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We have studied the dispersion characteristics of the bulk and surface magnetoplasmons in a
semi-infinite bimetallic superlattice structure. The thicknesses of the constituent layers are assumed
to be suSciently large so that the "quantum-size effects" can be neglected. The superlattice struc-
ture is subjected to an applied magnetic field taken to be parallel to the superlattice axis (or perpen-
dicular to the interfaces). The material layers are characterized by the frequency- and magnetic-
field-dependent dielectric tensors. The magnetoplasma modes (polaritons) are defined by the elec-
tric fields localized at and decaying exponentially away from the interfaces. In spite of the
mathematical complexity, we have presented some analytical diagnoses in order to substantiate the
asymptotic limits attained by the bulk bands and (some) surface modes, both for zero and nonzero
magnetic fields. The numerical results are presented for a number of illustrative cases.

I. INTRODUCTION

Recent advances achieved in vacuum and vapor-
deposition techniques, such as molecular-beam epitaxy
(MBE) and metalorganic chemical vapor deposition
(MOCVD), have made it possible to grow the superlattice
structures whose layer thicknesses are in the range of few
atomic planes. ' The presence of these ultrafine layers
may affect the motion of electrons and thus lead to the
"quantum-size effects" when the physical dimensions of
the layers are comparable to the characteristic lengths
(e.g. , deBroglie wavelength and mean free path) that
determine the electron behavior. These microstructures
have led to the observation of a variety of deliberately en-
gineered exotic (electronic and optical) properties; some
of which, e.g. , enhanced electron mobility in
modulation-doped semiconductor superlattices, have
found application in electron devices. The most impor-
tant single property of, for example, a semiconductor
heterojunction which gives rise to such unusual proper-
ties is the band-gap discontinuity of the constituent ma-
terials between the conduction and valence bands. While
the heterostructure made of III-V compounds are more
fully understood from the early studies, the growth and
characterization of II-VI and IV-VI materials and, more
recently, also of metals and insulators are gaining more
and more interest.

The understanding of the heterointerfaces (e.g. , inter-
faces of semiconductors with other semiconductors, met-
als, and insulators) that control and determine virtually
all the properties of solid-state devices has recently stimu-
lated extensive research efforts on the synthetic multilay-
ered structures. The progress in the semiconductor su-
perlattices has inspired investigations on metallic super-
lattiees. The growth and exploration of metallic super-
lattices is expected to reveal a wide range of modified
transport properties resulting from the chemical modula-
tion. For instance, superlattice modification of Fermi-
surface topology can be expected. Such expectation has

led to several attempts to grow metallic superlattices, cul-
minating into the successful preparation of Nb-Ta super-
lattices by Durbin et al. An ideal metallic superlattice
would have sharp interfaces between two constituents,
with long-range structural coherence maintained across
many layers of the material, as well as in the plane of the
layers. The ability to vary the layer thicknesses has made
feasible the study of dimensional crossover effects, of
thicknesses and proximity effects on superconducting
critical temperatures and energy gaps, and of tunneling
density of states.

Ever increasing interest in these superlattice systems
stems from the existence of entirely novel effects related
with the response of the heterointerfaces to the external
stimuli. External (electric and magnetic) fields can
change the properties of the heterointerfaces
significantly, and the consequences of such changes have
been systematically explored, particularly in these super-
lattice structures, in the recent years. Out of all the
external probes used to study the response of a system,
the magnetostatic field is relatively more interesting.
This is because the effect of the magnetic field is more
striking and is easily observed in experiments. The im-

portant point about the application of the magnetic field
is that although the general characteristics of the band
structure remain unaltered, the electron energy (in each
band) corresponding to the velocity transverse to the
magnetic field becomes quantized. It is this quantization
which leads to a host of interesting transport phenomena
(e.g., de Haas —van Alphen effect, Shubnikov —de Haas
effect, cyclotron resonance, etc.).

To the understanding of the electronic and optical
properties of superlattices, the knowledge of elementary
collective excitations in these systems is of fundamental
importance. The collective excitations in (semiconduc-
tor) superlattices have been investigated by several
research groups. In those studies essentially two different
situations have been envisaged: (i) "quantum limit"
(when the layer thicknesses are assumed to be much
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smaller than the electron mean free path and the material
layers cannot be characterized by macroscopic dielectric
functions), and (ii) "classical limit" (when the layer
thicknesses are assumed to be sufficiently large so that the
material layers are characterized by macroscopic dielec-
tric functions). The latter situation has been followed by
using either a hydrodynamical model or Maxwell's equa-
tions with proper electromagnetic boundary condi-
tions. ' The former situation is followed by a self-
consistent field with the random-phase approxima-
tion 20 —27 In the absence of any magnetic field, the ap-
proach in the latter situation has significant advantages
owing to its simplicity. This picture simplifies the
analysis and also retains the essential feature of the more
complicated treatments in the former situation. Also,
this model yields analytic results which are found to be
readily conclusive. '

The present work is concerned with the investigation
of the effect of an applied magnetic field (oriented parallel
to the superlattice axis) on the collective (bulk and sur-
face) excitations in the classical limit. Since we einploy a
theory which is not fundamentally different from the one
presented in Ref. 19, we will present only a brief outline
of the theory. In what follows, we will quote a number of
equations directly from Ref. 16 (hereinafter referred to as
I) and Ref. 19 (hereinafter referred to as II} and specify
them, respectively, as (I.n) and (Il.n), where n stands for
the equation number in the corresponding papers.

After a brief outline of the theory (Sec. II), we will ap-
ply it to a bimetallic superlattice and present the numeri-
cal examples, both with and without an applied magnetic
field (Sec. III). In Sec. IV we will present some analytic
diagnosis in the nonretardation limit to substantiate the
asymptotic limits attained by the bulk bands and some
surface modes. Finally, Sec. V is devoted to the conclud-
ing remarks.

II. THEORY: AN OUTLINE

In I we had derived the dispersion relations for bulk
and surface plasmon polaritons for a three-component
semiconductor heterostructure. The analytic results in
Eqs. (I.22) and (I.30), respectively, for the bulk and sur-
face (collective) excitations were used to obtain the
dispersion relations for a two-component heterostructure.
Subsequently, in II we investigated the effect of an ap-
plied magnetic field on the collective (both bulk and sur-
face} excitations in a two-component semiconductor su-
perlattice. As we have pointed out in I and II, the model
theories are applicable to any choice of material parame-
ters. Since we are interested in the present work to study
the bimetallic superlattices, the same general formalisms
for plasmons (in I) and magnetoplasmons (in II) are ap-
plied, just by replacing the material background dielec-
tric constant eL by unity; the validity of the latter case re-
quires essentially the identical field configuration.

We consider metallic superlattice structure as shown in
Fig. 1. The growth direction will be taken as the z axis,
which is termed as the superlattice axis. The host materi-
als, hereafter labeled as 3 and B, are the two different
metallic layers. The magnetic field is assumed to be
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FIG. 1. Schematics of a periodic heterostructure consisting
of two different types of metallic slab.

III. NUMERICAL RESULTS

Here we present some numerical studies of the disper-
sion relations for the collective excitations in semi-infinite
bimetallic superlattice structure. For this purpose, we
have taken the background dielectric constant eL
( —EL g =EL' )= 1.0. This implies that our numerical re-
sults are appropriate for the metallic superlattices. In all
the cases, we have performed the calculations in the situ-
ation where both material layers A and B are conductors
and are characterized by the frequency- and magnetic-
field-dependent dielectric functions in the local theory in-

parallel to the superlattice axis and perpendicular to the
direction of propagation. Since we are interested in the
nonradiative electromagnetic (polariton) modes, the elec-
tric fields are taken to be localized at each interface and
expressed just as in (II.S) and (II.6) in the respective re-
gions. The retardation is included, but collisional damp-
ing, and spatial dispersion are neglected. We use
Maxwell's equations and standard electromagnetic
boundary conditions to derive the exact dispersion rela-
tions for the collective magnetoplasma excitations in the
classical limit. Furthermore, since the (superlattice)
structure is periodic, its elementary excitations are deter-
mined in part by imposing Bloch's theorem.

We shall not attempt to repeat any mathematical ex-
pressions, from I and/or II. Therefore, it is noteworthy
to state that we are basically concerned with Eqs. (I.23)
and (I.31), respectively for the bulk and surface excita-
tions, with eL =1 in the case of zero magnetic field. [For
the sake of consistency in the formalism for the zero and
nonzero magnetic field cases, we would presumably re-
place the subscript D in the definition of n, in (I.29), by
C.] In the case of the nonzero magnetic field we are con-
cerned with (II.21) and (II.34), respectively, for the bulk
(in an infinite superlattice) and surface (in a truncated su-
perlat tice) excitations.
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corporating the retardation effect. We plot our numeri-
cal results in terms of the dimensionless frequency
/=co/co „, the dimensionless wave vector g=cq /co „,
and the dimensionless layer thicknesses 5; =d Npp,

'

i = A, B. We introduce a dielectric layer truncating the
periodic superlattice system in the region z ~0 with a
dielectric constant e& = 1.0. In order to provide the com-
parison, we have also presented the results in the absence
of an applied magnetic field in the respective situations.

Since the precedent for this paper comes from II, the
interested reader is referred to that work for the details of
the classification of the modes propagating in the super-
lattice system in the presence of a transverse magneto-
static field. As stated above, we are interested in the col-
lective magnetoplasma excitations localized at and decay-
ing exponentially away from the interfaces. As such, the
SP (surface-polariton) and the GC (generalized-complex)
modes are of particular interest than the bulk and PS
(pseudosurface) modes. Remember that this designation
of the propagation modes as bulk, SP, GC, etc. , requires
essentially the identical nature of the decay constants a;+
in the two material layers (see II). This is, however, not
always the situation encountered in the frequency (co)
wave vector (q) space, even though the modes are the
bonafide ones. Interestingly, this happens when the de-
cay constants a~+ are real and a&+ are complex conju-
gates of each other (with Reas+ » Imas+), or vice versa.
We designate these modes here as the hybrid surface-
polariton —generalized-complex (HSPGC) modes. Their
occurrence is thus possible only in a superlattice struc-
ture whose unit cell consists of two different conducting
layers.

We have carried out the computation with the
choice of the following material parameters: E'g

(= „eL=e L)s=1.0; e =cl 0; cops =2..0co~q', co, ( =co,g
=~,s)=0.5' „,0.9' „;5„=1.0; 5+=0.5, 1.02.0. This
implies that we are working with a metallic superlattice
where the two constituent layers contain different carrier
concentrations, but almost the same electron effective
mass. We study the dispersion of the magnetoplasma ex-
citations [(II.21) and (11.34)] as a function of the magni-
tude of magnetic field and the relative thicknesses of the
layers.

Although the mathematical complexity prevents us
from doing the exact analytical diagnosis consistent with
the numerical results, we will later discuss some approxi-
mate analysis in the nonretardation limit (c~ 00 ) to find
the consistency with the asymptotic limits attained by the
bulk bands and certain surface modes, both in the ab-
sence and in the presence of an applied magnetic field
(13O).

A. 5 ~ = I..O and 5g ——0.5

In Figs. 2 —4 are shown the dispersion curves for
Bo=0, ~, =0.scop„, and co, =0.9cop~, respectively. In the
case of the zero magnetic field, the lowest bona fide mode
is the pure SP mode originating from the zero of the co-q
plane, rising toward the right of the light line (in vacu-
um), and approaching the asymptotic limit at higher
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FIG. 2. Dispersion curves for the surface polaritons of the

truncated superlattice and the allowed bulk bands (cross-
hatched regions) of the infinite superlattice in the absence of a
magnetic field, with 5& =0.55&. The parameters used are listed
in the figure; a&=0 is the light line. The letters BA and SA
refer to the bulk and surface asymptotic limits.

wave vectors. There are two bulk bands above cop„,
separated by a gap. In the gap lies an another SP mode
which remains inside the gap but does not merge into any
of the two bulk bands. This SP mode (in the gap) and the
two bulk bands become asymptotic at higher wave vec-
tors. Note that there is no bulk band existing below cop&,
and the inner branches of the two bulk bands seem to be
touching each other at a wave vector a little left of the
light line. The existence of touching points of the bulk
bands has been noted previously by some workers. ' '

In the case of the nonzero magnetic field, m, =0.5' „
(Fig. 3), there is nothing interesting in the pseudosurface
wave region below the cyclotron frequency. The lowest
bona fide SP mode starts almost at co„rises toward the
right of the light line and reaches an asymptotic limit at
g=coH„(=coH„/&2, coH„being the hybrid plasmon-
cyclotron frequency with respect to layer A). Attention
is drawn to the parabolic nature of this SP mode at lower
wave vectors. This reveals that our general dispersion re-
lation (II.34), at low wave vectors, approximates to the
expression for the helicon-like mode in the metallic su-
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FIG. 4. Dispersion curves for the surface polaritons of the
truncated superlattice and the allowed bulk bands (cross-

hatched regions) of the infinite superlattice in the presence of a
magnetic field, with co, =0.9'» and 5~ =0.55„.

FIG. 3. Dispersion curves for the surface polaritons of the
truncated superlattice and the allowed bulk bands (cross-
hatched regions) of the infinite superlattice in the presence of a
magnetic field, with co, =0.5'~& and 5& =0.55„. The letters
HA *, HA, and HB refer, respectively, to the asymptotic limits

AH& /&2, AH&, and coH&. The letters BA stand for the asymp-

totic limit approached by the bulk bands.

perlattice. The second surface mode which starts at
/=1.033 is not a bona fide one until it reaches /=1.52
where it attains a pure SP character and splits into two
branches, shown by a fork in the figure. The lower
branch of this fork becomes asymptotic to coH&. The
lower edge of the lower bulk band, the upper edge of the
upper bulk band, and their inner branches happen to
start at frequencies little higher than their BO=O counter-
parts. There does not occur any SP mode in the gap be-
tween the two bulk bands. A third surface mode starts
above co z at (=2.016 but becomes a bonafide surface
mode only after (=2.93 where it splits into two, as
shown by a fork. The lower branch of this fork becomes
asymptotic to coH& (the hybrid plasmon-cyclotron fre-

quency with respect to layer 8). This fork is character-
ized by real a&+ and complex conjugate a„+ (with

Rea„+» Ima„+), and hence belongs to the HSPGC
modes (dashed curves).

The dispersion relations at a higher magnetic fiel
co, =0.9~~„are plotted in Fig. 4. The lowest surface
mode is a pure SP mode which starts at co„rises upward

and becomes asymptotic to coH&. It is observed that in-
crearnent in the magnetic field results into flattening the
parabolic part of the SP mode near u, . The second sur-
face mode starts at /= 1.12 from the light line and attains
a pure SP character at (=1.75 and splits into two
branches shown by a fork in the figure. The lower mode
in this fork approaches the asymptotic limit defined by
cu=mH~ and the upper branch increases almost linearly
and intersects the two bulk bands. We find that, in gen-
eral, the magnitude of the wave vector corresponding to
the intersection points is inversely proportional to the
magnetic-field strength (see, for example, Figs. 3 and 4).
It is noted that the gap between the two bulk bands de-
creases with the increasing magnetic field. The asymptot-
ic limits attained by the bulk bands at higher vectors,
designated as 8A, are in agreement with our analysis (see
following section). The third surface mode starts above

at )=2.051, becomes a bonafide HSPGC mode
(shown by a dashed curve) as it reaches /=2. 99, and
splits into two, as shown by a fork. Again the lower
mode of this fork approaches asymptotic limit co=coH~.
A direct inspection of the results in Figs. 3 and 4 reveals
that, at a given wave vector, the energy of the rnagneto-
plasma (bulk and surface) excitations is directly propor-
tional to the intensity of the applied magnetic field.

In general, the effect of an applied magnetic field re-
sults in the Zeernan-like splitting of the two surface
modes at large wave vectors. The presence of a magnetic
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field does not permit the propagation of a surface mode
in the gap between the two bulk bands. Unlike the semi-
conductor superlattices, the bulk bands here do not ex-
perience any Zeeman-like splitting. (See Sec. IV.)

B. 5~ =5~ ——1.0

Here we study the case of equal layer thicknesses. The
numerical results are plotted in Figs. 5—7, respectively,
for BO=O, cu, =0.5'~~, and co, =0.9'». In the case of
the zero magnetic field, we find that the gap between the
two bulk bands decreases with increasing wave vector.
The surface mode propagating in the gap loses its
significance after (=4.0 where it merges with the upper
edge of the lower bulk band. It is worth mentioning that
occurrence of this mode is a consequence of the inclusion
of the retardation effect. In the nonretardation limit this
SP mode will not exist at all, because then there will be
no gap between the bulk bands. The lower SP mode ex-
isting below the lower bulk band remains almost intact,
but the frequency of the upper SP mode (in the gap) de-
creases with increasing thickness of the denser medium.
It is noted that the asymptotic limits (of bulk bands as
well as of SP modes) are independent of the superlattice
period.

In the presence of an applied magnetic field (Figs. 6
and 7), the basic difference caused by changing the layer
thickness of the denser medium happens to occur in the
propagation characteristics of the bulk bands. The
touching points regarding the inner edges of the bulk
bands near the light line disappear altogether. The varia-
tion of the gap width resembles more with the zero field
case than with the nonzero one. We point out that apart
from the small differences in the frequencies of the sur-
face modes, the rest of the discussion related to Figs. 3
and 4 regarding their behavior in the co-q space is still
valid.

C. 5& ——1.0 and 5& ——2.0

In this case we examine the situation where the thick-
ness of the denser medium is greater than that of the rar-
er one. The results are illustrated in Figs. 8-10, for
Bp=0 ct) =0.5')&g and co, =0.9'~z, respectively. In
the case of the zero magnetic field, we find that the
widths of the bulk bands decrease as compared to Fig. 5
and the gap between them increases. The SP mode exist-
ing in the gap starts at a relatively smaller frequency and
retains its identity up to very large wave vectors as com-
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FIG. 6. Dispersion curves for the surface polaritons of the
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truncated superlattice and the allowed bulk bands (cross-
hatched regions) of the infinite superlattice in the absence of a
magnetic field, 5& =2.05 „.

pared to the previous case, depicted in Fig. 5. The lower
SP mode does not reveal any difference in its behavior
from the corresponding modes in Figs. 2 and 5.

We now turn to examine the situation for nonzero
magnetic field. It is observed that at co, =0.5' „(Fig.9),
the bulk bands start and reach the asymptotic limit in al-
most the same fashion, as in the absence of a magnetic
field. A special feature of the upper bulk band in Figs.
2-9, irrespective of the presence or absence of Bo, is the
negative group velocity of its upper edge at the lower
wave vectors. This trend of the upper edge of the upper
bulk band, however, seems to be changed at the higher
magnetic field (Fig. 10) where it shows, like other bulk-
band edges, a positive group velocity right from the start-
ing point. It is evident that while bulk bands are consid-
erably sensitive to the change in the relative thickness of
the layers, the surface modes do not exhibit any apprecia-
ble dependence on it. The latter (former), however, ex-
perience a strong (weak) effect of the magnetic-field
strength. This remark is valid in all the cases we have
studied in the present work.

Now it seems worthwhile to recall that we started with
the general formalism for the collective (bulk and surface)
excitations in truncated superlattices whose constituents
were assumed to have a background dielectric constant
er (see II). In II we have presented exact calculations for
a semiconductor superlattice and here for a metallic su-
perlattice. The only difference we took into account in

the theory is the value of constant ei. But we find two
important differences in the numerical results in the two
cases: (i) the typically small effect of magnetic field on
the collective (bulk) excitations, and (ii) an extra SP mode
starting at co, and approaching an asymptotic limit AH&,
in the metallic superlattices. We intend to explain these
points in the following sections.

IV. ASVMPTOTIC LIMITS

In this section we analyze the exact dispersion rela-
tions, both in the absence and in the presence of an ap-
plied magnetic field, in the nonretardation (NR) limit
(c~ ~ ) in order to understand the asymptotic limits at-
tained by the bulk bands and by certain surface excita-
tion s.

A. Zero magnetic Beld

First we recall (I.23) for the collective (bulk) excitations
in the absence of an applied magnetic field. Subjecting
(I.23) to the NR limit, we obtain, with q ~ ao,

6'g +6g =0,

COLLECTIVE EXCITATIONS OF MAGNETOPLASMA IN. . .
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where E, [=EL(1—co~;/co ] is the frequency-dependent
dielectric function in the local theory for the ith layer.
Equation (1) can be rewritten in the form

' 1/2

1+ (2)
0pa

Substituting the parameters used in the present calcula-
tions leads us to obtain (=1.581 14. This is the asymp-
totic limit attained by the bulk bands in Figs. 2, 5, and 8.

Similarly, Eq. (I.31), which is the dispersion relation
for collective (surface) excitations in the absence of an ap-
plied magnetic field, in the NR limit, assumes the form

1/2

1+ '
EL

(4)

1 pa
1/2

1 ~p~
(5)

Substituting ei =1, just as in the present calculations for
metallic superlattices, yields /=0. 707 11. Note that this
is the asymptotic limit attained by the lower SP mode
starting from the origin in the r0 qsp-ace (in Figs. 2, 5,
and 8).

Finally, equating the third factor to zero yields

( E g +e B )( Eg +Ec)(E'B ec ) —0 ~ (3)

where ez =1.0 is the dielectric constant of the insulating
medium truncating the superlattice system at z ~ 0.
Equating the first factor to zero results in Eq. (2). This
implies that one of the surface modes attains the same
asymptotic limit as approached by the bulk bands. This
is clearly the SP mode propagating inside the gap (see
Figs. 2, 5, and 8).

Equating the second factor to zero gives

It is obvious from this equation that this is not an ap-
propriate asymptotic limit to be realized, particularly in
the metallic superlattices, since EL =1 implies that g= 00.

B. Nonzero magnetic Seld

In the presence of an applied magnetic field we start
with (II.21), for the collective (bulk) magnetoplasma exci-
tations. Imposing the NR limit, with q„~00, reduces
this to

(&A E~ )1/2+(&B EB )1/2 0 (6)
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FIG. 9. Dispersion curves for the surface polaritons of the
truncated superlattice and the allowed bulk bands (cross-
hatched regions) of the infinite superlattice in the presence of a
magnetic field, with co, =0.5'» and 5& =2.05„.

FIG. 10. Dispersion curves for the surface polaritons of the
truncated superlattice and the allowed bulk bands (cross-
hatched regions) of the infinite superlattice in the presence of a
magnetic field, with co, =0.9co~z and 5~ =2.05„.
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Sec. II.A in Ref. 19) in Eq. (6) yields, after a few algebraic
steps,

Consequently, one obtains from Eqs. (10a) and (10b) that

' 1/2

2 mpA MiA
and

(u, +u2)=0 (15)

Note that in the special case BO=O, Eq. (7) reduces to Eq.
(2}. Substituting the material parameters as used in the
present computation results in

1.620 18 for cv, /rv „=0.5,
1.70441 for co, /copA =0.9 .

We see, from the figures depicting the dispersion curves
for the nonzero magnetic field, that these are the asymp-
totic limits approached by the bulk bands at large wave
vectors for the respective values of the magnetic field.

The most difficult task is the analytical diagnosis of the
dispersion relation (II.34) for the collective (surface) mag-
netoplasma excitations. In order to understand the
asymptotic limits attained by certain surface excitations
in the presence of an applied magnetic, we prefer to start
with (II.26)—(II.31) instead of with (II.34). The reason is
just not to ignore the simplicity in handling the situation.
Equations (II.26}—(II.31) in the NR limit can be written
as

(v, +v2)=0 .

Equation (15), after some algebraic steps, reduces to

~+Pi+Q, tanh( A+ ) P, e—e +sech( A+ ) =0,

(16)

(17)

—x ~+
Pi —Qitanh( A+ ) Pie "e—+sech( A+ )=() . (18)

In the case that qp ~~, Eqs. (17) and (18), respectively,
assume the form

and

P, +Q, =O (19)

Pi —Qi=o.
These two results are compatible only if (see II)

I'
)
= A ) 83O.'~

(20)

where A+ (in the NR limit) =(e„"„/e,", )'/ q d „.The rest
of the quantities in Eq. (17) are as defined in II. Similar-
ly, Eq. (16) reduces to the form

y &E& „+y2E2„+y4E4„=0,
z, E,„+z2E2A =0,
u )E) A + u2E2A =0,
U)EiA+V2E2A =0 )

w &E&„+w2E2„+ W3E3„—o,
x )E)„+x2E2A +x4E4„=0,

(9a)

(9b)
and

(10a)

(lob)

(10c)

=(e A eA )( eB eB )( eB )1/2 —
Q

Qi = A3BiaA

(eB eB )(eA eA )(eA )i/2 Q

(21)

(22)

(lod)
We know that the vanishing of the first two factors in
these equations is ruled out for well-known reasons.
Therefore, the result is

(e»» ezz )(e»» )' (E1A E2A } (12)

Here either the 6rst, second, or third factor is zero. The
possibility of the vanishing of the first factor is ruled out,
because BOAO. The second factor equated to zero yields

(13)

where u&, . . . , u4, U„. . . , U4, w, , . . . , w4, and
x&, . . . , x4 refer to the coefficients of the respective elec-
tric field components in Eqs. (II.28)—(II.31). In writing
Eqs. (9) and (10), we have used the fact that

y3 Z3 Z4 u3 u4 U3 U4 W4 x3 0

in the NR limit. Moreover, it is not difficult to see that
z, = —z2 and Q2=0 in the NR limit (see II). Clearly
then, we obtain from Eq. (9b) that

zi(E, „E2„)=0. —

This is equivalent to

N —NHg

from Eq. (21) and

from Eq. (22). Thus, we have established that coHA and
coH& are the asymptotic limits attained by the lower
modes of the two "forks" appearing in the dispersion
curves of the collective magnetoplasma excitations in the
metallic superlattices.

The lowest SP mode in the present situation
(co B ) co „)happens to approach an asymptotic limit at

' 1/2
M

i/2 '+ (23)
COp A

In the BO=O case, this reduces to Eq. (4). In the metallic
superlattices (eL =1),Eq. (23) becomes

Now, equating the third factor in Eq. (12) to zero leaves
us with

1
~HA +HA~2 (24)

EiA=E2A . (14) In the semiconductor superlattices where eL can be ap-
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proximated to much greater than unity (as, e.g., in II),
Eq. (23) is simply

(25)

E —1 ~co-
zz (28)

That is to say that the lowest SP mode in the same situa-
tion (i.e., co~s )co~„) in the semiconductor superlattices is
virtually a doubly degenerate surface mode. This is an
explanation to the point (ii) raised in Sec. III C.

C. General comments

(26)

or, more explicitly,

2 —2+ 1 2
C Jp

1—
(27}

The result is quite reasonable because eL & 1. In the met-
als, with eL = 1, one obtains an absurd answer, as co~~ .

Similarly, in the case that the relation

It should be pointed out that when cop&&Npp the
lowest SP mode propagates in the window co, &a&co ~
and approaches an asymptotic limit coH~. In the case
that m~z &co~~, the situation is rather different. The
aforesaid lowest mode (when co~& ) co z ) will then (when
~ z (co~„) appear above the upper bulk band and never
approach an asymptotic limit. This leads us to believe
that the location of the bonafide surface mode is not in-
dependent of the relative carrier concentration of the
constituent layers.

It also seems worthwhile to discuss the location of the
surface excitations in the semiconductor and metallic su-
perlattices in the absence of an applied magnetic field.
This is now a well-established fact that if eL lac ) 1 ( ( 1),
the second SP mode, apart from the one propagating in
the gap between two bulk bands, will appear above
(below) the upper (lower) bulk band. In this connection it
is noteworthy that the above-mentioned statement is, by
all means, justified if and only if ~~& & co~„. The situation
takes a different turn if ~pp & Npp In the latter case the
second SP mode appears below the lower bulk band, even
though eL /e~ & 1. This is the criterion for the existence
of the SP mode outside the bulk bands in the semiconduc-
tor superlattices. This mode in the metallic superlattices
always appears below the lower bulk band —irrespective
of whether co~p &Npp or Npp &Npp This again embol-
dens our confidence in the statement we made in the last
paragraph.

As mentioned in the previous section, the numerical re-
sults in the metallic superlattices exhibit a considerable
difference from their counterparts in the semiconductor
superlattices, even though we use exactly the same
theory; apart from the value assigned to the background
dielectric constant. This is not surprising for the follow-
ing basic reasons. Suppose in a semiconductor, in the
presence of an applied magnetic field, we come across the
situation when

is satisfied in the co-q plane in the semiconducting materi-
al, one is always safe to find an appropriate frequency.
But, if the relation is applied to the metals, one will face
the same situation as predicted from Eq. (5).

Finally, the most fundamental aspect regarding the
response of the charge carriers in the metallic and semi-
conducting superlattices in the magnetic fields is their
effective masses. The effective mass of the conduction
electrons in metals is relatively large, i.e., almost on the
order of the free-electron mass mo. In semiconductors,
on the other hand, the effective mass of the conduction
electrons is quite small, on the order of 0.02mo (in InSb).
This is the reason that the effect of the moderate magnet-
ic fields in semiconductors is larger than that in metals.

V. CONCLUDING REMARKS

In conclusion, we have provided a detailed investiga-
tion of the collective (bulk and surface) excitations in the
metalli. c superlattices subjected to a transverse magnetic
field. We have used a general theory based on Maxwell's
equations with proper electromagnetic boundary condi-
tions in the local approximation. Allowing sufficiently
large thicknesses of the layers justifies the use of macro-
scopic dielectric functions and the neglect of the
quantum-size effects. The analysis (in Sec. IV) clarifies
various aspects pertaining to the difference in the numeri-
cal results obtained in the semiconducting and metallic
superlattices. The approximate diagnosis in the NR limit
has proved to be very useful in understanding the asymp-
totic limits attained by the bulk bands and certain surface
excitations, both in the presence and in the absence of an
applied magnetic field.

The collisional damping and the spatial dispersion have
been neglected, but can be incorporated by allowing the
imaginary parts in the dielectric tensor elements and by
using the hydrodynamical model, respectively. It is
worthwhile to redo the numerical computation by treat-
ing the frequency or wave vector as the complex vari-
ables. This will help to investigate the lifetime and the
propagation length of the collective excitations. One can
also calculate the inverse penetration depth (A, ) from Eqs.
(II.28) —(II.31), in order to be familiar with the limitation
of some experimental techniques, e.g. , low-energy elec-
tron spectroscopy which may not be useful if A. is very
small. Inelastic light (or Raman} scattering can be used
to observe the effect of an applied magnetic field on the
collective surface excitations.

To date, no metallic multilayer or superlattice system
has been found which has the same degree of structural
and chemical perfection as their semiconductor counter-
part. The reason is the following. In semiconductors the
directional nature of the covalent bond aids in the forma-
tion of high-quality crystals. In metals, on the other
hand, the bonding is much less directional, making the
incorporation of defects easier. At the same time, while
highly perfect structures are required for semiconductors



41 COLLECTIVE EXCITATIONS OF MAGNETOPLASMA IN. . . 5611

to exhibit useful electronic properties, metals can tolerate
greater levels of structural and chemical imperfections
and still exhibit phenomena of interest. The study of
electronic and optical properties of metallic superlattices
is not yet as developed as the study of the physical prop-
erties of semiconductor superlattices. Much progress has
been made in just the past few years, but metallic systems
do not yet exhibit the same degree of long-range structur-
al coherence across the layers.

In view of the aforesaid, it is worthwhile to shed some
light on the physical significance of the present results
and their implications. We emphasize on the magneto-
plasma polaritons of semi-infinite superlattices, i.e., the
superlattices which exhibit a free surface. In these sys-
tems, the accumulation of interfaces gives rise to peculiar
electromagnetic (EM) eigenmodes, distributed as continu-
ous frequency bands. The truncation of the superlattice
at the surface modifies the density of these modes, as
compared to the mode density of an infinite, truly period-
ic, superlattice. In particular, one notices the appearance
of isolated branches analogous to the surface polaritons
of semi-infinite homogeneous materials. The present re-
sults will be helpful in the investigation of the local (or,
total) density of these polaritons which provides the com-
plete information on allowed EM excitations, as a func-
tion of frequency and/or wave vector, at any depth in the
superlattice. ' Consequently, we can discuss the infrared
optical experiments performed on thick layered superlat-
tices. One of the exotic properties of the metallic super-
lattices is the correlation of the structural and electronic
transport properties. Since the elementary collective
excitations are fundamental to the knowledge of electron-
ic properties, the present results can help us give a deeper
insight of the effect of an applied magnetic field on such

correlation. Finally, the collective surface excitations are
currently of greater interest because these are potentially
useful modes for the surface wave devices.

The superlattice activities have been extended recently
from semiconductors to pure metals and various other
combinations with different materials, e.g., semi-
conductor-metal, semiconductor-semimetal, semiconduc-
tor-insulator, and metal-insulator superlattice structures.
The motivation behind the growth of such structures is
the expectation of getting detailed information on the
various interface properties which influence the band
offsets in these systems. Out of the aforesaid com-
binations of different materials, the realization of
semiconductor-metal structures is the most tedious task,
if not impossible. This is mainly because the metal has to
be deposited at or near room temperature in order to
avoid reaction with the underlying material, whereas the
semiconductor has to be deposited at elevated tempera-
tures for well-ordered epitaxial growth. A realistic
compromise between the two widely differing tempera-
ture requirements is, at present, not possible. This might,
nevertheless, also be a promising area for future research.
However, realizing the importance of an application of
magnetostatic fields, the semiconductor-insulator and
metal-insulator superlat tice structures, wherein no
scientific efforts are restricted due to, for example, inter-
face reactivity, are worth investigating in the framework
of the model theory developed in II.
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