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Harmonic generations in an optical Fibonacci superlattice
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An optical Fibonacci superlattice has been proposed to produce the second-harmonic generation
and the third-harmonic generation, which is the sum frequency of the second-harmonic and the fun-

damental frequency in the same material. Because of the quasiperiodicity of the optical Fibonacci
superlattice, the phase mismatches of the optical parametric processes caused by the frequency

dispersion of the refractive index can be compensated with the reciprocal vectors which the optical
Fibonacci superlattice provides. A theory which analyzes the second-harmonic generation and the
third-harmonic generation processes in the material and the calculations applied to the optical Fi-
bonacci superlattice made from a single LiNb03 crystal is presented in detail. The calculations
show that the efficiencies of the second-harmonic generation and the third-harmonic generation are

comparable to, or even larger than, those obtained with commonly used phase-matching methods.

I. INTRODUCTION

In conventional methods, only when the phase-
matching condition is satisfied does an optical parametric
interaction proceed efficiently. Normally, phase match-
ing may be realized in nonlinear optical crystals with
birefringence. This method can only be applied to some
of the nonlinear processes in uniaxial or biaxial crystals.
Another method, quasi-phase-matching, ' can be applied
to both the nonbirefringent crystals and some
birefringent crystals with optical coefficients that are
phase unmatchable. The key to quasi-phase-matching
is to construct a one-dimensional periodic structure with
the phase sign of the nonlinear polarization shifted from
one plate to the consecutive plate by m radians. This
one-dimensional periodic structure can provide a series of
reciprocal vectors, each of which is an integer times a
primitive vector. It is the reciprocal vectors which make
the optical parametric processes in the material phase
matched.

Compared with the periodic structure, a one-
dimensional quasiperiodic structure has a low space-
group symmetry. But its symmetry is higher than that of
an aperiodic structure. ' Its reciprocal vectors are
governed by two integers rather than by one integer as in
the case of the periodic one. By using this kind of materi-
al, some coupled optical parametric processes may be
realized with efficient conversion.

Applying our theory to, as an example, a single
LiNb03 crystal with quasiperiodic laminar ferroelectric-
domain structures or simply termed an optical Fibonacci
superlattice (OFS), where the nonlinear coefficient d33 is
to be used, we find the enhancement of the second-
harmonic generation (SHG) in the OFS is larger than
that of an aperiodic structure, but less than that of the

periodic one. We also find that the third-harmonic gen-
eration (THG), which is coupled with the SHG, can be
obtained because the reciprocal vectors of such a material
have more chosen values than those of the periodic one
and its intensity will be large enough to be used practical-
ly and efficiently if the parameters of the building blocks
are properly designed.

II. THEORETICAL ANALYSIS

Hereafter we shall take LiNb03 crystals with laminar
ferroelectric-domain structures as an example. In such a
material, the directions of polarization vectors in succes-
sive domains are opposite, as are the signs of nonlinear
optical coefficients. This structure forms a one-
dimensional superlattice for the nonlinear optical effect.
On this basis, an optical Fibonacci superlattice can be
constructed. It consists of two fundamental blocks of A

and B arranged according to the production rule

S, =S, , iS~ 2, for j ~ 3 with Si = A and S2 = AB, where

i
stands for concatenation. Both blocks are composed of

one positive and one negative ferroelectric domain as
shown in Fig. 1(a), where 1„+ and la+ represent the
thicknesses of the positive domains in blocks A and B,
and l„and lz represent the thicknesses of the negative
ones. Let

l, 5, and t, are adjustable structure parameters. The se-
quence of the blocks, AB A AB AB A -, produces an
OFS, see Fig. 1(b).
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«(A ———l ~~ «I. s ——1 sa
axis (see Fig. 2). Here, three optical fields must be taken
into account, one for co, =co, one for co2=2co, and one for
603 3'. The three optical fields, described in terms of
their electric field components, are given by

(a}

E;(x,t)=E, (x)exp[i(co, t —k;x)], i =1,2, 3

which satisfy the wave equation

I
V E= (eE+4npNL) .

c dt

(3)
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The presence of these electric fields can give rise to

nonlinear polarizations at frequencies m2 and m3, etc.,
which are

(b)

II ~I II II
,

II

(C)

Pz„(x,t) =2d (x)E i (x)exp[i (2', t —2k, x)],
P3„(x,t) =4d(x)Ei(x)Ez(x)

Xexp [i [(coi+coz)t —(ki+kz)x]),
where

d33 if x is in the positive domains

—dz3 if x is in the negative domains .

(5)

ll II if ll ll
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FIG. 1. Optical superlattice of LiNb03 crystals (the arrows
indicate the directions of the spontaneous polarization). (a) The
two blocks of an OFS, each composed of one positive and one
negative ferroelectric domain. (b) Schematic diagram of an
OFS. (c) Schematic diagram of a POS. (d) Schematic diagram
of ah APOS.

Before going into a detailed analysis, we must make
some assumptions. We assume that the variation of the
field amplitudes with x is small enough so that
k, dE, /dx »d E;/dx and that the amount of power
lost from the input beam

(cubi

) is negligible, i.e.,
dE, (x)/dx =0. We also assume that E, »Ez, Ez; this
is the so-called small-signal approximation.

Under these conditions, using Eqs. (3)—(5) and carrying
out the indicated differentiation, we can get"

dE, (x)/dx =0, (6a)

With the OFS, a series of reciprocal vectors can be pro-
vided to compensate the phase mismatches of the optical
parametric processes in the material. Unlike the periodic
optical superlattice (POS) [Fig. 1 (c)] which has recipro-
cal vectors derived from an integer times a primitive vec-
tor, an OFS with an infinite number of blocks provides
reciprocal vectors governed by two integers, which has
the form

87TN2
2

dEz(x)/dx = i —
z

d (x)E i (x)
~~c2

Xexp[i(k' "'—2k'"')x],

167Tcog
dE3(x)/dx = i d (x—)E,(x)Ez(x)

(6b)

k „=2m.(rn + n r)/D, (2)
Xexp[i(k' ~' —k' ~' —k'~')x] (6c)

where D =rl„+ltt, with the golden ratio r=(1+&5)/2;
1„,l~ are block thicknesses as shown in Fig. 1(a). The re-
ciprocal vectors of the OFS can be adjusted by I, 5, and t.
Because of this property, some coupled optical paramet-
ric processes will be likely to occur in the OFS with
efBcient conversion.

Consider a case in which a single laser beam with
co&=co is incident from the left onto the surface of an
OFS and, through the nonlinear optical effect, the SHG
and the THG exist simultaneously in the OFS. In order
to make use of the largest nonlinear coeScient d33 which
cannot be used in an ordinary phase-matching regime,
let the interfaces of each domain be parallel to the y-z
plane, the optical propagation direction be along the x
axis, and the directions of electric fields be along the z

In Eqs. (6), only the largest terms have been kept.
By integrating Eqs. (6), the electric fields after passing

E.
II LLLLLLL

L ABA ABA---
Blocks

FIG. 2. The polarization orientation of electric fields with
respect to the superlattice.
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through the OFS can be represented as

E, (x~)—E, ,

N

E~(x~)= g E2exp(i bk x;,),
. 144am

3( ~)= —
&

3 2 E, d(x)E2(x')
k c o

Xexp(i bk'x')dx',

where

(7a)

(7b)

(7c)

5000-

M
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Ak =k' "'—2k'"',
Ak'=k""' —k' ~' —k'~'

7

0.25K) =(32m' d33/k' 'c bk)E2

E2=0.2M~[1 —2exp(i bk l)+exp(i bk L)] .

When L =l„=i„++I„,E2=E2", which suits block A,
and when I =lz =lz++lz, E2 =E2, which suits block B.
In deriving Eq. (7), the boundary conditions have been
used, which are E& (0)=E&, E2(0)=0, E3(0)=0.

These equations constitute the basis of our numerical
calculations and discussions of this paper. We will dis-
cuss them in detail in the following section.

III. NUMERICAL CALCULATIONS
AND DISCUSSIONS

We have performed numerical computations for both
SHG and THG with the pump beam at a wavelength
1.318 pm of a neodymium-doped yttrium aluminum gar-
net (Nd:YAG) laser. For LiNb03 crystals, under room

temperature, the refractive indices, according to Hobden
and Warner's equation, ' are

n, =2.2215, n, =2. 1436 at A. =1.318 pm,

n, =2.2839, n, =2. 1953 at A. =0.659 pm,

n, =2.3913, n, =2.2882 at A, =0.439 pm .

A. Second-harmonic generation

SHG is the result of two intense pump beams mixing.
Under the condition of the small-signal approximation,
the second-harmonic intensity depends completely on the
structures of the superlattice.

Figure 3 shows the relationship between the second-
harmonic intensity and the block nubmer with
l =l,' "'=m/Ak, t =~, and 5 taking various values. Note
that when 5 =0, the enhancement of the second-
harmonic intensity is proportional to the square of the
block number as curve a of Fig. 3 indicates. It is just the
result of a periodic one. For when 5=0, the OFS turns
back to a periodic optical superlattice (POS) (see Eq. (1)].
Curves b and c represent the enhancement of the second-
hamonic intensity with 5=0.15 and 0.30. The curve of
5=0.15 grows more slowly than the square dependence
curve a, but more rapidly than the curve of 5=0.30.

If the thicknesses of the domains do not have regulari-
ties like those of OFS and POS, but are radomly distri-

FIG. 3. The dependence of the second-harmonic intensity on
the block number with 1 =6.37 pm in different cases. a, 5=0,
i.e., in a POS; b, 5 =0.15, i.e., in an OFS; c, 5=0.30, i.e., in an

OFS; d, in an APOS.

buted around the coherent length as illustrated in Fig.
1(d), i.e., an aperiodic optical superlattice (APOS), the
second-harmonic intensity will be linearly dependent on
the number of blocks (see Fig. 3, curve d).

Compared with those of POS and APOS, the enhance-
ment of the second-harmonic intensity of the OFS with

an arbitrary value of 5 can be represented as

I, (N)~N (8)

with 1(a&2.
We know that the symmetry of the POS is the highest

of the three, and the next highest is the OFS. The sym-

metry of the APOS is the lowest. From our discussion,
the enhancement of the second-harmonic intensity is
clearly related to the symmetry of the superlattice in
which the parametric process takes place.

B. Third-harmonic generation

The process of THG discussed here is a coupled para-
metric process; that is, two parametric processes, the
SHG process and the frequency up-conversion process
(FUP), which mixes the fundamental frequency with the
second harmonic, are coupled in this material.

Taking I =l,' '=n/Ak and 1=5.98 pm, we have cal-
culated the dependence of the third-harmonic intensity
on the block number, which is shown in Fig. 4. The two
curves differ from each other in nature completely; one
fluctuates drastically while the other increases steadily
with the block number. The explanation is as follows.

As discussed above, when I =I,' '=6.37 pm and 5=0,
the second harmonic is quasi-phase-matched. However,
when 5 is small and I =I,' "', the second-harmonic inten-

sity still increases with the block number and reaches a
degree to be used practically, as Fig. 3 shows. But then
the third harmonic is not quasi-phase-matched. In some
parts of the superlattice, the third harmonic is construc-
tive, and in other parts of the superlattice it is destruc-
tive. So its intensity fluctuates drastically as the block
number varies. Curve a of Fig. 4 shows this feature clear-
ly. But from Eq. (7) we can see that the THG depends
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The analysis used here can be carried over to the OFS
of other materials. The deal with OFS's which consist of
different materials with different refractive indices along
the optical propagation direction, the reflection by the in-
terfaces must be considered.

The OFS discussed here is a new solution to the phase
mismatch of the optical parametric processes. With this
material, not only might SHG and THG have applicable

enhancement, but also other parametric processes might
proceed with large enhancement.
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