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Percolation model of nuclear magnetic relaxation in porous media
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A random walk on a site percolation lattice with absorbing sites is used to simulate nuclear mag-
netic relaxation in a porous medium. The computed relaxation is compared to a sum of exponen-
tials with relaxation rates proportional to the pore surface-to-volume ratios. Each isolated region of
the pore space is treated as a single pore rather than as a collection of connected pores. Thus, above
the percolation threshold, the pore space is essentially a single large pore. For fast diffusion this
sum of exponentials gives excellent agreement with the computed results. It appears that measure-
ments in the fast-diffusion range will give only an average surface-to-volume ratio of the pore space.

I. INTRODUCTION

with the boundary condition

Dn VM+pM=O,

and the initial condition

M(r, 0)=Ma .

(2)

Here D is the bulk diffusion coefficient of the pore Quid,

T,b is the bulk spin-lattice relaxation time, n is a unit
vector pointing out of the pore space, and p is a measure
of the strength of relaxation at the surface.

These equations can be simplified by writing

M(r, t)=Mog(r, t)e (4)

Then the relaxation function g(r, t) satisfies the diffusion
equation

ag
at

with the boundary condition

Dn. Vg+pg =0

and the initial condition

(6)

g(r, t)=1 . (7)

Equations (5)—(7) can be solved exactly (by separation
of variables) only for single pores having spherical, cyhn-
drical, or rectangular geometry. The form of the solution
depends on the pore size a. For

pa/D «1

For some time nuclear magnetic resonance has been of
interest as a means of studying the structure of porous
media. ' One approach has been to investigate the spin-
orbit relaxation of proton magnetization on molecules of
the pore Quid. Typically the magnetization is treated as a
continuous variable. Then the longitudinal component,
M, satisfies the equation '

BM D~ M M
Bt T&b

(fast difFusion) the relaxation is very closely approximated
by

g(r, t)=e

with

(9)

v=pS/V, (10)

where f, is the volume fraction of pores with relaxation
rate v;. Equivalently g can be written in the integral
form

g(t)= f P(v)e "'dv
0

(12)

where P(v) is the probability density of v. That is, the
average relaxation function is the Laplace transform of
the relaxation rate probability density. And, for fast
diffusion, the relaxation rate is related to the pore size
through Eq. (10). Thus the relaxation function is deter-
mined by a distribution of pore sizes.

Almost all analyses of nuclear magnetic relaxation in
porous media have been based on the model described
above. The material consists of isolated pores. The re-
laxation in each pore is dominated by a single relaxation
rate. And the relaxation rate is determined by the pore
surface-to-volume ratio. There have been a few attempts
to treat a system composed of interconnected pores. '
In particular Ref. 7 discusses experiments and calcula-
tions in which nuclear magnetic relaxation is related to

where S is the surface area and V the volume of the pore.
If the inequality is not satisfied, the solution can still be
approximated by Eq. (9), but the approximation is not as
good and there is not a simple, general relation between v
and the pore geometry. It is generally assuined that g can
be approximated by Eq. (9) for a pore of arbitrary shape
provided the pore is "well connected. " Unfortunately,
"well connected" is a subjective idea that cannot be
rigorously defined.

Now suppose that we have a system of isolated pores
each relaxing according to Eq. (9). Then the volume
average g(t) of the relaxation function is given by

g(t)=gf;e
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the total surface-to-volume ratio of the pore space. How-
ever, this reference does not consider the distribution of
pore surface-to-volume ratios. Nor does it study the
effect of varying p. Only a single value of p is treated.

To look at the problem in somewhat more detail I have
considered a generalization of the "ant in the labyrinth"
diffusion model proposed by de Gennes. ' In this model
the ant executes a random walk on the sites of a percola-
tion lattice. The generalization is that when the ant at-
tempts to step on a closed site it has a probability of be-
ing killed. The relaxation function g(r, t) then corre-
sponds to the probability that the ant is alive and at posi-
tion r at time t if it initially has equal probability to be at
any open site. The average relaxation function g(t) cor-
responds to the probability that the ant is still alive at
time t.

II. THE LATTICE MODEL

We consider a hypercubic site percolation lattice in d
dimensions. The sites are open with probability p and
closed with probability 1 —p. An ant walks on the open
sites of the lattice taking steps at equal intervals of time
~. At each step the ant steps to a neighboring open site
with probability p/2d, 0~@&l. It steps to a neighbor-
ing closed site and is killed with probability
y/2d, O y 1. And it remains alive at its initial site with
probabi1ity

2d 2d
(13)

and

D =pe2/2dv, (14)

where z is the number of neighboring closed sites.
Periodic boundary conditions are used.

The percolation model cannot be compared directly
with the continuum model. Equation (2) implies a
smooth boundary with a well-defined normal n, whereas
the percolation model has a rough boundary. However,
we can compare the continuum model with a lattice mod-
el that is exactly as described above except for having a
smooth boundary.

The relaxation function g (r, t) in the continuum model
corresponds in the lattice model to g„(r), the probability
that an ant is alive at position r after n steps. The initial
condition (7) corresponds to the condition that the ant in-
itially has equal probability to be at any open site. The
volume average relaxation function g(t) corresponds to
g„, the probability that an ant is alive somewhere after n

steps. The relation of the parameters in the two models is
(see the Appendix)

pSt / V = yS'n /2d V'

where a =a'e, S =S'e" ', V= V'e", and t =n~.

(17)

III. RESULTS AND DISCUSSION
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Simulations were done on 100X 100 square lattices and
25X25X25 cubic lattices. A11 simulations were done
with @=1. The simulated survival probabilities g„were
compared with expansions, of the form (11), in terms of
the pore surface-to-volume ratios. In Eq. (11) the
surface-to-volume ratios are taken for isolated pores.
Therefore, in this calculation, each isolated region of the
pore space was treated as a single pore rather than as a
system of connected pores. We will see below that, for
small y, this leads to a very close agreement between Eq.
(11)and the simulation.

The percolation threshold p, for square, site percola-
tion lattices is' 0.592 75. Square lattices with p =0.498,
0.593, and 0.695 were used in this study. For cubic lat-
tices p, is' 0.3117. Cubic lattices with p =0.204, 0.314,
and 0.401 were used. Distributions of surface-to-volume
ratios for square lattices with p =0.498 and 0.593 are
shown in Figs. 1 and 2. For p =0.695 almost the entire
pore space was in a single large pore with S'/V'=1. 2.
Distributions of surface-to-volume ratios for cubic lat-
tices with p=0.204 and 0.314 are shown in Figs. 3 and 4.
For p=0.401 the pore space is dominated by a single pore
with S'/V'=3. 4.

Calculations of the survival probability g„ for the six
lattices were made for values of y from 0.01 to 0.9. Sam-
ple curves are shown for two dimensions (p =0.593) in
Figs. 5 and 6 and for three dimensions (p =0.314) in
Figs. 7 and 8. In these figures the points are for the simu-
lated relaxations while the solid curves were obtained
from Eq. (11). The curves were computed only down to
g„=0.001. For g„&0.001, statistical fluctuations in the
simulated results become too large. Curves for the other
lattices were similar, but with some differences in details.

p=ye/2dr, (15) 0.1—

and

pa/D =ya'/p (16)

where e is the lattice spacing. Equation (15) differs from
the relation reported by Banavar and Schwartz. ' From
Eqs. (14) and (15) 3

s/v

FIG. 1. Pore size distribution, square lattice, p =0.498.
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FIG. 2. Pore size distribution, square lattice, p =0.593. FIG. 4. Pore size distribution, cubic lattice, p =0.314.

In all cases there is excellent agreement between the
simulated results and Eq. (11) for small values of y. At
larger values of y Eq. (11)deviates from the simulated re-

sults. The direction of the deviations differs in two and
three dimensions. In two dimensions Eq. (11) lies below
the simulated points whereas in three dimensions it lies

above. As yet I have no explanation for this difference.
The simulated curves begin to deviate from Eq. (11) at

a value y, that differs for each lattice. We expect y, to
yield an upper limit on pa/D =ya'/p, above which the
inequality (8) is not satisfied. However it is not clear
what should be used for a. For a sphere or circle a is the
radius and for a cube or square it is the edge. But even for
a cylinder or rectangle there are several characteristic
lengths and it is not clear what combination of these
should be used for a. For the highly irregular pores of a
percolation lattice the situation is even more confusing.

For a rough comparison let us use a, the maximum

pore volume-to-surface ratio. For each lattice Table I

lists the site probability p, the limiting value y„ the max-
imum pore volume-to-surface ratio a', the maximum
pore volume V', and y, a' /p=p, a /D. For three di-
mensions the value of y, a' /p, seems reasonable as an
upper limit on the inequality (8). For two dimensions it
seems rather low. However, the correct quantity to use
for a could be much larger than the volume-to-surface ra-
tio. For a cube it is larger by a factor of 6. Thus, all that
one can say is that the range of y for which Eq. (11)
agrees with the simulated results is clearly within the
fast-diffusion range. Why two and three dimensions
show different behavior is not yet explained.

A final interesting feature of the lattices can be ob-
served from the data in Table I, As p increases from
below to above the percolation threshold, there is a very
large increase in the maximum pore volume. Over the
same range of p the maximum volume-to-surface ratio
changes only slightly going through a minimum at the
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FIG. 3. Pore size distribution, cubic lattice, p =0.204.
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FIG. 5. Sample relaxation curves, square lattice, p=0.593,
small y. Points are from computer simulations, solid lines are
from Eq. (11).
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FIG. 6. Sample relaxation curves, square lattice, p =0.593,
large y. Points are from computer simulations, solid lines are
from Eq. (11).

FIG. 8. Sample relaxation curves, cubic lattice, p=0.314,
large y. Points are from computer simulations, solid lines are
from Eq. (11).

percolation threshold. This is clearly caused by the high-
ly irregular shape of the pore space; the largest pore is
fractal near the percolation threshold. The pore surfaces
are larger and increase more rapidly with increasing p
than would be expected for nonfractal surfaces.

In the fast-diffusion range, for lattices above the per-
colation threshold, the relaxation curves are exponential.
The exponents are proportional to the surface-to-volume
ratio of the single large pore that dominates the pore
space. Below the percolation threshold there is a range
of pore sizes and Eq. (11) contains several terms. Never-
theless, in the fast-diffusion range, where Eq. (11) fits the
relaxation curves, these curves differ only slightly from
exponentials. Within the accuracy of the calculations
one cannot invert the simulated relaxation curves to ob-
tain the distribution of surface-to-volume ratios. The

most that one can obtain is an average surface-to-volume
ratio for the entire pore space.

This also seems to be the situation for measurements
on water filled sedimentary rock."' The measured mag-
netization curves differ only slightly from exponentials.
Schmidt, Velasco, and Nur" interpreted their measured
magnetization in terms of two pore sizes. But Brown'
has argued that their data are not suSciently accurate to
distinguish between two exponentials and a single ex-
ponential. Halperin et al. ' have interpreted their mea-
sured magnetization as an average over a region, which
they call a diffusion cell, that is large compared to a pore
size. That is, they treat the pore space as a collection of
connected pores rather than as a single large pore. The
results of the present paper suggest that in the fast-
diffusion range it is more appropriate to treat the pore
space as a single very large pore. The magnetization is
determined by the surface-to-volume ratio of this pore.

To understand this, we integrate Eq. (5) over the
volume of the medium; then apply Gauss's divergence
theorem and Eq. (6) to obtain
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TABLE I. Characteristic parameters of the percolation lat-

tices.
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FIG. 7. Sample relaxation curves, cubic lattice, p =0.314,
small y. Points are from computer simulations, solid lines are
from Eq. (11).

0.498'
0 593'
0.695'
0.204b

0 314
0.401b

0.07
0.05
0.03
0.3
0.4
0.6

'Two dimensions.
Three dimensions.

I
am

0.772
0.730
0.845
0.295
0.283
0.293

V'

520
4150
6840

49
1050
5740

y, a' /p

0.05
0.04
0.02
0.09
0.11
0.18
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Because the boundary of the region of integration is fixed,
the time derivative can be taken out of the integral. This
yields

= —~fg(r, t)dS .
dt V

Now if g is uniform over the medium, i.e., g (r, r) =g(t), it
can be taken out of the integral yielding Eqs. (9) and (10).
The results of the present study suggest that this will al-
ways be the case, regardless of the shape of the pore, pro-
vided (a) p/D is small enough and (b) the pore is connect-
ed. Note that the pore need not be "well connected. "
The poorer the connections the smaller p/D will have to
be to have g uniform throughout the pore.

Thus we see that in the fast-difFusion range each isolat-
ed region of the pore space relaxes uniformly with a rate
that is proportional to its surface-to-volume ratio.
Indeed this can be taken as the definition of the fast-
diffusion range. In a material, such as sedimentary rock,
in which most of the pore space consists of a single inter-

connected region, the relaxation is exponential. And the
relaxation rate is proportional to the total surface-to-
volume ratio of the pore space. No further information
about the pore geometry can be obtained from NMR
measurements in the fast-diffusion range. However, the
relaxation for slow diffusion does appear to depend on the
details of the pore geometry. Further investigation is
necessary to determine what information can be obtained
from measurements in this range.

APPENDIX: DERIVATION OF
EQS. (14) AND (15)

%e consider a hypercubic lattice in d dimensions.
First consider a site at the edge of the pore space which
has one closed neighbor and 2d —1 open neighbors. Let
x

&
be the coordinate through the closed site with the pos-

itive direction toward the closed site, i.e., pointing out of
the pore space. Then the probability g„(x„.. . , xd) that
an ant is at the site after n steps satisfies the equation

p
g +](x]». . . xd ) — y [gg(x]&. . . «xk+6& ~ ~ ~ &xd )+gn(x]»~ ~ xk 6& ~ ~ ~ &xd )]

k=2

+ g„(x] E.». . —x)d+ 1 — 1
—

]M
— g„(x], , xd ) .p

2d
(Al)

Subtract g„(x, , . . . , xd ) from both sides of this equation, multiply by e/r, and rearrange terms to obtain

gn+](x 1 &
' ' ' xd ) gn(x] ». xd )

E'

PC g(X»]»Xk+ ~» Xd ) g»(X] & ~ ~ &Xk& ~ ~ ~
& Xd )+g»(X]& ~ ~ ~

& Xk E& ~
& Xd )

2

PP g&&(X] E& ~ ~ ~ &Xd ) gg(X]»~ ~ . Xd ) yP+ g„(x], . . . , xd ) .
2dr 2 7. " (A2)

Now take the limit @~0, ~~0, y ~0, while

pe /2dr=D, and ye/2dr=p With g„. (x], . . . , xd )

~g (x„.. . , xd, t), Eq. (A2) becomes

Bg
" a'g Bg

e =@DE D —
pg . —

t3t k 2 dxk Bx]
(A3)

In the limit a~0 the left side and the first term on the
right side of Eq. (A3) vanish. If the boundary surface is
smooth with a well-defined normal n then ])g/Bx] =n Vg
and the last two terms of Eq. (A3) give Eqs. (14) and (15).

The limit y~O might seem to imply that Eq. (15) is
valid only in the fast-diffusion range. But this is not the
case. Whether the system is in fast or slow diffusion is
determined by the value of p/D=y/pe which remains

fixed as the limit is taken. In the relation between p and

y given by Banavar and Schwartz, '
y in Eq. (15) is re-

placed by y/(I —y). This is the same as Eq. (15) in the
limit, but not otherwise.

If one goes through the previous argument for a point
that has no closed neighbors, one obtains Eq. (A3) except
that the sum is over all coordinates and the last two
terms on the right do not appear. Then on cancelling e
and taking the limit one obtains Eq. (5) with Eq. (14).

For a site with more than one closed neighbor one
again obtains Eq. (A3) but with more first and fewer
second derivative terms. Taking the limit leads to Eq. (6)
if the surface has a well-defined normal. In this case,
however, the normal does not lie along one of the coordi-
nate axes.
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