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Ab initio electronic-structure calculations are performed for the Nb/Zr metallic multilayer sys-
tem in the coherent bcc structure and in the incoherent bcc/hcp structure, observed for small and
larger modulation wavelengths, respectively. A new calculational scheme, the localized-spherical-
wave method, has been used. This method is optimized for handling large unit cells since it avoids
laborious lattice summations. For the coherent structure a range of 1 to 6 monolayers for each met-
al is considered. The results for the incoherent structure are restricted to 5 monolayers per constit-
uent metal. A model for the Nb/Zr incoherent bcc/hcp unit cell is given, including a relaxed struc-
ture at the interface, which leads to 55 atoms inside the unit cell. The measured modulation-
wavelength dependence of the electronic specific-heat coeficient y and the superconducting transi-
tion temperature T, are explained in terms of the calculated results for the density of states. Fur-
thermore, the coherent to incoherent structural phase transition is in agreement with the
modulation-wavelength dependence of the total energies. The effects of multilayering both on the
density of states and the band structure are traced by comparing the results with those for the con-
stituent pure metallic systems.

I. INTRODUCTION

Artificially made metallic multilayers form a class of
materials allowing for the combination and optimization
of physical properties. Besides this, completely new
properties, such as the supermodulus effect, ' can also
arise. With the advance of multilayer (ML) synthesizing
techniques these new materials have become an impor-
tant subject for both fundamental and technical studies.
As a consequence the number of Inetallic multilayer sys-
tems actually realized is rapidly increasing ' and along
with this theoretical interest is developing. Electronic-
structure calculations of these systems are still scarce,
however, although it has been shown in the past that
they can be very useful in explaining and predicting ma-
terial properties.

In this work we present electronic-structure calcula-
tions of coherent and incoherent Nb/Zr multilayers,
which have been the subject of detailed experimental in-
vestigation. ' The Nb/Zr multilayer system has a
number of interesting features. The electronic specific-
heat coefBcient y and the superconducting transition
temperature T, were measured as functions of the modu-
lation wavelength A. Both quantities are related to the
density of states at the Fermi energy, N(EF) Further-.
more, a structural phase transition has been observed'
for the Zr part of the ML. The small-A multilayers have
an overall bcc (110) modulation direction, which means
that Zr has adopted its high-temperature bcc structure.
This coherency of Zr with Nb is lost for A )31 A, in that
the Zr part of the ML has resumed its low-temperature
hcp structure. We will try to relate this behavior to the

calculated total energy.
Electronic-structure calculations were performed for

the coherent Nb/Zr multilayers, to be denoted as NbZr
n:m, for n =m, with n ranging from 1 to 6, and for the
incoherent NbZr 5:5 system. The localized-spherical-
wave method is used, being a modification of the
augmented-spherical-wave method" in which the basis
set is transformed into the most localized one.

The paper is organized as follows. Although the
localized-spherical-wave method has already been used
previously, ' ' it has not been described yet. This will
be done in Sec. II. Section III is devoted to the deter-
mination of the unit cells of the calculated multilayers
and the incoherent interface. The results of the
electronic-structure calculations are presented and dis-
cussed in Sec. IV, including a scheme to interpret the
electron energy bands of the coherent multilayers. Con-
clusions are given in Sec. V.

II. THE LOCALIZED-SPHERICAL-WAVE METHOD

The localized-spherical-wave (LSW) method belongs to
a class of variational methods designed to solve the one-
electron Schrodinger equation for a solid:

[—V + V(r) —s]f(r, E)=0,
in which V(r) is the crystal potential in the local-density
approximation. The solution g(r, e) is expanded in the
basis set, and apart from the transformation of the basis
set, localized spherical waves are equivalent to the aug-
mented spherical waves in the well-known augmented-
spherical-wave (ASW) method of Williams, Kubler, and
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Gelatt. " After a brief description of the basis set in the
ASW method we shall look into the idea behind the LSW
method and the need for such a new method.

The ASW method employs the Andersen atomic-
sphere approximation (ASA) for the description of the
electronic potential. In this scheme the crystal potential
is represented by spherically averaged potentials inside
space-filling atom-centered spheres, which therefore,
necessarily, are overlapping. The ASW basis functions
are constructed according to this potential division. At
each atomic position a spherical wave is centered which
is a solution to the free-particle Schrodinger equation for
a fixed kinetic energy ~ . The spherical wave is defined,
in the notation of Ref. 11, as

HL(r) =i 'a''+'YL (r )hi+(ar ),
where L stands for the angular-momentum indices I and
m, YL (r) is a spherical harmonic, and h&+(ar ) is the out-

going spherical Hankel function. ' Inside the atomic
spheres the Hankel functions are augmented with solu-
tions of the numerically integrated radial Schrodinger
equation for the corresponding potential. At the atomic
position R, at which HL (r„)is centered, with r„—:r —R„,
this augmentation is straightforward. At other atomic
positions R„Hr(r, ) must be expanded into spherical
functions around R, before the augmentation of HI (r,, )

can be performed. The Hankel function can be expanded
into regular spherical waves

Ji (r)=i'~ 'YL(r)j, (ar)

as follows:

HL (r„)=g Jr. (r„)BL,L(R„—R„)
L'

with /r„,[(/R, , —R„/, (4)

where j&(ar ) is a spherical Bessel function, '

BL, (RL)=4m+ ILL I.-v'+' ' Hl (R)

some, summations.
The method is optimized for the description of the

valence bands. Therefore the kinetic-energy parameter ~,
which controls the localization of the single outgoing
Hankel function, has to be chosen as small in absolute
value. ' The corresponding augmented spherical waves

are then very extended and the evaluation of the Hamil-
tonian and overlap matrix elements involves summation
over very many expansions of the type of Eq. (4). For the
systems with large unit cells, even when Ewald's summa-
tion techniques for periodic lattices are employed, it be-
comes a substantial computational task. In order to cir-
cumvent the problems described above, the single Hankel
function centered on a given site is replaced in the LSW
method by its superposition (linear combination) with the
Hankel functions centered on neighboring sites. This su-

perposition, called from now on a cluster function, has
important virtues. It possesses the point-group symmetry
of a given site and, what is essential for the discussion
here, it is localized within a certain (cluster) radius
around the site under concern. In plain terms the Hankel
functions centered on the neighboring sites are screening
the Hankel function on the central site. This transforma-
tion of the basis set was introduced by Andersen and Jep-
sen, ' basically for the muffin-tin orbitals. However, the
practical aspects are solved differently in the LSW
method. The new basis function, FL (r„),has the form

FL(r„)=HI (r, )+ g [C(v. , L )]„L,HI, (r„,)
v', L'

with v'Wv and ~R, —R„~~R;i . (7)

The remainder of this section is devoted to the deter-
mination of the screening coefficients [C(v, L )], L . The
cluster formed by the atom v together with the atoms v'

inside a sphere of the radius R,] centered at the site v is
depicted in Fig. 1.

defines the direct-space structural matrix, and

ILL L
= f dr YL(r)YL (r)YL-(r)

are Gaunt coefficients. Now HI (r, ) can be augmented by
a solution of the numerically integrated radial
Schrodinger equation for the corresponding potential
which matches the Bessel function at the surface of the
atomic sphere centered at R . The matching is done by
choosing the proper value of energy for which the radial
Schrodinger equation is integrated, and the normalization
such that value and normal derivative are continuous
across the atomic-sphere boundary. Finally, the basis
functions have a form of Bloch sums of the central Hank-
el functions and the expansion (4). The basis functions in
the ASW method constructed in this way have the prop-
erty of being continuous and continuously differentiable
linear combinations of solutions of the Schrodinger equa-
tion within atomic spheres. Thus the Hamiltonian and
overlap matrix elements, occurring in the eigenvalue
problem, can be evaluated by direct, however cumber-

0
FIG. 1. Hankel functions centered at atoms with positions

R ~ within a radius R,~
around the atom at R are used to screen

the range of the Hankel functions centered at this position R .
Such a screening procedure is performed for every Hankel func-

tion centered inside the unit cell. Hankel functions centered
outside the cluster are not considered in the screening pro-
cedure.
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In order to define the problem of determining the
screening coefficients clearly, first the ranges will be
specified of the position labels v and v' and of the angular
momentum labels. The number of clusters to be con-
sidered is equal to the number of inequivalent atoms in
the unit cell. This determines the range of the variable v.
The number of Hankel functions per cluster to be
screened is equal to the size of the basis set on the central
atom of the cluster. The size of the basis set is deter-
mined the same way as in the ASW and the Andersen
linear muffin-tin orbitals (LMTO) methods. For transi-
tion metals, as studied in the present paper, functions are
used up to I',„=2.For rare-earth metals I',„=3has to
be used. So, the number of Hankel functions in each
cluster which has to be screened out is obviously equal to
(I",„+1). The number of atoms in the screening cluster
n,'~ is determined by the condition that the central Hank-
el function is screened to a prescribed accuracy. Given
these ranges, the number of degrees of freedom (number
of [C(v,L)]„I~ coefficients} available for screening of a

I

given Hankel function at site v is

D = g (1",„+1)
v'=1

with fr„[) /R, —R„ (9)

which is complementary to that of (4), and where

JL I (R)=4nQIL'L r Ir JL, (R)I+ I' —I"
(10)

with ILL L
~ as defined in Eq. (6), the cluster function for

r, outside the cluster sphere can now be written as

A satisfactory screened behavior of FI (r, ) will mean
that this function will be negligibly small outside the clus-
ter sphere. Employing the other expansion of the Hankel
function,

HL(r„)=KOHL (r )JL. L(R„R„)—
L'

FL(r„)=KOHL~ (r, ) 5Lz ~ + g [C(v,L)],, L JL.L.(R„—R„)
L" v', L'

with the conditions for v' and R„the same as in (7). A
complete screening of the spherical wave HL (r„)outside
the cluster radius R,~

means that all coefficients in the
large parentheses above should vanish.

The range l",„ofsummation over l" in the representa-
tion (11), emerging from the expansion (9), fixes the num-
ber of constraints imposed on the cluster function at that
site, and therefore fixes the size of the linear equation set
to be solved at the value (1"",„+1). The parameter I"",

„

may be interpreted as determining the angular resolution
of the representation (11) on the spherical surface of the
cluster. Extensive tests for a variety of solids have shown
that in order to obtain the required accuracy of screening
the number of degrees of freedom D is around 150. This
means that for l",„=2the typical cluster will include ap-
proximately 17 atoms. More atoms are sometimes re-
quired in order to maintain the point-group symmetry of
the site under consideration. The value of l'",„=19was
found as appropriate for representation (11). Therefore
we are faced with the problem to determine about 150
screening coefficients from a set of 400 linear equations.
As an efficient, satisfactorily accurate and numerically
stable procedure we satisfied the first 100 constraints (un-
til I""=9)exactly. The remaining constraints are taken
into account by a least-squares method.

This completes the description of the basis set in the
LSW method. A few comments are in order here. The
transformation of the basis set described above takes
place in real space before augmentation. This implies
that the procedure is independent of k vector and poten-
tials and needs to be performed only once. The total
number of screening coeScients grows linearly with the
number of atoms in the unit cell. This leads to manage-
able data sets to be stored. It is trivial to construct Bloch
functions for a given k vector from the localized cluster

function. If a screening Hankel function is centered at a
position outside the unit cell, related to a unit cell posi-
tion with the lattice vector R, its screening coefficient and
the corresponding coefficients (5) simply enter the unit
cell through multiplication with a phase factor e'" . In
this way, for large systems, the computational effort will

mainly concentrate on the diagonalization. Typical gains
in efficiency, compared with the ASW method, are a fac-
tor of 3 for four atoms per unit cell and a factor of 6 for
16 atoms per unit cell.

III. STRUCTURE

In this section a description of the crystal structures of
the coherent and incoherent Nb-Zr ML systems, as used
in our calculations, will be presented.

The coherent systems are experimentally determined
to be bcc (110)modulated with a lattice parameter of 3.44
A. These observations completely determine the struc-
ture of a coherent ML. With the z axis defined along the
modulation direction, the resulting crystal structure is
the C-face-centered orthorhombic (cco) lattice. The
structure of the NbZr n:n systems for n = 1 and 2 is visu-
alized in Fig. 2. In Fig. 2(a) the conventional and primi-
tive cco cells are given for the NbZr 1:1ML system. The
primitive cell is described in this figure by the vectors V„
V2, and V3, of which the latter is in the bcc (110) direc-
tion with as length the modulation wavelength A. Two
extra atoms are drawn that would complete a convention-
al bcc cell if all the atoms were of the same type. Systems
with larger modulation wavelengths can be easily con-
structed by adding more layers, with A increasing as
3.44n&2 A, but for the crystallographic description a
division into the n odd and n even systems has to be
made. For n odd the structure is described by the space
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0 Zr
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x 4865 A

I.865 A
I

FIG. 2. The C-face-centered orthorhombic unit cell for a
coherent Nb-Zr multilayer consists of Nb and Zr layers perpen-
dicular to the bcc (110) direction. The NbZr 1:1 unit cell (a) is
described by the basis vectors Vl, V2, and V3 with atoms in
Wyckoff positions 2a (origin) and 2c. The vectors V„V&,and
V4 are used in Sec. IVC as a definition of the bcc structure
which emerges from this figure when all atoms are chosen equal.
The NbZr 2:2 cell (b) serves as an example of the even-n multi-
layers. In these systems all atoms are in Wyckoff position 4k.
(The arrow indicates the glide plane) ~ The vectors V, and V,
are the same as in (a), but V3, which is along the modulation
direction, increases as A.

group Dzh (Cmmm, No. 65 in the International Tables )

with atoms in Wyckoff positions 2a and 2c. Increasing n,
the extra layers occupy Wycko6'positions 41 and 4k, with
the positional parameter z in increments of (2n) '. The
n even systems lack inversion symmetry and thus have a
horizontal glide plane instead of a horizontal mirror
plane. These multilayers are described by the space
group D2 (C222, No. 21 in the International Tables )

with atoms in Wyckoff positions 4k. The first layer al-
ways has a positional parameter of (2n ) ', and so there
is no longer an atom in the origin. Figure 2(b), showing
the NbZr 2:2 unit cell, together with its primitive transla-
tions, serves as an illustration of an n-even system.

The coherent multilayer structures, as used in the cal-
culations, are described by only one atom per layer. Be-
cause the interlayer distance is constant, the space-filling
Wigner-Seitz spheres were taken to have the same radii
equal to R„,= 1.694 A. They form a series of ideal multi-
layers, being square-wave modulated, with no lattice
faults or interdiffusion across the interface.

For the incoherent ML no unit cell is reported. It is
reported, however, that the Nb part of the ML is still bcc
(110) modulated but that Zr now is hcp (002) modulated.
From these observations we set out to derive a model for
the incoherent ML system.

Two problems have to be solved in modeling an in-
coherent unit cell. The first one concerns the combina-
tion of Nb bcc (110) and Zr hcp (002) planes in an overall
translational unit. The second one regards the positions
of the interface atoms.

Although the individual layers do have two-
dimensional translational symmetry, the lattice vectors
are different. The projection of these layers in a plane
will, in general, not exhibit commensurate translational
symmetry. The problem is then to find lattice vectors for
our incoherent system perpendicular to the modulation
direction. To keep a limit on the computational effort we
seek for vectors with the constraint that the total number
of atoms inside the unit cell must be manageable.

In order to find the lattice vectors parallel to the layers,
the layers were shifted with respect to each other such
that one Zr atom was on top of a Nb atom. The Nb layer
is described bp centered rectangular cells of dimensions
a Nb and a Nb&2. The Zr hcp layer is described by similar
cells but with dimensions az„and az, &3. The angle be-
tween the short sides of the rectangles containing the
atoms in the origin is defined as P. The required lattice
vectors of our incoherent cell are obtained if we find two
linearly independent positions where also a Zr atom is on
top of a Nb atom. We look for such positions by varying
(t, while in addition the lattice constants aN„and az, are
chosen from a range of values to increase the flexibility of
the searching procedure. The value of aNb is chosen
within the range 3.300 A of the metal to 3.454 A of the
Nb-Zr solid solution and az, is chosen between the metal-
lic value of 3.230 A and the value 3.240 A as measured
for the A ~ 109 A ML. By rotating the Nb plane on top
of the Zr plane, for aNb=3. 300 A, az, =3.234 A, and
P =0.434 rad, the positions (8.2500, 2.3335) and
(21.4500, 11.6673) are found for the Nb atoms as the best
match. The coordinates of the corresponding Zr atoms
are smaller by (0.0254, —0.0278) and (0.0009, 0.0018).
After averaging these positions translational symmetry is
described by the vectors b, = (8.2371, 2.3473) and
bz=(21.4498, 11.6660). The orientation of the layers in
this situation is depicted in Fig. 3. This unconventional
unit cell was transformed into a more regular shape de-
scribed by the vectors (1,0) and (

—2, 1) in the basis b,
With b, now chosen along the x axis the final translation-
al vectors b, and b2 perpendicular to the modulation
direction are (8.5650, 0, 0) and (6.6957, 5.3409, 0). In this
geometry of the layers there are five Zr atoms equally
spaced along the longer diagonal and six Nb atoms paral-
lel to the b2 axis at the origin and —,'b~. By the above-
mentioned averaging of positions there are small devia-
tions introduced in the in-plane nearest-neighbor dis-
tances, but without these small deformations, which are
less than 0.03 A, it was not possible to find a manageable
unit cell. The present structure results in only 11n atoms
in the unit cell of an incoherent NbZr n:n multilayer.
Layers other than interface layers are constructed ac-
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terface atoms was determined by the following expression
which is based on ASA overlap:

N

R'=R+ g [(R; +R, —R; )

—
—,'(dR, +dR, )]R,; . (12)

(0, 0)

FIG. 3. To find the unit cell for the incoherent system, a Zr
hcp (002) layer on top of a Nb bcc (110) layer is rotated by an
angle P. For /=0434 rad, with awb=3. 300 A and az, =3.234
0

A, the linearly independent positions 1 and 3 were found to
coincide. This defines the vectors from the origin to these posi-
tions as lattice vectors. In the calculations the vectors from the
origin to atom 1, now defined along the x axis, and to atom 2 are
chosen to define the (x,y) plane of the unit cell. The atoms that
lie inside the unit cell are indicated by open circles for Nb and
shaded circles for Zr.

cording to the stacking of the layers in the parent metals
Nb and Zr. This defines the interlayer distances and the
positions of the atoms. The interlayer distance of Nb bcc
(110) layers is dNb =2.318 A and for Zr hcp (002) layers is

dz, =2.585 A derived from the average in-plane lattice
distances and a c/a ratio for Zr of 1.593. The interface
distance dNb z, was taken as the average of the interlayer
distances of Nb and Zr and consequently becomes 2.452
A. The modulation wavelength A for the incoherent sys-
tems can now be defined as n(dN„+dz„).The Wigner-
Seitz radii of the atoms in the incoherent system are
determined to correspond as much as possible to the
values they have in the parent metals. For the Nb and Zr
atom the values for R ws of 1.616 and 1.781 A, respective-

ly, were taken, to be compared with the metallic bulk
values of 1.625 and 1.770 A.

Up until now we have determined a commensurate
unit cell for the Nb and Zr lattices. The phase between
the two lattices is not determined yet. The question we
address now is the determination of this phase factor to-
gether with the relaxation of the atomic positions at the
interface. In actual systems the lattice mismatch can re-
sult in the creation of misfit dislocations, ' and besides
this a reordering of the interface can occur by
interdiffusion and alloying.

In order to relax the Nb/Zr interface we used the fol-
lowing procedure. The interface is considered to be limit-
ed to the touching Nb and Zr layer only, being a total
number of 11 atoms. The structure of the noninterface
layers and the interlayer distances, including the interface
layer distance dNb z„arekept fixed. The interface atoms
are allowed to move inside the fixed volume between the
bulk layers. The degree of freedom to shift the Nb lattice
in the (x,y) plane with respect to the Zr lattice is used to
eliminate the starting geometry dependence of a relaxed
interface. The displacement towards relaxation of the in-

Herein Rj is the position of an interface atom, R, is the
ASA Wigner-Seitz radius of the ith atom, and R, is a
unit vector pointing from atom i to atom j. The dR; are
the equilibrium (bulk) overlap distances of the ASA
spheres. These distances are defined as 2R, —R;
with R the nearest-neighbor distance. The dR, values
are 0.389 and 0.339 A for Nb and Zr, respectively. The
parameter N,„„fp j gives the number of Wigner-Seitz
spheres that overlap with atom j. The final positions of
the atoms are obtained when the directional average of
overlap distances, given by the second term in Eq. (12),
vanishes. In this way the positions of the atoms at the in-
terface are determined by the interatomic distances and
coordination numbers of the parent metals. Here the in-
forrnation is used that all interatomic force data of the
bulk materials have resulted in a bcc structure for Nb
and a hcp structure for Zr with the corresponding
nearest-neighbor distances. The factor in Eq. (12) in
square brackets, which is only accounted for when posi-
tive, so only in a repulsive fashion, implies that the over-
lap distances (R; +R —R; ) must become equal to
the (average) bulk overlap distances. This factor is zero
for noninterface atoms. Equation (12) is used in a double
loop over the interface atoms. In the outer loop the sums
of the components of R' perpendicular to the modulation
direction are determined to calculate the shift of the Nb
layers, including the Nb interface atoms, with respect to
the Zr layers, by which the forementioned degree of free-
dom is eliminated. Inside this loop Eq. (12) is used again
to determine the new positions of the interface atoms.
The periodicity of the unit cell was included in this pro-
cedure.

We examined three different starting geometries, re-
sulting in two different final interface geometries. Two
input cases, which are extreme as for the ASA overlap,
the first with the Nb and Zr atoms directly on top of each
other in the origin as in Fig. 3 (12.19% overlap of the
volume of the smallest sphere involved in the overlap),
and the second optimized by shifting the layers (9.10%
overlap), resulted in an identical interface geometry. The
interface has in this case a maximum overlap of 4.65%.
A third input geometry was constructed by shifting the
Zr layers such that the geometry of the interface layer
coincides with the geometry of the original next-nearest
interface layer. This resulted in a relaxed interface with
4.88% overlap. Apparently the input geometry depen-
dence has not been eliminated completely. We have
chosen in our calculations the relaxed interface with the
smallest (4.65%) overlap. An ASA overlap that is too big
leads to unphysical results. The maximum allowable
value for this overlap depends on the crystal structure,
but it can be as small as 10%.

The incoherent cell constructed in this way is a mono-
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TABLE I. Positions of incoherent ML. The positions of the
atoms in symmetry classes 7 up to 28 are pictured in Fig. 4.

7
8
9

10
11
12

13
14
15
16
17
18

19
20
21
22
23

24
25
26
27
28

29
30
31
32
33

0.0
0.0
0.0
0.5
0.5
0.5

0.75
0.75
0.25
0.25
0.25
0.75

0.9139
0.9716
0.9402
0.4525
0.4811
0.4252

0.1952
0.0044
0.3887
0.6056
0.7933

0.1289
0.7289
0.3289
0.5289
0.9289

0.1956
0.9956
0.3956
0.5956
0.7956

0.0
0.3333
0.6667
0.1667
0.8333
0.5

0.4167
0.7500
0.2500
0.9167
0.5833
0.0833

0.0971
0.3791
0.7466
0.2641
0.9014
0.6165

0.0262
0.8226
0.2277
0.4146
0.6345

0.2937
0.8937
0.4937
0.6937
0.0937

0.0270
0.8270
0.2270
0.4270
0.6270

0.0
0.0
0.0
0.0
0.0
0.0

0.0945
0.0945
0.0945
0.0945
0.0945
0.0945

0.1919
0.1853
0.1829
0.1816
0.1891
0.1830

0.2883
0.2908
0.2919
0.2912
0.2094

0.3945
0.3945
0.3945
0.3945
0.3945

0.5
0.5
0.5
0.5
0.5

Nb bulklike

Nb intermediate

Nb interface

Zr interface

Zr intermediate

Zr bulklike

clinic cell and has the space group C,' (Pm, No. 6 in the
International Tables ) with only a mirror plane. The po-
sitions of the atoms of the incoherent NbZr5:5 multilayer
system are given in relative coordinates in Table I. To
see the results of the relaxation procedure the positions of
the interface atoms can be compared with the positions of
the corresponding bulklike atoms, which have the same
(x,y) coordinates as the interface atoms before relaxation.
From this comparison it is seen that the Nb atoms have
moved more than the Zr atoms, which is because the bcc
structure is more open than the hcp structure. This can
also be seen in Fig. 4 where the interface and near inter-
face atoms are projected in the (x,y) plane. The Zr inter-
face atoms are in the centers of triangles formed by the
near-interface Zr atoms, the positions they would have if
there is no distortion. The Nb atoms, connected by lines
in this figure, form a net that would have been rectangu-
lar in case of no distortion. Concerning the z coordinates
of the interface atoms it can be noted that the Nb and Zr
atoms on the average have repulsed each other. The un-
disturbed z coordinates are 0.1891 and 0.2891 for Nb and

13 28

Nb interface atom

Nb near interface atom

Zr near interface atom

FIG. 4. Projection of the Nb and Zr atoms of the interface
and near-interface layers on a plane perpendicular to the modu-
lation direction. The atoms are numbered corresponding to the
coordinates in Table I. The Nb atoms are connected by lines to
guide the eye.

Zr, respectively, while their corresponding averages after
relaxation are 0.1857 and 0.2905.

IV. RKSUI.TS AND DISCUSSION

The coherent NbZr n:n multilayers were calculated for
n ranging from 1 to 6. The largest modulation wave-
length calculated consequently was 29.19 A. Of the in-
coherent multilayers only the NbZr 5:5 system was calcu-
lated. The latter system has a modulation wavelength of
24.5167 A. It contains 55 atoms in the unit cell, 11 atoms
per n, whereas the coherent systems only have 2n atoms
in each primitive cell.

In the calculations the scalar-relativistic Hamiltonian
according to the description of Methfessel was used.
The exchange and correlation effects were treated by the
local-density approximation using the Hedin-Lundqvist '
parametrization. The self-consistent calculation was car-
ried out including all core electrons.

Iterations were performed with the k points uniformly
distributed in an irreducible part of the first Brillouin
zone corresponding to a volume of Brillouin zone of the
order of 10 A /k-point. For this density of k points
the results of the self-consistent iterations for the
coherent ML systems became density independent. It
was kept fixed for all calculations. Self-consistency was
assumed when the changes in the local partial charges in
each atomic sphere decreased to the order of 10 . Next
the partial densities of states were constructed by solving
the Hamiltonian for the number of k points that corre-
sponds with a volume per k point of 3X10 A . As
sampling histograms, 300 channels with a width of 4.33
mRy were used. All calculations were performed on a
Control Data Corporation Cyber-205 supercomputer.

In the construction of the LSW basis, the spherical
waves were augmented by solutions of the Schrodinger
equation indicated with the atomiclike symbols Ss, Sp,
and 4d, corresponding to the valence levels of the parent
metals. The internal 1' summation of Eq. (4), used to aug-
ment the central Hankel function at surrounding atoms,
was extended to I' =3, resulting in the use of 4f orbitals.
The number of atoms inside the screening cluster, for the
different positions in the different structures, varied be-
tween 15 and 19.

The calculations were performed non-spin-polarized.
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Because in the coherent structure the Nb lattice constant
is somewhat larger than in the pure metal, we have tested
the coherent NbZr 2:2 system for a possible occurrence
of magnetism. However, a nonmagnetic solution was ob-
tained for the spin-polarized calculation in this case.

In subsequent sections we will present the density-of-
states curves (IV A) and results for the density of states at
the Fermi energy (IV 8 I), total energies (IV 82), charge
transfer between the layers (IV 8 3), and the electron en-

ergy bands (IV C).

A. Density of states

In Figs. 5 —7 the density-of-states (DOS) results for the
calculated coherent and incoherent multilayers are
presented. All curves are plotted on the same horizontal
and vertical scale, except the total DOS of the incoherent
NbZr 5:5 ML, which has a vertical scale twice as large.

Total DOS results for the coherent multilayers are
show in Fig. 5. The pictures correspond to increasing
modulation wavelength. The nature of the DOS is typi-
cal for a transition metal in the bcc structure. " In all
curves three broad peaks can be observed, labeled A, B,
and C in the top curve. Peak A ranges from —3.5 to—1.5 eV, peak B from —1.5 to +1.5 eV, and peak C
from 1.5 to about 6 eV. These peaks remain almost fixed
in position on going from NbZr 1:1 to NbZr 6:6. The

(a) n=l

most pronounced differences are visible in region C. In
NbZr 1:1 one high sharp peak is superimposed around
4.25 eV. This peak has disappeared in the other multilay-
ers, where instead we see two other peaks steadily grow-
ing with A, one at 3.5 eV and one at 5 eV. Region B be-
comes more steplike on going to larger A. Region A is
virtually constant in shape, height, and position relative
to the Fermi energy over the entire A range regarded.

The incoherent total DOS of NbZr 5:5, depicted at the
bottom of Fig. 5 in a somewhat enlarged scale, shows less
structure. One still observes three regions of superim-
posed peaks, region A from —4 to —2 eV, region B from—2 to +2.5 eV, and region C from 2.5 up to 6 eV.

To understand the trends in the DOS curves of the
coherent ML we performed calculations for Nb and Zr in
the ML crystal structure given by a bcc cell with a lattice
parameter of 3.44 A, which will be denoted 1:0 and 0:1,
respectively. The corresponding DOS curves are present-
ed in Fig. 6(a) for Nb and Fig. 6(h) for Zr. Inset (b) —(g)
in this figure are the six local DOS curves for the layers
of the coherent NbZr 5:5 ML. Figures 6(b) —6(d) belong
to the Nb monolayers of the ML and approach the Zr
layers in that order. Figure 6(b) corresponds to the cen-
tral Nb layer and Fig. 6(d) corresponds to the Nb inter-
face layer. Figure 6(e) corresponds to the Zr interface
layer and Fig. 6(g) to the Zr central layer. The I:0 and
0:1 DOS curves are quite similar, but there are some im-
portant differences in the peak positions. Apart from a
rigid shift, there is also a difference in bandwidths. If we
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FIG. 5. Total DOS results for the coherent NbZr n:n multi-
layers for {a}n =1 to (fl n=6 and (g) the total DOS for the in-
coherent NbZr 5:5 multilayer. The latter curve has been scaled
by a factor of 2 in the vertical direction with respect to the oth-
er DOS curves. The horizontal scale is in electron volts {eV)
relative to the Fermi energy. The vertical scale is in arbitrary
units.
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FIG. 6. Local DOS results for the coherent NbZr 5:5 multi-
layer (b)—(g), and results for (a) Nb and (h) Zr metals in multi-
layer bcc structures 1:0and 0:1,respectively. Units as in Fig. 5.
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label these curves as above for the total coherent DOS
curves, peak A ranges from —3.5 to —1.5 eV for both
1:0 and 0:1, and peak 8 ranges from —1.5 to +1 eV for
1:0,and from —1 to + 1.5 eV for 0:1. In region C, above
about 2 eV the most important features are a peak at 3.5
eV for 1:0 and at about 5 eV for 0:1. %e note that peak
A is the same for 1:0 and 0:1, both in position and ap-
pearance. Peaks 8 are shifted in such a way that the
maxima of Nb overlap with the minima of Zr.

It is seen that the curves for the Nb and Zr bulklike
layers [Figs. 6(b) and 6(g), respectively] closely resemble
the 1:0and 0:1 curves which correspond to metallic bulk
systems. In approaching the interface layers the DOS
curves retain the features of the corresponding bulk sys-
tems, though they flatten gradually. The interface DOS
curves are clearly flatter than the bulklike DOS curves
and, apart from the differences in the C region, they get
better matched to each other. The structure of the near-
interface, intermediate, DOS curves is really in between
that of the interface and bulklike DOS curves.

After these observations we return to the total DOS
curves in Fig. 5. Using the rigid shift that is observed be-
tween the bulk 1:0 and 0:1 DOS curves, we now can ex-
plain the NbZr 2:2 to NbZr 6:6 DOS curves. Because
peak A in Fig. 6 is independent of position with respect
to the interface, its position is the same in the total DOS
curves. The increasing steplike character of peak 8 in
the total DOS curves can now be seen to be due to the
rigid shift in peak 8 of 1:0 compared with 0:1. The ex-
tremes compensate each other and result in a flattening of
peak 8. The peaks at 3.5 eV and at about 5 eV can
directly be related to peaks in region C of the 1:0and 0:1
DOS. One can make an interesting observation of a Nb-
Zr interaction by comparing the peaks for the 1:0, 0:1,
and 1:1 systems. The 1:0 curve [Fig. 6(a)] has peaks at—1.25, —0.25, and +3.5 eV. The 0:1 curve [Fig. 6(h)]
has peaks at —0.75, +0.25, and 5 eV. The 1:1 curve has
its peaks exactly at the averages of these pairs of energy
values, —1, 0, and 4.25 eV. These effects can be under-
stood to a large extent by realizing that in the 1:1 system,
which pertains to a system having interface only, the 1:0
and 0:1 layers have to match to a large degree, thereby
reflecting the Nb —Zr bonding across the interface.

As for the coherent systems, we conclude that the DOS
curves can be understood on the basis of the 1:0 and 0:1
curves alone. As a first step the 1:1DOS is built from the
1:0and 0:1 DOS. For larger modulation wavelengths the
1:1 DOS is simply mixed with the 1:0 and 0:1 DOS
curves.

The incoherent DOS results are approached in the
same way. As underlying calculations we now have to
consider the bulk metals Nb bcc with lattice parameter
a =3 300 A and Zr hcp with a =3.230 A and c=5.145 A
(c/a=1. 593). The small changes in atomic distance as
they occur in the multilayer are neglected in these metal-
lic bulk calculations. The DOS results of the bulk metals
are given in Fig. 7(a) for Nb and 7(h) for Zr. Insets
7(b) —7(g) display the summations of the local DOS of the
atoms in a layer of the incoherent NbZr 5:5 multilayer in
the same order as in Fig. 6. In comparing Figs. 7(a) and
6(a) the expected broadening of the d band is observed in
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FIG. 7. Local DOS results for the incoherent NbZr 5:5 mul-
tilayer, (b)-(g) and results for the (a) Nb and (h) Zr metals.
Curves (b)-(g) are the averaged local DOS curves for the atoms
in the different layers. Units as in Fig. 5.

going to the bcc structure with the smaller lattice param-
eter. A marked change in DOS is observed for Zr in go-
ing from a bcc structure [6(h)] to a hcp structure [7(h)].
The first thing to notice in Fig. 7 is that the metals can be
recognized in the bulklike layers. The Zr bulklike DOS
[7(g)] resembles the metal DOS very well despite the ad-
ditional fine structure in Fig. 7(h), which is partly caused
by the fact that the k-point density used throughout the
calculations is not optimal in this case. The comparison
for Nb is still reasonable, although the bulklike DOS
[7(b)] is considerably fiatter. In approaching the interface
layers, Zr almost retains its structure in the intermediate
DOS curve. For Nb the curve becomes slightly flatter.
In the Nb and Zr interface DOS curves, only faint details
are left. For Zr there is still some similarity to the bulk
DOS curve, but in the Nb interface DOS curve no
characteristic Nb bulk features are left. This is not due
to the summation over the atoms in a layer, because it is
also observed for the DOS curves for the individual
atoms in the layers.

The loss of structure of the DOS curves in going to the
interface can be understood in terms of the interface
geometry. Every interface atom, and a near-interface
atom to a lesser extent, has a different atomic coordina-
tion, but the local geometrical differences could be more
important than the chemical difference. The smaller
effect of the chemical differences is illustrated by the be-
havior of the DOS curves for the coherent system (Fig. 6)
in approaching the interface, for which system local
geometry effects are absent by construction. An atom at
the incoherent interface has an environment which
resembles a disordered situation. Both the local distances
and symmetries are different for these atoms. These
differences induce splittings of states which are degen-
erate in more symmetric environments and consequently
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lead to a smoothing of corresponding DOS curves. In
fact, these results can be considered as a support for our
rather simple procedure used to find an interface struc-
ture. A more sophisticated treatment of the relaxation
could have resulted in somewhat different positions of the
individual atoms, but would not have led to marked
differences in the DOS curves. The forementioned struc-
ture of the incoherent total DOS curve [Fig. 5(g)] can
now be seen as a superposition of the bulklike DOS
curves on the steplike interface DOS curves.

In comparing the layer-resolved 5:5 results (Figs. 6 and
7) it is seen that for the incoherent ML it takes more lay-
ers to reach bulklike behavior. Further it can be seen
that Zr will be the first component to approach bulklike
properties. This has probably its reasons in the close-
packed structure of Zr. During the relaxation of the in-

terface, the Zr interface atoms were less flexible in mov-

ing than the Nb atoms. Also, the close-packed structure
screens the interface more efficiently than a bcc (110) lay-

er.

B. Numerical results

As numerical results of our calculations, we discuss the
density of states at the Fermi energy, total and partial en-

ergies, and charge transfer across the interface.

2k 2

y= N(EF) (13)

and the superconducting transition temperature T, re-
lated to the N(EF ) as

C

eD
l.45 N(EF ) V

(14)

The decrease, observed in Fig. 8, is consistent with ex-
periment because both y and T, are measured to decrease
with increasing A, but the measured decrease is much
slower. After a decrease of N(EF) for small A, we ob-
serve a stabilization for larger A for the coherent systems.
It is expected that N(EF) will converge to a constant

I. Density of states at the Fermi energy

The density of states at the Fermi energy, N(EF ), is
determined from the DOS histogram by linearly interpo-
lating between the N(E) values at the two adjacent histo-
gram channel energies. N(EF) in units of number of
states per Rydberg and per atom is plotted in Fig. 8 as a
function of A. The values for the coherent ML are con-
nected to a curve, as is the N(EF) value for the in-

coherent ML with the coherent 4:4 value. These connec-
tions are only to guide the eye. We observe a decrease to-
wards higher A, with a local maximum for NbZr 3:3.
The N(EF) for the incoherent DOS lies well below the
values of N(EF ) for the coherent DOS.

The density of states at the Fermi energy can be com-

pared with experimental results for two physical quanti-
ties that have been measured as function of A for the
Nb/Zr ML system. These are the electronic specific-heat
coefficient y given by

energy (Ry)

2.2
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3.3
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FIG. 8. Total energies in Rydberg per atom {+)and densities
of states at the Fermi energy in units of number of states per
Rydberg and per atom {X) for the different multilayers. The
values of the incoherent multilayer are indicated by circles. The
lines connecting the markers are to guide the eye. The average
value of the density of states at the Fermi energy for the 1:0and
0:1 systems is 21.7 and, for the metals, 15.9. These values are in-

dicated by the arrows on the right.

value for larger A, which is supported by the layer-
resolved N(EF) values given in Table II. With A, the
number of bulklike layers increases, which will ultimately
determine the multilayer N(EF). A similar behavior is

expected for the incoherent system. This leads us to the
following tentative interpretation of the measured A

dependence of y and T, . For the measured samples con-
siderable interdiffusion has been reported, which there-
fore have a much more extended interface than the sys-
tems calculated. This would imply that the slope of the
decrease of y and T, with increasing A is much smaller
than for the square-wave modulated systems investigated
in this study. In this interpretation the NbZr 2:2 to 4:4
results in Fig. 8 are considered as representative for an
interface region. The relative low N(EF) value of NbZr
1:1 will not be typical for an actual sample. It can be at-
tributed to Nb—Zr bonding effects as mentioned in Sec.
IV A, which for this solely interface system are free to de-
velop. Lowe and Geballe interpret their results in terms
of a three-slices model. Their multilayers were con-
sidered to be built up from slices of Nb and Zr metal,
separated by an interface slice containing a mixture of Nb
and Zr. Apparently, this parametrized interpretation is

supported by our self-consistent results for the density of
states as a function of A.

The numerical value for y is lower than the experimen-
tal value, which is 7.7 mJ/molK for A=32.8 A. From
the simple expression (13) the values for incoherent NbZr
5:5 and coherent NbZr 6:6 are 2.7 and 3.8 mJ/mol K, re-
spectively. For comparison with experiment these values
have to be corrected for electron-phonon enhancement
anyhow. This enhancement factor is for Nb known to
lie between 1.8 and 2.0. Further, since for the mentioned
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TABLE II. Layer-resolved X(EF ) values (states/Ry atom).

Nb bulklike Nb interface Zr interface Zr bulklike

19.1
16.7
23.3
21.5
23.2

16.4
24.0
23.2

18.1
25.0
24.3

15.5
20.9
22.9

12.2
21.1
21.5

12.7
12.9
20.7
19.0
20.3

metals
incoherent ML 5:5
coherent ML 5:5
coherent ML 6:6
1:0,0:1

A the structure is still mainly coherent, the second value
of 3.8 mJ/mol K can be considered as more representa-
tive than the first, lower value. Finally, in view of the
more extended interface in the measured samples, anoth-
er interface-induced enhancement of 10—20%%uo is expect-
ed from Fig. 8. Therefore, we conclude that our calculat-
ed density of states is in agreement with the experimental
value of 7.7 rn J/mol K .

2. Total energies

Although we realize that the structural dependence of
the total energies calculated by methods employing the
ASA approximation have to be interpreted with care, we
like to focus on some trends. From these we want to
learn about the structural phase transition.

The total energies in Rydbergs per atom are depicted
in Fig. 8. The numerical values are given in the bottom
row of Table III. The energies of the coherent ML are
connected to a curve, as is the energy value of the in-
coherent ML with the coherent 4:4 value. These connec-
tions are only to guide the eye. We first observe that the
A dependence of the total energy is similar to that for
N(EF). The saturation for the coherent system already
starts at the NbZr 2:2 system, since the variations are in
the 0.1 rnRy range, which is of the order of the numerical
error. The lower total energy for the incoherent system is
consistent with a structural phase transition for larger
modulation wavelengths. This can be supported by con-
sidering the layer-resolved total energies in Table III.

The energies of the interface layers are virtually con-
stant for the coherent multilayers from NBZr 2:2 on-

wards. The pure-interface case, NbZr 1:1 shows a rise of
the energy of the Nb interface atoms and a lowering of
the Zr interface atoms compared with these constant
values. For Nb all these values are higher than the 1:0
value and for Zr all values are lower than the 0:1 value.
The energies of the incoherent ML interface layers follow
the same rule, but the effects are more extreme. The
near-interface values show a significant change towards
the bulk values. The NbZr 3:3 values are slightly over-
corrected, as are the values of the near-interface layers of
the incoherent ML. From these data it is clear that the
energies of the noninterface layers, being approximately
constant, determine the total energy of the ML system.
The average total energy of the coherent ML bulk sys-
tems (1:0and 0:1), —7410.5945 Ry, being larger than the
average of Nb bcc and Zr hcp, —7410.6015 Ry, shows
that the incoherent ML structure is the preferred one,
apart from possible interface effects. Since the average of
the energies of the incoherent ML interface layers raises
the total energy and the average for the coherent inter-
face layers lowers the total energy, the coherent structure
is expected to be the preferred one for small A. These
conclusions, based on numerical results, are in support of
the argument by Hilliard, which can be summarized as
follows. Everything but the interface for an incoherent
ML is bulk, which is normally at an energy rninirnum.
The interface raises the total energy, and this goes as the
interface area per unit volume of ML, thus as A '. Since
for an incoherent ML the interface is energetically un-
favorable, the incoherent structure becomes less favor-
able with decreasing A. In this picture the interface
effect for the coherent structure is negligible, since this

TABLE III. Energies per layer. In the first column the numbers in front of the decimal point are given. They are —7631 for the
Nb atoms, —7189 for the Zr atoms, and —7410 for the total energies per atom in the bottom row. The total energy per atom for the
incoherent ML was calculated using the fact that there are 30 Nb atoms and 25 Zr atoms inside the unit cell. The difference between
the total energies and the summed energies per layer is the electrostatic energy due to deviations from charge neutrality, the
Madelung energy.

—7631

—7189

—7410
(total per atom)

0.6168

0.5689

0.5965

22

0.6362

0.5513

0.5934

3:3

0.6473
0.6338

0.5550
0.5365

0.5937

4-4

0.6453
0.6346

0.5558
0.5403

0.5940

5:5

0.6437
0.6454
0.6341

0.5551
0.5406
0.5449

0.5939

Incoherent ML

0.6569
0.6650
0.6637
0.6037

0.5824
0.5367
0.5338
0.5460

0.5972

6:6

0.6464'
0.6438
0.6445
0.6339

0.5557
0.5404
0.5452
0.5426'

0.5939

bulk Nb
bulklike
near interface
interface

interface
near interface
bulklike
bulk Zr

'Values for 1:0and 0.1
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structure is formed by a distortion of layers to produce a
lattice match at the interface. It is interesting to see from
Table III that this effect is indeed small.

The drop of the total energy for the NbZr 1:1 system
as seen in Fig. 8 can be understood in terms of an in-

creased electrostatic interaction between Nb and Zr
atoms due to an additional charge transfer. We will re-
turn to this in the next subsection. This effect will be
smaller for the incoherent interface, due to the disordered
positions of the atoms, so that the total energy for an in-

coherent NbZr 1:1 system will be larger than that for the
coherent system, which is additional support for the ob-
servation that, for smaller A„coherence is preferred.

Although the results and conclusions are quite satisfac-
tory, it should be kept in mind that, for the incoherent
ML, distortions are introduced into the bulk parts. This
can result in energy differences of the order of milli-

rydbergs, which were not taken into account in the
present study.

3. Charge transfer

The magnitude of the charge transfer between the
different layers in the different systems is given in Table
IV. A positive value indicates a decrease of electronic
charge. It is observed that in all coherent systems the Nb
interface atoms have attracted electrons, while in the in-
coherent system the Nb interface atoms have lost elec-
tronic charge. The charge transfer is a mechanism to
align the Fermi energies of the parent metals. The poten-
tial of the dipole layer that arises will shift the Fermi en-
ergies to an overall Fermi energy. ' The calculated Fermi
energies for the 1:0,0:1, and the bulk Nb and Zr systems
explain the signs of the charge transfers. The Fermi ener-

gy of the 1:0 and 0:1 systems are —0.103 and 0.002 Ry,
respectively. This means that electronic charge has to
How from Zr to Nb across the coherent interface to
equalize the Fermi energies. The values for the Fermi en-
ergies of Nb and Zr are —0.025 and —0.053 Ry, which
supports the opposite Aow of electronic charge across the
incoherent interface.

We want to point out that these self-consistent results
for the relative shifts of the Fermi energies follow an in-
tuitive rule, derived from the free-electron picture. Ex-
pansion or contraction of the lattice implies a decrease or
an increase of the Fermi energy, respectively. This rule
holds perfectly for simple metals, but for the more com-
plicated transition metals exceptions could occur. In go-
ing from metallic Nb to the 1:0 system the lattice ex-
pands, and the Fermi energy decreases indeed. The
volume per atom for Zr, measured in our description by

the volume of the ASA sphere, decreases in going from
metallic hcp Zr to the 0:1 system having the bcc struc-
ture, which is rejected by an increase in Fermi energy.
So our self-consistent results can be considered as support
for the intuitive rule, which apparently holds quite gen-
erally. Further, a decrease of the volume per atom intui-
tively implies a charge redistribution in favor of d-state
charge at the cost of the more extended s-p labeled
charge. According to our angular-momentum-projected
results this rule is found to hold perfectly also.

A second thing to notice in Table IV is the damped os-
cillation around charge neutrality in going away from the
interface. The charge transfer across the interface due to
electronegativity differences of the constituent metals in-
duces a dipole layer which is screened by Friedel-like os-
cillations. Furthermore, we notice that the charge
transfer across the coherent interface is quite symmetric.
The asymmetry at the incoherent interface is simply due
to the different number of atoms in the two metallic lay-
ers. Finally, as already mentioned in the previous subsec-
tion, one clearly sees the relative huge charge transfer in

the NbZr 1:1 system. In this system surrounding layers
are not available to moderate the electronegativity effect.

C. Electron energy bands

In Fig. 9 the band plot is shown for the coherent NbZr
1:1 system along high-symmetry directions in the C-face-
centered orthorhombic (cco) Brillouin zone (BZ), depict-
ed in Fig. 12. In order to clarify the NbZr 1:1 band
structure, the band plot for Nb in the ML crystal struc-
ture is given in Fig. 10. First we describe the relation be-
tween the bcc and cco Brillouin zones.

The basis of the bcc structure was chosen (column
wise) as

b b/2 0
0 a/2 a/2
0 0 b/2

in order to have the (x,y) directions coincident with
those of the cco structure. Here a is the bcc lattice con-
stant and b =a&2. This basis is given by the vectors V, ,
V2, and V4 in Fig. 2(a). The volume of this primitive cell
is ab /4. This bcc cell has two basis vectors in common
with the basis vectors,

b b/2 0
0 a/2 0
0 0 nb

TABLE IV. Average neutrality deviations per layer.

2:2 3:3 44 5:5 Incoherent ML 66

0.0217 0.0072
—0.1267 —0.0344 —0.0508 —0.0457

—0.0072
0.0120

—0.0474

0.0074
—0.0232

0.0584

—0.0029 bulklike Nb
0.0109 near interface

—0.0471 interface

0.1267 0.0344 0.0514 0.0454 0.0470
—0.0228 —0.0069 —0.0112

0.0064

—0.0644
0.0209

—0.0063

0.0468 interface
—0.0101 near interface

0.0022 bulklike Zr
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of the coherent n:n ML unit cells. For n =1 these vec-
tors are given in Fig. 2(a) as V, , V2, and V3. The volume
of this cell is 2n times the volume of the bcc cell. For the
bases of the reciprocal lattice we find

cco:

bcc:

0 1/b 0
0 1/a 2/a

1/nb 0 0

0 1/b 0
0 1/a 2/a

2/b 1/b 0

In Fig. 12 the first Brillouin zones for cco with n =1, and
for bcc are given in the same coordinate system. From
this figure it is trivial to relate the cco bands to the bands
of a bcc metal. For instance, the bands from I to N in
bcc must be found in the presently no longer equivalent
horizontal I -to-X direction and the vertical I -to-Z-to-I"
direction in the cco band plot. To illustrate this we com-
pare the bands of Nb 1:0 (bcc, a=3.44 A, Fig. 10) with
those for NbZr 1:1 (Fig. 9). From the band plots all cor-
responding directions can be recognized. We can indeed
recognize in the cco X-to-I direction along X the bcc
bands from point H to I and from point N to P combined
with its mirror image. Also, the cco bands from point I
to X can be seen to consist of bcc bands from point I to
N and from point N to H. The entire structure of the
NbZr 1:1 ML bands can be mapped in this way with the
bcc band structure. The higher the energy, the more
delocalized the states. Consequently, above the Fermi
energy there is some mixing of the bands which makes
comparison with the Nb bands less trivial.

Band plots for NbZr n:n systems with n ) 1 can be un-
raveled using the same procedure. To give an impression
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FIG. 9. Electron energy bands of NbZr 1:1 along directions
in k space given in Fig. 12. The I"-to-Z direction corresponds to
the modulation direction of the multilayer.

FIG. 11. Electron energy bands from I to Z for the coherent
multilayers NbZr 1:1 (left), 2:2 (middle), and 6:6 (right). The k
axes were chosen to be of the same length in the three pictures.
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N

N

T cco labels

P bc labels

FIG. 12. The irreducible part of the bcc Brillouin zone, indi-
cated by thick lines and large labels, drawn in coincidence with
the cco Brillouin zone. The arrows indicate the direction along
which the NbZr 1:1bands of Fig. 9 are given.

of the increasing complexity with n, in Fig. 11 the band
structures for n =1, 2, and 6 are given along the I -to-Z
direction. The I -to-Z direction in the cco Brillouin zone
is the direction in which the multilayering takes place.
The bands in this direction are exclusively built out of the
bcc bands along the I -to-N direction. For NbZr 1:1 this
bcc direction is cut half-way by a horizontal plane ac-
cording to Fig. 12. This results in a folding of the bcc
bands and a potential splitting in the cco band plot at Z.
In addition, in the NbZr 1:1 bands along the I -to-Z
direction some hybridization effects can be seen around 3
eV. On going to higher n values, the effect on the band
pictures can be understood by realizing that the length of
the I -to-Z cco direction goes as (nb) '. This means the
number of horizontal planes through the bcc BZ is 2n.
So now, beside the I -N-P-H plane, additional cross sec-
tions of planes through the cco Brillouin zone will be seen
in the X-to-I -to-X direction and I -to-S cco directions.
For the I -to-Z direction this means still further folding
and potential splitting of the I -to-N bcc direction.

V. CONCLUSIONS

With electronic-structure calculations we have shown
to be able to understand most of the experimentally ob-
served properties of the Nb/Zr n:n multilayer system.

The observed structural phase transition can be followed
with our calculations by studying the layer-resolved total
energies. The behavior of the density of states at the Fer-
mi energy as a function of A matches with the observed
trends in y and T, . From the band structures we can un-
derstand the effect of multilayering. The largest Brillouin
zone, corresponding to the smallest A multilayer, gets
sliced up in the modulation direction. In some cases this
Brillouin zone can be related in a simple way to the BZ of
the metallic components of the ML. The DOS curves of
the coherent ML can be understood rather simply in
terms of the DOS curves for the 1:0 and 0:1 structures.
For the larger A multilayers the inAuence of the interface
is observed to be diluted with bulk properties.

It should be kept in mind that the calculations are
based on models for the multilayers. Interdiffusion was
neglected by adopting sharp interfaces and the interlayer
distances in all multilayers regarded were kept fixed.
Due to a lack of experimental information the entire in-
coherent ML had to be modeled.

Still the results can be considered as satisfactory. In
the near future the method will be applied to more com-
plex metallic ML systems. The ultimate goal is to use it
as a tool to predict new structures with unexpected, in-
teresting, and useful properties.

Note added in Proof After th. e submission of this pa-
per, new measurements on the electronic specific-heat
coefficient y of the Nb/Zr multilayer system were pub-
lished by Broussard and Mael. Their results for A=4
and 22 A, combined with previously obtained results,
form a curve having a maximum, just as our curve in Fig.
8 for the density of states at the Fermi energy does.
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