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We consider the possibility that monoatomic terrace edges undergo a morphological instability
during epitaxial step-flow growth. A linear stability analysis predicts that such an instability can
occur, but only when the energy barriers to adatom attachment to steps differ for adatoms that ap-
proach a step from opposite directions. The instability is diffusional in origin and manifests itself as
a distinct waviness or meandering of the terrace edges as they propagate across the crystal. Our re-
sults, presented in the form of a morphological phase diagram, show that single-crystal growth on a
vicinal surface can pass from stable step flow to unstable step flow to two-dimensional island nu-
cleation and spreading as one increases the incident flux in a molecular-beam-epitaxy experiment at
elevated temperature. The instability we predict should be readily distinguishable from simple

thermal fluctuations.

I. INTRODUCTION

The ability to grow single-crystal materials with essen-
tially monolayer compositional control is one of the cen-
tral features of modern crystal-growth techniques such as
molecular-beam epitaxy (MBE) and organometallic
vapor-phase epitaxy (OMVPE).! Indeed, the fabrication
of one-dimensional superlattice structures has become
sufficiently commonplace that forefront research now
focuses on the creation of novel epitaxial architectures,
e.g., quantum wires, by judicious manipulation of the
deposition process.” These recent efforts have rekindled
interest in the fundamental physics of single-crystal
growth itself, with particular emphasis on layer growth.®
Most of this work is experimental, ranging from the care-
ful measurement and interpretation of anisotropic macro-
scopic growth rates* to atomic resolution scanning tun-
neling microscopy of thin films interrupted during
growth by a quench.’

For the case of MBE, analyses of reflection high-energy
electron diffraction (RHEED) data collected in situ have
proven particularly valuable.® Distinct oscillations in
RHEED intensities observed during growth commonly
are interpreted as indicative of layer growth by the nu-
cleation and spread of two-dimensional islands on a
(nominally) flat substrate.” The disappearance of such os-
cillations is ascribed either to the onset of multilayer sur-
face roughness (if one waits long enough) or to a transi-
tion to a different mode of growth (if one raises the sub-
strate temperature). The aforementioned kinetic
roughening effect is rather poorly understood at present.
On the other hand, so-called step flow has long been
recognized as the alternative to two-dimensional nu-
cleation as a layer-growth mechanism.>

Epitaxial growth on a vicinal surface can provide an
excellent example of step flow. Such a surface consists of
broad terraces (of mean width /) separated by monoatom-
ic steps (Fig. 1). In the simplest case, a flux F of atoms
impinges upon the solid, chemisorption occurs, and ada-
toms diffuse (D) across the terraces. Some atoms desorb
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back into the gas phase after a characteristic time 7 while
the remainder eventually reach a step. Arrhenius-type
rate constants k. and k_ characterize the probability
that newly arrived atoms actually bond to the upper and
lower terraces edges, respectively.® Such attachments ob-
viously advance the terrace edge perpendicular to itself so
that, in steady state, all steps flow across the surface.
Growth proceeds monolayer by monolayer.

High® and low’® -energy electron microscopy provide
direct visual evidence that this simple scenario is largely
correct. For semiconductors, step flow is essential to the
growth of tilted-layer superlattices'® and certain quantum
wire geometries,'! while for metals, physical arguments
directly based upon the step-flow picture have helped
determine superlattice growth parameters.'? In all these
cases, (relatively) high-temperature and low deposition
flux must be used in order to avoid two-dimensional nu-
cleation on the terraces.”!3

Step flow was treated quantitatively long ago in a semi-
nal paper by Burton, Cabrera, and Frank'* (BCF). Their
model addresses the physical situation outlined above
with the additional assumption that every terrace edge
acts as a perfect sink, i.e., the kinetics of step attachment

FIG. 1. Schematic view of a vicinal surface during step-flow
growth.
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are infinitely fast. This is equivalent to the assumption
that the adatom concentration in the immediate vicinity
of each step attains its equilibrium value. BCF con-
sidered two characteristic topologies in detail: a se-
quence of equidistant, straight, parallel steps, and loops
or spirals of steps characterized by a local radius of cur-
vature. The main result of their calculation was an ex-
pression for the velocity of step propagation and a corre-
sponding prediction for the macroscopic growth rate.

In the years since its introduction, the BCF model has
been generalized to take account of many factors thought
to be important in real layer growth. In particular, the
assumption of local equilibrium at the steps has been re-
laxed" with particular attention to the case (k ¥k _)
where the energy barriers encountered by adatoms that
approach a step from opposite directions are not equal.'®
A good discussion of this problem (and the BCF litera-
ture in general) can be found in a recent article by Ghez
and Iyer.'” Interestingly, the straight step and spiral step
topologies continue to dominate discussion and compar-
ison with experiment.'®!® This is true despite the fact
that microscopy often reveals that step patterns can be
quite wavy.»%2%2!1 In some cases their irregularity exhib-
its a strong dependence on crystallographic orienta-
tion,?»%

The origin of wavy or meandering steps usually has
been attributed to the nature of step sources, impurity
capture, surface defects, or thermal fluctuations. In fact,
T =0 is the so-called roughening temperature Ty for an
isolated step. This means that, for any T > Ty, an initial-
ly straight step of length L will wander until, in equilibri-
um, its end points become separated (in the direction per-
pendicular to the step) by a distance ~V'L .?*?° Within
the context of step flow, the standard BCF treatment ac-
tually applies only to a “rough’ step because it presumes
a linear kink density of sufficient magnitude that every
point along the step length is a potential adatom capture
site. Voronkov?® has examined this question in more de-
tail and concludes that a sort of “random-step waviness”
can result during growth. This is undoubtedly the origin
of some observations of step wandering, particularly
since, for a real vicinal surface, the magnitude of the step
roughening temperature depends on both the mean ter-
race width and the step crystallography.?’

Nonetheless, many experiments reveal step roughness
of a decidedly nonrandom nature.%?! The purpose of the
present work is to point out that certain wavy step pat-
terns may have a very different, intrinsic origin. In par-
ticular, we propose an explanation based upon the fact
that a growth front propagating at T > T under condi-
tions of diffusion control can exhibit an intrinsic morpho-
logical instability.?® In certain circumstances to be de-
tailed below, this instability can manifest itself during
step flow to yield terrace edge waviness of a very charac-
teristic form. In the extreme case, we obtain ‘‘surface
dendrites” (of monolayer height) that propagate across
the surface of an otherwise perfect single crystal.

Our discussion is organized as follows. In Sec. IT we
review the BCF model of step flow and provide a qualita-
tive argument which establishes the conditions under
which morphological stability can be lost. Section III is
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devoted to a linear stability analysis of the (suitably gen-
eralized) BCF equation which makes the qualitative argu-
ments mathematically precise. Our final results are
presented in the form of a morphological phase diagram.
Section IV contains a discussion of some of the limita-
tions of our analysis, the nature of morphological evolu-
tion in the nonlinear regime, and some qualitative guides
to the experimentalist. We summarize our results in Sec.
V.

II. QUALITATIVE DISCUSSION

Our analysis of morphological stability during step
flow employs the uniform vicinal surface topology of Fig.
1. Following Ref. 14, we consider only homoepitaxy and
a ballistic flux of atoms, i.e., the MBE case.?’ The as-
sumption that all steps propagate as atomically rough
growth fronts (T > Ty ) implies that each behaves as a
continuous line sink. Moreover, for simplicity, we
neglect step-step interactions and ignore any in-plane an-
isotropy of the surface diffusion constant, the kinetic at-
tachment coefficients and the step surface tension. Given
the foregoing, the steady-state concentration of atoms on
the terraces c (r) satisfies*°

stzc—§+F=o. (1)

The problem is completely specified by choice of the
boundary conditions for Eq. (1) and the requirement of
mass conservation at the step. The latter determines the
steady-state velocity of the step as

s

Ac

V=-""AVe|,—Vec|_}-A=V, +V_ . 2)

In this expression, Ac is the difference between the areal
density of atoms in the solid phase and the corresponding
quantity on the terrace immediately adjacent to a step, 7
is a unit normal out of the solid perpendicular to the
(monoatomic) step riser, and the plus and minus signs
refer, respectively, to points on the terrace displaced from
the step by an infinitesimal amount parallel or antiparal-
lel to 2. Notice that both bounding terraces contribute to
the flow of a given step.

A qualitative understanding of morphological stability
(and instability) during step flow can be gained by refer-
ence to Fig. 2. The top panel is a top view of Fig. 1 in the
vicinity of a terrace edge where the step “waviness” is
taken to be in the form of a small amplitude sinusoid.
Isoconcentration lines (dashed) have been drawn for the
BCF “perfect sink” boundary condition, i.e., the adatom
concentration takes its equilibrium value ¢, in the im-
mediate vicinity of the step. The numerical labeling
serves to indicate that the adatom concentration ¢ (r) in-
creases as one moves away from the step in either direc-
tion. Observe that the isoconcentration lines are
squeezed together (spread apart) in the immediate vicini-
ty of convex (concave) portions of the curved step.’!
Thus, relative to a perfectly straight step, the contribu-
tion to Eq. (2) from the lower terrace (¥ ) is enhanced at
point A and diminished at point B. Conversely, the con-
tribution to the net growth rate from the upper terrace
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FIG. 2. Top view of Fig. 1 in the vicinity of a perturbed ter-
race edge. Isoconcentration lines (dashed) qualitatively reflect
the solution to Eq. (1) for the case of equal adatom flux toward
the step from both bounding terraces (top panel) and for the
case when the supply of atoms from the upper terrace is greatly
reduced (bottom panel). Note that the rate of advance of
different parts of the step is the same in the equal flux case but
differs in the unequal flux case.

(V_) is diminished at point A4 and enhanced at point B.
Overall, there is no change in the velocity anywhere. The
distorted step propagates uniformly without change of
shape.

Suppose however, that, by some mechanism, the flux of
adatoms that attach to the step from the upper terrace is
greatly reduced. The isoconcentration lines now appear
as indicated in the lower panel of Fig. 2. This change is
sufficient to produce a morphological instability in the
terrace edge shape. In particular, the amplitude of the
perturbation increases spontaneously because the stabiliz-
ing effect of the upper terrace no longer compensates for
the intrinsically destabilizing influence of the lower ter-
race. Positive feedback leads to an absolutely unstable
situation. It is clear from this argument that stability is
lost even if the supply of atoms from the upper terrace is
only slightly reduced. Roughly speaking, one requires
only that the flux of atoms arriving from the lower ter-
race exceed the flux of atoms arriving from the upper ter-
race. Perturbations of any wavelength are predicted to
grow without bound.

Of course, an important effect has been omitted from
the foregoing. Any perturbation increases the length and
hence the total line energy of the step. To reduce this en-
ergy cost, a capillary-induced smoothing ensues. One
possibility is line diffusion along the terrace edge. How-

G. S. BALES AND A. ZANGWILL 41

ever, under typical MBE conditions, the two-dimensional
vapor pressure of the mobile atoms adsorbed on the ter-
races is likely to be large enough for another smoothing
mechanism to dominate: evaporation (detachment) of
atoms from convex portions of the step, followed by sur-
face diffusion and condensation (reattachment) onto con-
cave portions of the step. It is possible to regard this
current of atoms to and from a curved step as being
driven (by Fick’s law) by variations in the concentration
of adsorbed atoms in equilibrium with the step.’? The
latter is described by the Gibbs-Thomson relation,

Qy«(s)

¢ kpT

— .0 =0
eq(8)=cCeqexp =Ceq T Tk(s)+ , (3)

where y is the free energy/(unit length of step), € is the
atomic area of the solid, k(s) is the curvature of the step
at position s, and kp is Boltzmann’s constant.

The physical processes involved in the relaxation
mechanism just described immediately imply that
smoothing is very effective for short-wavelength pertur-
bations but increasingly ineffective for perturbations of
longer wavelengths. Hence, we anticipate the existence
of a critical wavelength A.. Capillarity guarantees that
short-wavelength perturbations (A <A,.) decay back to a
flat step while the diffusion field bounding the step
guarantees that long-wavelength perturbations (A>A,)
grow. This is the essence of the so-called Mullins-
Sekerka instability.??

From the foregoing, we may anticipate the loss of mor-
phological stability during step flow only when unequal
diffusive fluxes impinge upon the steps from adjacent ter-
races. As it happens, such a flux imbalance is a natural
consequence of the phenomenon of asymmetric step at-
tachment kinetics mentioned in the Introduction. This is
so because the mere possibility of kinetic barriers to the
incorporation of atoms into step kink sites forces one to
relax the BCF assumption that steps act as perfect sinks
which maintain c¢(s)=c., at the terrace edges. The ap-
propriate condition emerges from the supposition® that
the step velocities V. are determined by first-order reac-
tion kinetics:

Vo(s)=Qk.[c(s)—cels)]s @)

characterized by the attachment rate constants k..
Eliminating ¥V, between Egs. (2) and (4) and making the
(excellent) approximation that Ac ~Q ™!, we obtain

DVe| A=k, [c(s)—cd —Tk(s)],; (5)
—D,Ve|_-A=k_[c(s)—co—Tx(s)]_ (6)

as the boundary conditions for Eq. (1) at terrace edges.
As noted earlier, k, exhibit activated temperature
dependences and are not, in general, equal.'® There is
good experimental evidence for the latter assertion.
Field-ion microscopy images of surface diffusion on re-
fractory metals directly show atoms “reflecting” from
terrace down steps** while transmission electron micros-
copy (TEM) images illustrate strongly preferential attach-
ment of Al atoms to Al,Ga,_, As step risers during the
growth of tilted superlattices.”> Thus, consistent with
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simple bond breaking arguments, both observations show
that k_ <k, that is, adatom attachment is more likely
from the lower terrace. The limit k _ =0 corresponds to
the maximally unstable case of complete “blocking”
where no atoms join a step from the upper bounding ter-
race. The BCF equilibrium condition is recovered when
ki— 0.

III. QUANTITATIVE RESULTS

The mathematical machinery we use to study morphol-
ogy stability is similar to that employed for related prob-
lems,?® i.e., a linear stability analysis. For this purpose, it
is convenient to introduce a new variable u (r)=c(r)—71F
so that the BCF equation (1) becomes

2, U
Veu 3

=0, (7

Xs

where x,= \/B?; is the surface diffusion length. The
general solution to this Helmholtz equation is

u(x,z)= 3 [ Aysinh(A;z)+ B;cosh(A,z)]
k

X [sin(kx)+ Cycos(kx)] , (8)

where A, =[(1/x2)+k?]'/? and the allowed values of
the separation constant k are determined by the bound-
ary conditions. It is clear, for example, that only k =0 is
required to obtain the solution u,(z) appropriate for per-
fectly straight steps.

To proceed, we perturb the shape of each terrace
boundary with a small amplitude sinusoid of a particular
wave vector k. The position of the mth step then be-
comes

z,,(x)=z, +esin(kx) . 9)

In general, a solution to Eq. (7) which satisfies the condi-
tions (5) and (6) on the curved boundaries defined by Eq.
(9) requires many terms in the sum of Eq. (8). However, a
two-term solution of the form

u(x,z)=uy(z)+[ A;sinh(A,z)+ B, cosh(A,z)]e sin(kx)
(10)

can be found if one only requires the result to be correct
J

gk)=Q(F —F
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to first order in the (small) quantity €. Technically, this
involves making a number of approximations including
ignoring both the difference between # and Z and non-
linear terms which appear in the computation of the cur-
vature in Egs. (5) and (6).

Finally, we compute the velocity of any step from Eq.
(2). Given the preceding equation, this must have the
form

V(x)=V,+tw(k)esin(kx) , (11)

where V), is the velocity of a straight step and w(k) is a
complicated, but known, function of the wave vector k.
We now are finished because this velocity also can be
computed from the time derivative of Eq. (9) to be

V(x)=VO+%sin(kx). (12)

Comparing Egs. (11) and (12), we conclude that
e <explw(k)t] so that the sign of w(k) (for a given value
of k) determines whether the perturbation grows or de-
cays. As will become clear below, it is convenient to
write the stability function w(k) in the form

w(k)=g(k)—k2f (k) . (13)

Our task now is to determine w(k) as a function of the
various parameters of the step-flow problem. To do so, it
is useful to reexpress all these quantities in terms of
characteristic lengths. Therefore, in addition to the ter-
race width / and the surface diffusion length x , we define
two kinetic lengths d. =D, /k ., which express the rela-
tive importance of step attachment kinetics to surface
diffusion, and a surface capillary length §=T /7(F —F,),
which expresses the competition between surface tension
and the incident flux as agents for mass transport. The
quantity F, =cgq /7 is the incident (or desorbing) flux of
particles when the terraces are in equilibrium with their
own bulk vapor.

Now, rather than proceed immediately to the most
general situation (which is quite complex) it is instructive
to consider first the extreme case where step attachment
is infinitely fast from the lower terrace and infinitely slow
from the upper terrace (d _ — o,d ;, =0). Carrying out
the steps indicated above for this “one-sided” problem
one readily finds that

sech(l/x;)+x, A tanh(/ /x )sinh(A,I)—cosh(A,l)

« cosh(A, )

and

It is easily verified that both f (k) and g (k) are positive
definite functions of k. For typical values of the parame-
ters, w(k) has the behavior illustrated in Fig. 3. As ex-
pected from our qualitative discussion, w(k) is positive at
long wavelength and negative at short wavelength.

The critical wavelength A, is given by A, =2m/k,

(14)

f

where k, is defined by w(k.)=0. Figure 4 illustrates the
dependence of this quantity on the surface capillary
length £ for several different values of the terrace width /.
Observe that k, goes to zero abruptly at some critical
value £,.. Thus, there is a crossover from morphological-
ly unstable step flow (£ <£.) to morphologically stable
step flow (£ >&.). This result arises entirely from the fact
that the diffusion length x; is finite and can be under-
stood with a simple amendment to our qualitative argu-
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FIG. 3. Plot of the stability function w(k) vs perturbation
wave vector k for typical values of the model parameters.

ment. In short, since x; sets the range of the diffusion
field (along the step), desorption can short circuit the
communication needed to drive a diffusive instability at
the longest wavelengths. As x,— o, unstable step flow
persists at long wavelength for any value of £&. Compli-
mentary information can be gleaned from a plot of k,
versus terrace width for various values of the capillary
length (Fig. 5). Note that k, saturates for large values of
! but cuts off at some smaller value which depends upon
the deposition conditions. In this case, the terrace width
itself limits the action of the diffusion field.

Analytic expressions for k. can be found from Eq. (13)
in the limit of both very large and very small terrace
widths. For example, when / >>x_, we find
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FIG. 4. Plot of the variation of the critical wave vector k. vs
the surface capillary length £ for various values of the terrace
width /.

for the asymptotic values of k.. Since k. must be real, we
obtain the condition §<§,=x,/2 as a prerequisite for
morphological instability. Similarly, when / <<x, (and
12 <<A?) it is easy to show that

| 172
——1 ] . (17

k:

s'Tc

2
X Y The cutoff is now §.=1/2, illustrating that the quantities
? Xk >>1 (16a) x, and [ have exchanged roles as the limiting factors to
x.k, = 172 morphological instability.?®
4 1_2_§_ L x k. <<1 We now turn to the general case where d . and d _ are
3 X, s (16b) both finite. After a heroic bout of algebra, one finds that
|
Fl)= 2D, QT Ay cosh(A, 1)+ A(d . +d_)sinh(A,[) 18)
Ay (dy +d_)cosh(A )+[d d_ A} +1]sinh(A])
and
gk)=QF —F)d_—d,)Sk), (19)
where
Qk)= A(d y +d _)[sech(l/x;)+ Ay xgsinh(ADtanh(l /x;) —cosh(A, )]
{(dy+d_)+[(d,d_/x,)+xJtanh(l /x)}[ Ay (d + +d _)cosh(A )+ (d ,d_ + A%+ 1)sinh(A, )]
1—(x, Ay )?*][sech(l/x;)—1]sinh(A, 1)
[ !l ] k (20)

+ .
{(dy+d_)+[(dyd_/x,)+x Jtanh(l /x)}[A(d , +d_)cosh(AD)+(d,d_ +A2+1)sinh(A,])]

The function f (k) is still positive definite and thus, from
Eq. (13), always favors stability. This is to be expected
since this term arises entirely from the Gibbs-Thomson
effect. - Although less obvious, the function $(k) is also
positive definite. Thus step flow is absolutely stable if
d,. >d_. Conversely, if d, <d_, morphologically un-
stable step flow occurs so long as the capillary length
§<E&.. We solve for the critical value £. by expanding

[

the equation w(k,)=0 for small k, and requiring k, to be
real. The result is

3 IxXd_—d,)
S x,(d_+d )coth(l/x,)+d_d, +x2

(21)

As expected, the critical value is zero when d , =d _ and
the step is always stable.
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FIG. 5. Plot of the variation of the critical wave vector k, vs
the terrace with / for various values of the surface capillary
length &.

The principal effect of finite step attachment kinetics is
to push the terrace edge instability to longer wavelength.
This is in agreement with known results for the conven-
tional Mullins-Sekerka problem.37 In particular, the
dependence of the critical wave number on / and §
remains very similar to that illustrated in Figs. 4 and 5
except that the value of k. is systematically reduced.
This can be seen analytically most easily for the special
case of upper terrace blocking (d _ — o) examined ear-
lier. Thus, for the asymptotic values of k. one now has in
place of Egs. (16) and (17):
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1/2
x,/
_ %l . x. k. >>1 (22a)
1+d . /x,
x. k.= d 172
{i 1—25 1+25 } , xk, <1,
'xS XS
(22b)
when [/ >>x_ and
1/2
o= |2y 23)
1+1d, /x}

when [ <<x,.

This concludes our quantitative treatment of morpho-
logical instability during step flow. However, as noted in
the Introduction, layer growth also can occur via the nu-
cleation and spread of two-dimensional islands. Quite
apart from reasons related to reduced adatom mobility,
this will occur whenever the adatom supersaturation on
the terraces, a(r)=[c(r)—-cgq]/cgq, exceeds some criti-
cal value o, computable from the standard theory of
heterogeneous nucleation.'>*® Since, for our problem,
the adatom concentration is computed from Eq. (1), it is
more convenient to speak in terms of a critical flux or,
better still, a critical capillary length for nucleation, £,.
Clearly, &, depends upon all the remaining characteristic
length parameters because o(r) does so itself. The exact
functional form turns out to be

gn:é-:[l_z(l’xs»di)] s (24)

where

x,V/ {(d_ —x,)[cosh(l/x,)—sinh(I /x;)]+d . +x}{(d_ +x/)[cosh(!/x;)+sinh(l/x;)]+d ; —x}

E(l,x,,dy)=

and &, is computed from the critical supersaturation for
nucleation on an infinitely large terrace.!*3® We hasten
to add that the exact value of £, is somewhat arbitrary
since growth can proceed by nucleation and step flow
simultaneously.’® Indeed, one easily can imagine a nu-
cleated island whose perimeter becomes unstable as it
spreads.

All of our results can best be summarized by means of
a morphological phase diagram which separates regions
of stable step flow, unstable step flow, and 2D nucleation
(Fig. 6). The boundary between step flow and 2D nu-
cleation is given by the curve &, /£ while the boundary
between stable and unstable step flow is given by the
curve &./£7. The quantity £ is the critical capillary
length for a wide (I >>x, ) terrace given by Eq. (21) as

_ xsz(d_—d+)
2x,(d_+d_ )+d_d, +x?]

& (26)

The precise appearance of the diagram depends on the ki-
netic parameters d, and the value of §;. For example,

x,(d_ +d )cosh(l/x,)+(d _d , +x2)sinh(l/x,)

(25)

[

in Fig. 6, one can pass from stable step flow to unstable
step flow to 2D nucleation simply by progressively in-
creasing the deposition rate. It is possible, however, that
&,>¢&, for all I. In such a situation, 2D nucleation takes
over as the dominant growth mechanism before any step
can become unstable.

IV. DISCUSSION

The preceding section illustrated that an infinitesimal
shape perturbation to a (nominally) straight terrace edge
will not be damped during step flow if the kinetics of ada-
tom attachment are sufficiently asymmetric. It remains
to examine the limitations of this analysis and discuss
how the instability might be observed under actual epi-
taxial growth conditions. There are three outstanding is-
sues: the effect of crystalline anisotropy in D, v, and k.,
the predicted shape of the terrace edges as the perturba-
tion amplitude increases beyond the range of validity of
the linear stability analysis, and the effect of step-step in-
teractions. We deal with each of these in turn.
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FIG. 6. Morphological phase diagram for crystal growth on
a vicinal surface as a function of terrace width / (miscut) and
surface capillary length £ (inverse deposition rate).

The anisotropy of surface diffusion coefficients is a
well-established experimental fact. In the present con-
text, anisotropic Ga-atom diffusion on (001) GaAs has
been invoked to explain both terrace width ordering®
and differences between OMVPE and MBE (Ref. 41) ob-
served during the growth of tilted superlattices. Our re-
sults will be altered only slightly if we identify our quanti-
ty D, with the value of surface diffusion in the direction
perpendicular to the direction of step flow. If the value of
the surface diffusion along the direction of step flow
differs, there will be some quantitative change in, e.g., the
mean velocity of the steps and those quantities that
directly involve the ratio //x,. There are no qualitative
changes.

The free energy (surface tension) ¥ enters our problem
only through the Gibbs-Thomson relation, Eq. (3).
Throughout, we have treated this quantity as a constant.
In fact, one should write y(dz /dx) [cf. Eq. (9)], to reflect
the fact that the terrace edge free energy generally de-
pends upon the orientation of the step in the z-x plane
(Fig. 1). This is important because significant anisotropy
can exist even if one is (as we assume) well above the step
roughening temperature.”> The appropriate generaliza-
tion of the Gibbs-Thomson relation to this case is known
as Herring’s equation*’ and its effect on perturbation
analyses similar to the one we have performed is well
known.’>* Above Ty, we need only make the replace-
ment y—vy+vy,,, where ¥ . is the coefficient of the
second-order term in a Taylor expansion of y(dz/dx)
around dz/dx =0. This change enters our results by
altering the magnitude of the quantity I' [Eq. (3)] and
therefore both £ and the function f(k) [Egs. (15) and
(18)]. Two extreme cases make clear the morphological
consequences.

Suppose first that y(dz/dx) has a local minimum at
dz /dx =0, i.e., the unperturbed terrace edge would be a
one-dimensional facet if T <Tg. In that case, y,, >0
and its magnitude easily can exceed that of y itself, even
for relatively weak anisotropy. The net effect is to reduce
the tendency towards instability by shifting the critical
wavelength to larger values [Eq. (13)]. This is clear from
the expressions for k, in, e.g., Egs. (16) and (17). Con-
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versely, if y(dz/dx) exhibits a local maximum when
dz/dx =0, y,, <0, and the tendency toward instability is
enhanced. In fact, it is clear that the linear instability we
predict ultimately must evolve to a “hill-and-valley” facet
structure in analogy with Herring’s discussion** of spon-
taneous facetting at a free surface.

At the level of linear stability theory, the treatment of
anisotropic attachment kinetics [d(dz/dx)] proceeds
identically to the foregoing case of anisotropic surface
tension. Indeed, apart from the fact that sinusoidal shape
perturbations are translated parallel to the unperturbed
step as they increase in amplitude,*’ the qualitative re-
sults are unchanged as well because the crystallographic
dependence of d(dz /dx) is expected to be quite similar
to that of y(dz /dx).*

This brings us naturally to the question of what one
should see in, e.g., an electron or scanning tunneling mi-
croscope, if the experimental growth conditions favor ter-
race edge instability. Based upon our linear analysis, one
might expect to observe step edges modulated sinusoidal-
ly at a wavelength A ,, corresponding to the wave vector
Koax <k, where w(k) (Fig. 3) has its maximum. As it
happens, this is unlikely to be the case because an ad-
vancing terrace edge very rapidly passes out of the small
amplitude perturbation limit and enters a regime of non-
linear morphological evolution which strongly mixes in-
dividual Fourier modes. This expectation is based upon
experience gained in the study of directional solidifica-
tion*® (a closely related problem which also exhibits a
Mullins-Sekerka instability) where a distinct cellular mor-
phology is observed at all times. Unfortunately, precise
theoretical prediction of the final interfacial pattern that
evolves from a particular linear instability is a difficult
and incompletely solved problem.*’

Moreover, step flow involves an additional complica-
tion. Our linear stability analysis neglects any possible
interactions between terrace edges. In fact, such interac-
tions exist; most notably, a dipolar repulsion between ad-
jacent steps arising from entropic and elasticity con-
siderations.® If no other processes intervene, these
forces are sufficient to drive the motion of steps across a
vicinal surface.* In the presence of a deposition flux, the
qualitative effect is to keep terrace edges from getting too
close together and thus to limit the growth of step wavi-
ness. However, this effect is likely to be most noticeable
only when the meanderings of the steps approach sub-
stantial fractions of the terrace width itself. This is the
regime of highly nonlinear evolution—to which we now
return.

With the foregoing caveat in mind, and as a guide to
the experimentalist, we now draw upon the analogy to
the well-studied problem of pattern formation during
solidification from the melt® to make some reasonable
guesses as to how a well-developed terrace edge instabili-
ty might manifest itself. For the planar geometry of in-
terest here, detailed studies exist only for the one-sided
situation referred to here as upper terrace blocking
(d _ — ). In a somewhat different context, we ourselves
have dealt with this problem®! for the case of isotropic
surface tension and isotropic attachment kinetics. When
the kinetics are very fast (d =0) so that the growth is
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diffusion limited, one obtains a distinctive fingerlike mor-
phology where (at least for early times) the spacing be-
tween fingers is very nearly equal to the quantity A,
defined above. By contrast, when the kinetics are rather
slow, the interface quickly develops a “scalloped” mor-
phology formed from a sequence of outward bulging par-
abolic arcs which spread laterally and compete with one
another. This process continues until the scallops reach a
limiting width (~d,), whereupon further evolution
again results in a fingerlike morphology.

One-sided directional solidification has been studied in
the weakly nonlinear regime by bifurcation theory for the
cases of both anisotropic surface tension>? and anisotrop-
ic kinetics.*»** One finds significant modifications to the
basic cellular morphology obtained in the isotropic case
(for that problem) so that a similar analysis for the
present problem appears warranted. Otherwise, it is gen-
erally understood that diffusion limited growth in the
presence of anisotropic surface tension can produce den-
dritic structures.*”*> Hence, “surface dendrites” might
be observable during step flow under suitable conditions.
Similarly, when anisotropic attachment kinetics dom-
inate, a stable macrostep morphology has been predict-
ed®® for the case of solution growth. This would appear
as a propagating ‘‘ragged” terrace edge for our problem.
To our knowledge, nothing is known for the case when
anisotropic surface tension and anistropic kinetics com-
pete on an equal footing. And finally, to reiterate, we
have no explicit morphological prediction for the real
step-flow problem for the (most) realistic case when both
d_ and d , are finite.

This leads us to a difficult point. The reader will have
noticed that we have not attempted to numerically esti-
mate any of the key parameters of our theory that would
aid an experimental search. A good candidate would be
Amax- In fact, all of the key ingredients can be
estimated—except one: the difference d, —d_, or
equivalently, k , —k _. Unfortunately, almost nothing is
known about the magnitude of step attachment
coefficients, even in the symmetric case,’’ much less their
difference. Moreover, since both are activated, the
difference easily can range over several orders of magni-
tude. This uncertainty, plus a similar lack of knowledge
about the magnitude of y,,, leads to estimates of A,
that range from a few A to hundreds of micrometers. We
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are unable to be more precise.

Finally, given the foregoing, it is worth asking how one
can distinguish the wavy step patterns we predict from
the waviness associated with thermal roughening. In
both cases, increased temperature increases the irregular-
ity of terrace edges. The key difference lies in the depen-
dence upon deposition flux. We expect a large effect for
the instability discussed here (Fig. 6), while no great
changes are expected for the case of thermal wandering.
Moreover, true thermal roughening exhibits a special sig-
nature in scattering experiments®® which is unlikely to be
mimicked by a diffusional instability studied by, say, a
RHEED spot profile analysis.>

V. CONCLUSION

In this paper we have considered the possibility that
monoatomic terrace edges undergo a morphological in-
stability during epitaxial step-flow growth. Linear stabili-
ty theory predicts that such an instability can occur only
when the energy barriers to adatom attachment to steps
differ for adatoms that approach a step from opposite
directions. This condition turns out to be the usual phys-
ical situation. The instability is diffusional in origin and
manifests itself as a distinct waviness or meandering of
the terrace edges as they propagate across the crystal.
The basic physics of the instability is qualitatively similar
to the physics of dendritic growth.

Our results, presented in the form of a morphological
phase diagram, show that single-crystal growth on a vici-
nal surface can pass from stable step flow to unstable step
flow to 2D island nucleation and spreading as one in-
creases the incident flux in, say, a molecular-beam-
epitaxy experiment. We have discussed qualitatively how
our results are affected if one takes account of certain
complicating factors neglected in our quantitative
analysis. Although no numerical estimates were given,
the terrace edge instability we predict should be readily
distinguishable from simple thermal fluctuations.
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