17)

B-SiC 1.88 12.0 261 3.71 Si, +0.47; C, —0.47
(1.89) (12.71) (224) (2.39)

a-SiC 1.88 11.96 264 3.55 Si, +0.47; C, —0.47
(1.89) (12.69) (225) (3.3)

Fe 2.47 3.50 202
(2.48) (4.29) (168.3)

FeO 2.16 6.36 123 6.3 Fe, +0.55; O, —0.55
(2.16) (9.68)

MgO 2.11 2.68 111 9.1 Mg, +0.95; O, —0.95
(2.105) (10.27) (155,162) (7.775)

BeO 1.65 10.45 210 9.3 Be, +0.57; O, —0.57
(1.65) (12.16) (7.8-10.7)

CaF, 2.36 11.17 23.4 9.55 Ca, +1.72; F, —0.86
(2.36) (16.1) (12.1)

Al 2.87 0.78 83
(2.86) (3.36) (72.2)

Cu 2.56 0.932 76
(2.56) (3.49) (137)

Ni 2.49 2.55 109
(2.49) (4.43) (186)

ZExperimental values for 0 K from CRC Handbook of Chemistry and Physics, 67th ed., edited by R. W.

Weast (Chemical Rubber Co., Boca Raton, FL, 1986).

®References for experimental values: diamond and Si from F. Birch, in Handbook of Physical Constants
[Geo. Soc. Am. Mem. 97, 107 (1966)]; a-SiC and estimated for B-SiC from D. H. Yean and J. R., Riter,
Jr., J. Phys. Chem. Solids 32, 653 (1971), and references therein; Fe, Al, Cu, and Ni from C. Kittel, In-
troduction to Solid State Physics, edited by C. Kittel (Wiley, New York, 1986); MgO from M. J. L. Sang-
ster, G. Peckham, and D. H. Saunderson, J. Phys. C 3, 1026 (1970), and O. L. Anderson and P. An-

dreatch, Jr., J. Am. Ceram. Soc. 49, 404 (1966).

“References for experimental values: diamond and Si from C. Kittel (footnote b); a- and 3-SiC from W.
J. Choyke, Mater. Res. Bull (SiC Issue) 4, S141 (1969); MgO From R. C. Whited and W. C. Walker,
Phys. Rev. Lett. 22, 1428 (1969); BeO from A. P. Lukirskii and I. A. Byrtov, Fiz. Tverd. Tela (Len-
ingrad) 6, 43 (1964) [Sov. Phys.—Solid State 6, 32 (1964)], D. M. Roessler and W. C. Walker, J. Phys.
Chem. Solids 30, 157 (1969), V. A. Fomichev, Fiz. Tverd. Tela (Leningrad) 13, 907 (1971) [Sov. Phys.—
Solid State 13, 754 (1971)], and R. Griindler, K. Breuer, and W. Tews, Phys. Status Solidi B 86, 329
(1978); CaF, from G. W. Rubloff, Phys. Rev. B 5, 7526 (1987).
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graphite

diamond

Cu

735 30 25 -20-15-10 -5
Energy (eV)

FIG. 1. Calculated (solid line) and experimental (dashed line)
densities of states. Arrows show highest filled level in calculat-
ed curves. References to experimental curves are in the text.

perimental range 7.8-10.7 eV. The self-consistent calcu-
lation of Chang et al.?! has underestimated this value
with a 7.0-eV result. There is a charge transfer of 0.57
e from Be to O.

For CaF, a set of Ca’" exponents has to be defined.
Clementi and Roetti'® give multi-{ exponents for Ca and
Ca™ 4s orbitals. The difference of the average (with
proper weight, taking the coefficients into account) of
these two, 0.3 a.u., is added to the single-§ exponent for
Ca 4s as given by Clementi and Raimondi'* to get the
single-£ Ca™ 4s exponent. Another 0.3 a.u. is added to
this number to get the Ca’" 4s exponent. The 4p ex-
ponent is assumed to be the same as the 4s exponent. The
F~ 2s and 2p exponents are averaged multi-{ values from
Clementi and Roetti. There is a need for IP shifts of 3 eV
to produce the propert charge transfer for the CaF dia-
tom at the experimental distance of 1.97 A. For bulk
CaF, the 2s and 2p exponents of F~ are scaled by a factor
0.93 to get the experimental bond length of 2.36 A. The
atomization energy and band gap thus obtained are un-
derestimated by 31% and 21%, respectively. There is a
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charge transfer of 0.86 ¢~ to the F atoms; thus Ca be-
comes positive with a charge of 1.72. The calculated bulk
modulus is 23.4 GPa.

For aluminum the literature parameters give a diatom-
ic dissociation energy of only one-sixth of its experimen-
tal value. An increase in the p IP by 1 eV brings the p
level closer to the resonance with the s level; thus the dis-
sociation energy increases to about 80% of the experi-
mental value when s and p exponents are decreased to get
the experimental equilibrium internuclear distance. With
these IP’s and a scaling factor of 1.07 for the literature
exponents, a bond length of 2.87 A (the experimental
value is 2.86 A) is achieved for bulk aluminum. The bulk
modulus thus obtained is overestimated by 15%, but the
atomization energy is only one-quarter of the experimen-
tal value, whereas the ab initio calculation of Lam and
Cohen?? has underestimated and overestimated the bulk
modulus and the cohesive energy by only 1% and 7%, re-
spectively.

For copper a scaling factor of 1.09 to the 4s, 4p, and 3d
(uncontracted) exponents gives the experimental bond
length, but only 55% for the bulk modulus and one-
quarter for the atomization energy. For nickel a scaling
factor of 1.11 to the exponents gives the experimental
bond length. For bulk Ni the spin polarization is 0.55. "
Thus, on the average, 9.45 valence electrons per Ni atom
are paired, and the rest, 0.55, is kept unpaired. This gives
the atomization energy and the bulk modulus, which are
42% and 41% smaller than the respective experimental
values. For the transition-metal series the two-body ener-
gy is calculated by assigning one of the valence electrons
to the atomic s orbital and the remaining ones to the
atomic d orbital, as was done for Fe.

Presented in Fig. 1 are calculated electronic densities
of states (DOS’s) for some of the systems studied above.
Energy values have been approximated by Gaussian en-
velopes with a full width at half maximum (FWHM) of 1
eV. These are compared with experimental results. The
height and position of the main peaks are aligned. No at-
tempt has been made to match Er. The arrows indicate
the theoretical positions of the tops of occupied bands for
the various crystals. For graphite the experimental curve
is from x-ray photoemission spectroscopy (XPS) data?
taken at 122 eV. The diamond result is compared with
the soft-x-ray K-emission band.?* The Si and B-SiC
DOS’s are compared with soft-x-ray K-emission and
L, ;-emission bands superimposed with a 1:1 intensity ra-
tio.?> The Fe result is a spin-summed photoemission
energy-distribution spectrum?®® (60-eV photons) taken at
temperature 0.37, where T is the Curie temperature.
For FeO a 30-eV photon photoemission energy-
distribution curve?’ for Fe,_ O is shown, where x is be-
tween 0.05 and 0.10. For CaF, a 150-eV photon photo-
emission spectrum?® from a thick layer of CaF, on Si(111)
is shown. In the theoretical calculation the Ca 3p core
function has not been included. Had it been included in
the calculations, it would have given a peak at ~ —31 eV
which would have probably pushed down the F 2s peak
and pushed up the F 2p peak by about 1 eV or so. For Al
the ultraviolet photoemission spectroscopy spectrum is
for 11.29-eV photons.?’ For Cu, XPS results are shown
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for a vacuum-evaporated copper film with monochroma-
tized Al Ka radiation after background subtraction.*
Looking at the DOS curves, it is apparent that the calcu-
lations underestimate the bandwidths while being able to
produce general shapes of the experimental emission
spectra. For CaF, and Cu the experimental shoulders are
seen in the theory at smaller FWHM (~0.2 eV), but are
not resolved in Fig. 1.

Besides comparing these band structures with the ex-
perimental results, they can also be compared with the
theoretical results of others. For Fe the density of states
of filled band orbitals is similar to that calculated by Cal-
laway and Wang,>! but since they used different bands for
spin-up and -down electrons, their density-of-states of
empty orbitals is shifted to higher energy. The self-
consistent-field calculation of Heaton and Lin*? produced
a wider CaF, valence-band DOS than ours. Wider band-
widths will, in general, be obtained by the use of smaller
valence-orbital exponents, but this will enlarge the bulk
bond lengths. It is probable that using effective nuclear
charges [Z, in Eq. (4)] to decrease the two-body repul-
sion energy will allow the calculations to produce proper
bandwidths and bond lengths at the same time. Our cal-
culations and those of Heaton and Lin, however, underes-
timated the band gap of CaF, by the same amount. Our
Al DOS is in very good agreement with experimental as
well as theoretical®® results. For Cu our DOS compares
well with the augmented-plane-wave calculation of Bur-
dick,*® except that ours again has a smaller bandwidth
(two d-band peaks merge together when fitted with 1.0-
eV FWHM Gaussian functions).

CONCLUSIONS

The results clearly suggest that for ionic systems the
theory underestimates atomization energies by about
25%, except for MgO, where the large IP shifts necessary
for proper ionicity reduce the charge-transfer stabiliza-
tion too much. In these systems ionic interactions of the
Madelung form are expected to contribute to the atomi-
zation energies and the bulk moduli. Recently, an at-
tempt has been made by Wang et al.** to include
Madelung interactions in the extended Hiickel Hamil-
tonian.

For the oxide systems, FeO, MgO, and BeO, and for
CaF,, it seems that ~10% increases in cation exponents
over their respective neutral-atom exponents and ~ 10%
decreases in anion exponents over their respective
neutral-atom exponents do a good job of reproducing
many of the physical properties. The criterion of shifting
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the IP parameter to yield atomic Mulliken charges in
agreement with the ionicity calculated from the elec-
tronegativity difference gives nearly optimal results for
the atomization energies and band gaps for all the materi-
als except MgO.

The underestimate of cohesive energies for the s-
p—-valence-band metals Al and Cu and for the substan-
tially s-p—band metal Ni reflects the general belief that
plane waves constitute a better basis set than atomic or-
bitals for such metals. As pointed out by Ashcroft and
Mermin, the tight-binding approximation “is most useful
for describing the energy bands that arise from the par-
tially filled d-shells of transition metal atoms and for
describing the electronic structure of insulators.”!! Our
results confirm this. A plane-wave basis set evidently has
the required flexibility for the variational determination
of valence s-p bands of proper stability for these metals.
The atomic-orbital basis set also produces filled bands of
about the proper width for these metals, but without
sufficient stability. Bulk moduli for the s-p —band metals
are calculated to relatively good accuracy with the ASED
band method because they are functions of the second
derivative of the total energy with respect to nuclear dis-
placements. As has been shown elsewhere, force con-
stants are a function of Ep in Eq. (4), provided that p,,,,
in Eq. (1) is well represented by fixed point charges dur-
ing small displacements in nuclear positions.> This is
still true for s-p —band metals, just as it is for the early
transition metals, and the covalent and ionic solids exam-
ined here. It can be concluded that the atomic-orbital
basis set simply lacks the flexibility of the plane-wave
basis for putting enough bond charge where needed for
the s-p —band metals.

For the covalent materials C, Si, and SiC the ASED
band method, as described earlier,’ gives more accurate

results than other semiempirical or empirical
methods.***®  The state of the art ab initio ap-
proaches®~*! are even more accurate for most properties

of these solids. However, the ASED band theory is rela-
tively easy to apply to systems with large numbers of
atoms in the primitive unit cell, such as needed to study
interfacial bonding'®*? and polymers.*+
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