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Transmission through a one-dimensional Fibonacci sequence of 5-function potentials
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We study transmission and reflection of a plane wave (with wave number k & 0) through a one-
dimensional array of N 5-function potentials with equal strengths v located on the Fibonacci num-
bers 1,1,2,3,5,8,. . . in the limit N~00. Our results can be summarized as follows: (i) For
k EnZ [(1+ &5)/2] (a countable dense set on the positive part of the k axis), the system is a perfect
reflector; namely, the reflection coefficient equals unity. (Physically, the system is an insulator. ) (ii)
For k = —'(2N+1)n (N =0, 1,2, . . . ) and 3cos1( —1)0 with f=arctan(v/k), the system may con-
duct. (The reflection coefficient is strictly smaller than unity. ) (iii) For k =

2 (2N + 1)n
(N=0, 1,2, . . . ) and 3cos1(t—1(0, the system is an insulator. (iv) For any k which is a rational
noninteger multiple of ~, the system conducts for small values of v /k and becomes an insulator for
large values of v/k. Results (ii) and (iii) are physically remarkable since they imply for fixed
k = 2(2N+1)m (N =0, 1,2, . . . ) a phase transition between a conductor and an insulator as the

strength v varies continuously near k &8. Result (iv) means that at least one phase transition of this
kind occurs at any k which is a rational noninteger multiple of n., once v /k becomes large enough.

I. INTRODUCTION

Experimental advances in submicrometer physics
which made possible the fabrication of nearly ideal one-
dimensional wires' naturally lead to increasing interest in
their physical properties, especially those related to trans-
port phenomena. The quantum-mechanical relation be-
tween the electrical conductance at zero temperature and
the transmission probability indicates that some rneasur-
able physical quantities can be accurately explained on
the microscopic level.

One-dimensional lattices of infinite extent are, of
course, extensively studied in the literature in connection
with Bloch theory (if they are periodic), Anderson locali-
zation (if they are completely disordered}, and quasicrys-
tals (if they are of commensurate-incommensurate struc-
ture). On the other hand, the theory of scattering from a
semi-infinite one-dimensional array of potentials is less fa-
miliar. ' A useful technique in this context is the
transfer-matrix algorithm from which the conductance is
evaluated with the help of the trace map. ' ' Another
closely related technique is one that expresses the
transmission and reflection amplitudes through %+1
scatterers in terms of the amplitudes for X scatterers and
to let N~ao (the so-called "thermodynamic limit" ).
Here we adopt this technique from the point of view that
it can be regarded as a combination of Mobius transfor-
mation and multiplication by a phase. We find this algo-
rithrn particularly useful since it enables us to study two
aspects of importance from a physical point of view: (a)
The dependence of the transmission on the strength of
the potential for fixed energy, and (b) the occurrence of
phase transition from a conductor to an insulator. We

can study here the complex transmission amplitude and
not just its squared absolute value (the conductance).
The importance of this quantity is that it is directly relat-
ed to the density of states N(E) through the relation'

N(E) N(E) = 1—d I arg[t (E)]J

m dE

where No(E) is the free-particle density of states.
If the system of scatterers is arranged in an arithmetic

progression (a perfectly ordered crystal}, the limit N ~ ao

can be easily obtained and a band structure of the
transmission can be deduced; namely, the transmission as
a function of the energy is zero on some segments and
greater than zero on other segments. On the other hand,
if the position of scatterers is completely random, a
closed-form expression for the transmission cannot be
found in general, but an ensemble average of the
transmission over many samples can sometimes be car-
ried out and the results show the transmission decays ex-
ponentially with N (namely with length} with some
characteristic localization length.

The intermediate case, where the scatterers are located
on an arbitrary sequence, is interesting in itself. For ex-
ample, one-dimensional quasicrystals are characterized
by a system of scatterers located on the sequence

lx =N+ ——+PN

where r=(1+&5)/2 is the golden ratio, [ J denotes the
integer value (the "floor function"), and P is an arbitrary
real number. We plan to report on our study of scatter-
ing from one-dimensional quasicrystals in a future paper,
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but here we concentrate on scattering from an infinite
system of 5-function potentials located on the Fibonacci
numbers. It will become evident that the mathematical
concepts and the calculation techniques developed here
can be applied elsewhere.

In Sec. II we will present our study, while in Sec. III
we will set the present work in context with other related
works. Some formal mathematical arguments (which are
clearly very relevant to quasiperiodic systems) will be
relegated to the Appendix.

conduct.
It may happen, of course, that the sequence of complex

numbers rz will not converge while the sequence of abso-
lute values ~re ~

(which is what is relevant from a physical
point of view) will converge. This case will be studied
later on. Our first goal will be to find out under what
conditions the limit of the sequence j re j exists, and what
this limit is. As a quotient, it wi11 not be affected if the
matrix A is multiplied by —1 and the matrix A „ is mul-

iky„ ~ 2'kyn
tiplied by e ". Denoting k„=e " and using r =t —1,
we replace Eq. (6) by

II. RESULTS BASED ON THE RECURSION
AND MOBIUS TRANSFORMATION TECHNIQUES

r

an+1
r —1/t r/t 1 0

v 2ikr=
2ik —v

'
2ik —v

which satisfy unitarity

/rf'+ /tf'=1, tr" + t'r =0

and continuity at the point x =x
&,

t =1+r .

(2)

(3)

(4)

The unitarity relation (3) is valid, of course, for any N.
For N & 1 scattering centers, the reflection and transmis-
sion amplitudes can be determined from a recursion rela-
tion as follows: We define

a =—,
n

n

bn=

-iky
n

0

n

tn

iky„
e

1/t r/t-
r/t (t' r')/t-

(5)

with det( A ) =det(A „)= 1. Then we have

a„+ an

b ——"b
=A A

n+1 n

The conductance (at zero temperature) of this system is
given by the limit of ~t~~ =1/~a~~ as N~~.
Equivalently we may inspect the limit of ~r~~ =(b~/a~~
and use unitarity. If ( tz (

~0 (equivalently )r~ (
~1) as

N~ao, we say that the system is an insulator. If ~t~~

does not tend to 0 as X~~ the system may conduct.
Our aim is to find out for what values of the momentum
k and the strength v the system is an insulator or may

Consider a one-dimensional array of N 5-function po-
tentials

N

Vz(x)=v g 5(x —x„),
n=1

where v )0 and x„are the Fibonacci numbers
x +,=x,+x for m ~1, withx, =1 and x2=2. (We
start with x& =1 since we will mainly employ the se-
quence of differences y =x +&

—x which is the Fi-
bonacci sequence 1,1,2,3,5,8, 13, . . . .} A plane wave at
momentum k, e ' ", coming from the right will have
reflection and transmission amplitudes rz and t~, respec-
tively. For X =1, these amplitudes are given by

b. +i —r /t —2+ 1/t 0 A.„b„
A very useful relation relating rn+, to rn in a fractional
linear form can be deduced from (7), namely

Equation (8) tells us that the reflection of n +1 barriers is
obtained from that of n barriers in two steps, namely,
multiplication by a phase followed by a Mobius transfor-
mation. This result is, of course, general for any one-
dimensional system of scat terers.

Thus, from a physical point of view, the difference be-
tween the ordered (periodic) case and the other two
(quasiperiodic and disordered) cases is that here A,„ is not
a constant, but depends on n. It is then intuitively clear
that the behavior of the sequence [r„j is directly related
to that of [A,„j.This is indeed the case. Lemma 1 in the
Appendix asserts that if the sequence [ r„j converges to a
number p, then A,„~1 as n~~. In other words, a
necessary condition for the convergence of the sequence
of complex reflection amplitudes is the convergence of
the sequence of phases to 1. [Notice that since

~
r~ ~ 1 and

det( A ) =det(A „)= 1, we have p ~ 1.]
The converse statement is not evident. Inspection of

Eq. (7) shows that if A,„=1 identically, then the reflection
is perfect, namely r„~—1 irrespective of the potential
strength v. This is an example of a periodic system in
which the interference is destructive. The question which
we raise here is what happens if A,„ is not equal to 1 but
tends to I? The answer (proved in Letnma 2 in the Ap-
pendix) is that only if A,„~l exponentially as n~~,
then r„~—1.

Now we shall investigate under what conditions (on k}
2iky„

the sequence [ k„=e "
j tends exponentially to 1 as

n~~. This will give us part of the energy values for
which the system is an insulator irrespective of the poten-
tial strength v. The answer, proved in Lemma 3 in the
Appendix, is that A,„~1exponentially if, and only if k/~
is an algebraic integer in Q[&5]; namely, k can be ex-
pressed as

k =a[a +b(1+&5)/2] with a, b integers . (9)

The set of numbers k with the representation (9) is count-
able and dense on the real axis. Physically, k)0, of
course, and our result means that at least for that set of
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mornenta the system reAects perfectly.
We now turn to the study of the transmission as a

function of both k and U. Physically, the important ques-
tion to be asked is whether a phase transition between a
conductor and insulator occurs for some values of u and
for values of k which are not necessarily equal to the set
of values given in Eq. (9). To this end we inspect the
properties of Eq. (8) from the point of view of Mobius
transformations. First, it is proved (Lemma 4 in the Ap-
pendix} that the Mobius transformation

2t —1 r
—r 1

A=2

—1 0
0 1

1 —P 2
(12}

For k =
—,'(2N + 1)m. (N =0, 1,2, 2, . . . ), the matrix trans-

forming r3„ to r3 +3 is then independent of n and is
given explicitly by

r +(2t —l)zw=T z
1 —rz

(10)
8P —6/+2 —3P +8(()—5

—5$ + 8P —3 2$ —6P+ 8
. (13)

[obtained from (8) simply by setting z =A,„r„]maps the
unit disk onto itself such that the unit circle is mapped
onto itself. [From unitarity we know that ~t}v ~

~1, so
that the transformation (10) should map the unit disc
onto itself. ] Another important property of T(z) is that
it leaves invariant the set U of all circles with the center
on the real axis passing through the point z = —1 includ-
ing the vertical line —I+iy (yam). This is proved in
Lemma 5. It is also possible to show that the transforma-
tion T moves the points (clockwise or counterclockwise,
depending on the parameters} on each circle belonging to
U. The point —1 is never reached, and hence the points
on such a circle near —1 are very dense. Thus, the trans-
formation T does not conserve the Lebesgue measure for
arcs on a circle in U.

These considerations can help us to inspect the depen-
dence of the conductance on N (namely on length), which
is of great importance from a physical point of view. The
iteration procedure (8) is a successive operation of T fol-
lowed by a multiplication by a phase A,„,which moves the
point on a canonical circle. Thus, an orbit of a point
traces an arc of a circle from U and then an arc of a
canonical circle, and so on. When )i,„ tends exponentially
to 1 as n~00, the motion on the canonical circle is
suppressed and the convergence to —1 along a circle in U
dominates. Physically we are interested only in orbits in-
side the unit circle.

Thus, we have generally studied the convergence of the
sequence [r„j and turn now to study the sequence [ ~r„~ j.
As state before, we want to find out for which values of k
and u we have ~r„~~l as n~ .Do(We have already
proved, of course, that it happens for a countable dense
set k EmZ[(1+&5)/2] and for any u%0) although for
almost every k the sequence [ ~r„~ j is dense in the seg-
ment [0,1].

Let us start to study the sequence I ~r„~ j for some
specific values of kEnZ[(1+&5)/2]. Specifically, we
start with k =

—,'(2N + 1)m (N =0, 1,2, . . . ). Then the se-

quence [A,„j has a period of 3; A, , =A,i= —1, A,&=1,
)I,„+3=A.„. The matrix of the Mobius transformation (10)
is (

' „' ", ), which can, of course, be multiplied by an arbi-
trary scalar. We multiply this matrix by 2, use the pa-
rametrization [using Eqs. (2) and (4)]

i)'j =arctan( u /k), P =e

t =
—,'( I+/), r =

—,'( —1+/),
and de6ne

The eigenvalues of S, s, and sz, are given (using
rt =P+P' =2 cosg }explicitly:

$1

S2
'=/[5' —6+[(4'—8)(6q —4)]' 'j (14)

It is easy to check that 4g —8 &0 [otherwise, equality im-

plies r = 1, contrary to Eq. (2)] and that 6' —4) 0 if, and
only if ~cosf~ & —,'. Let us then regard S as a Mobius

transformation and find its fixed points S(y)=y. We
define p =P so that i}=(p—p') +2 and

$1

Sp

3(p+p')+2[6(p —p, ') +8]'i
—5p+3@*

(15)

such that the direction y; corresponds to the eigenvalue s;
(i =1,2). Note also that s, are defined up to an arbitrary
constant different from zero. We now study several pos-
sibilities.

Case (a) 6i}—4)0. In this case s, As2 and after some
algebraic manipulations we get

3 —5$' I (s2/si )

3 —5P y, —y, (s, /s, )"
(16)

w =M(z)=P
3 —5$ yi —yiz

(17)

The sequence I r3„j is contained in the unit circle (by uni-

tarity) and therefore, the pertinent set of limit points is
dense on a circle contained in the unit circle. Since
M( l)=0, this circle is not the unit circle, and in fact it
can intersect the unit circle in, at most, one point. The
set of limit points for the sequence I r„j lies on three such
circles, which, in general, are different from each other.
To summarize, in subcase (al) we find that the sequence

~ r„~ does not converge to 1. The system may conduct.

From (14) it is clear that ~s, =
~s2~ and hence we study

two subcases of (a).
Subcase (al) s2/s, is not a root of unity. In this case

the sequence (sz/s, )" is dense on the unit circle. Hence,
the sequence [r~„j has infinitely many limit points con-
tained in the image of the unit circle under the Mobius
transformation
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Subcase (a2) s2/s, is a root of unity. In that case the

sequence (s2/si ) is periodic and equals 1 infinitely often.
Hence, the sequence Ir„) is periodic and equals 0 for
infinitely many n's. Hence in subcase (a2) we also find

that the sequence I ~ r„~ ] does not converge to 1. The sys-

tem may conduct.
Let us now find out which roots of unit may be ob-

tained as the ratio s2/s, . Up to complex conjugation, we

have
s2 5'rI 6+[(4'r) —8)(6i)—4}]'~

(18}
57/ 6—R[(471 8—)(6g —4) ]'

which is a root of unity if and only if the angle

[(8—4g)(6g —4)]'~
5g —6

is a rational multiple of n. Recalling Eq. (11) and the
definition of 7) after Eq. (13), we inspect the argument of
the arctan function as the phase P moves on the unit cir-
cle from /=0 to P=arccos —,'. (Similar behavior will be
found between / =0 and f= —arccos —,'.) This expression
vanishes at /=0 and grows continuously (apparently
monotonically, but that is irrelevant here ) to ~ as f ap-
proaches arccos —', from below. After changing sign it
grows (apparently monotonically) from —~ to 0 at
f=arccos —,'. Therefore, s2/s, can be any root of unity

and, hence, the sequence I r„] can have period 3L where
L is an arbitrary integer. We have thus exhausted case
(a), namely 6g —4& 0.

Case (b) 67) —4&0. Equation (16) still holds, but this
time ~s, ~A ~sz ~, and we assume, say, ~s, ~

& ~sz ~. In that
case we find ~r,„~y, ~. However, we claim that
~y i ~

=
~y2 ~

= 1, so that the result will be similar if
~s2 ~

& ~si ~. Indeed, from Eq. (15), this time with a nega-
tive argument of the square root 6(p, —p') +8
=6q —4 & 0, we see that y, &2 are multiples of
1/( —5@+3@')by two complex-conjugate numbers and
hence ~yi ~

=
~y2 . In addition, y, y2=$(3 —5$')/

(3—5$},a complex number with a unit modulus, namely

~y, y2 ~

= 1, and therefore ~y, ~

=
~y2

= l. Hence the se-
quence I r„) has at most three limit points, all of them on
the unit circle. In fact, the sequence has exactly three
limit points. Indeed, if the Mobius transformation AA
leaves y& untouched, so does the transformation AhA 5
and hence so does A. But A has only one fixed point,
y = —1. The other possibility —A hy i Wy, and

ADA', =Any, —is ruled out since, in that case, two
different points y, and Ahy& are transformed by Ah to
the same point contrary to the single-value property of
the Mobius transformation. We have thus exhausted
case (b).

Case (c) 6g —4=0. From (16) and (17) we see that
there is one eigenvalue s and one eigendirection (fixed
point} of the Mobius transformation S [Eq. (13}],
y =(—1+2~2i )/3. It is easy to check by substitution
that in that case the matrix S is not a scalar matrix so it is
similar to the matrix

s 1

0 s

it follows that, since u, and u2 are nearly independent,
we may express the initial vector in the basic recursion

ao
relation (7) as (i,')=a, u, +a2u 2. Hence, at step 3n we

0

have

a3

b3n
=a]8 "u ]+a28 "u

2

=a,s"u, +a2(s"u 2+ns" 'u, )

=s" '[(a]s+na2)u i+a2su p] . (20)

Therefore, whether a2=0 or a2%0 the slopes of these
vectors tend to the slope of u, , namely y. Hence, the se-

quence [r3„] has one limit point on the unit circle and
the sequence I r„) has three limit points on the unit cir-
cle. This means, of course, ~r„~ ~1 as n ~ co.

We have thus completed the case k =—,'(2m +1)m. To
reemphasize the important physics, we have just estab-
lished that for k =

—,'(2N+1)m (N =0, 1,2, . . . ) and

3cosi}'j—1&0 with 1(=arctan(vlk) the system may con-
duct (namely, the reflection coellicient is strictly smaller
than unity), while for 3 cosf —1 & 0 the system is an insu-
lator. These results are physically remarkable since they
imply for fixed k =

—,'(2N+1)m (N =0, 1,2, . . . ) a phase
transition between a conductor and an insulator as the
strength v varies continuously near k v'8.

We now study the case of k being a rational multiple of
n., k =(p/m)n, with p and m relatively prime [(p, m) =1]

2iky
and m & 1. The sequence A,„=e " is, of course, period-
ic modulo (m). Furthermore, expressing the Fibonacci
recursion relation as a transformation

yn+1

yn+2

0 1 yn

1 1 y+) (21)

and the fact that the matrix (, i ) is invertible modulo m,
the periodicity starts at the beginning of the sequence.
Let us assume that the period is M. We have to study a
matrix of the form

D=CAMCAM )
. CA),

where

(22)

1 —r/t —r/t
r/t 1+1/t

= I+lq
—1 —1

r/t =iq, q ER, (23)

and the matrices A „are defined in Eq. (5). Both matrices
C and A „have the form (', «) for some a, b NIL. It is

easy to see that the set of all such matrices form a subring

Denoting by u, =(') the only eigenvector of this matrix
and defining a vector u2 by

8 u 2=u &+su 2,
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and study its eigenvalues

S1 '= —' Id, +d*, +[(d, +d f )
—4]' (25)

S2

Hence if ~d i +I
& ~

~ 2 both eigenvalues are real and dis-
tinct (unless ~d, +d; ~

=2), while if ~d, +d; ~
&2 they are

not real and s2 =s;. In particular, ~s, ~

=
~sz~ for

~d, +d i ~

&2. To find the eigendirections we have to find
the fixed points of the transformation D, namely,

in the ring Mz(C) of all 2X2 matrices over t(:. Further-
more, C and A „have a unit determinant and so does D
[defined in Eq. (22) above]. We then write D as

1 d2
(24)

AMAM i
. . A, =pl, p= 1 .

Indeed, it is sufficient to show that

p, +p, + . . +&~ =0 (modm ) .

(27)

(28)

We define a matrix cr =(, ', ) and note from the definition
of M that

y2

3'2
+ +

3'3 3'4
+ ~ ~ ~ +

yM+1

1M+1

yM+2

3'2 3'3 yM+++'''+
3'2 3'3 3'4

(modm),
yM+1

imaginary, we have
~
w i ~

=
~ ia2 )

= 1 if, and only if
~d, +d,'

~

& 2. We now argue that

d1N +d2
dpN +di and, since o is invertible (modulo m), then

(29)

N2
[d; —d, k[(di+d') —4]'~

J

1

2

(26)

T

3'2 yM
+ + +. + =—0 (modm),

3'2 3'3 3'4 1M+1

The product of the eigendirections is m]w2= —d2/d2
and hence

~ w, w 2 ~

= l. Also, since d i
—d, is purely

which proves (28) and hence also proves (27). We now
concentrate on Tr(D ) and find

Tr(D ) =Tr(C A ~C A M, C A, )

=Tr[(l+iqT)Asr(l+iqT)Asr i (I+iqT)A i]

= g (iq)'
j=0 ll +lp+ ' ' ' +l~ j'l+ 0; 1

Tr(T™AMT" 'AM i T 'A, ), (30}

with T=(,', '). If we regard the left-hand side of Eq. (30}as a polynomial in q, then its free term is 2p. We will see
now that the coefficient of q is 0. Indeed, the coefficient of q is

l Tr(T AMT 'A~
~

T 'A i) .
l

&

+ l2 + + l~ = 1;l„=0; 1

This is a sum of M terms, each of which is a trace of a product containing all the matrices A „and one matrix T. Using
the commutativity Tr( A B )=Tr(B A ) to put T to the left, and the form (29) for the product of the matrices A „(which
is independent on the order), we find that each term is indeed 0. We can now show that the coefficient of q is —ap,
where a is real, a )0. A typical term in the expansion (30) for j =2 is

i Tr(AM A) TA ) A TA i A))

= —Tr(TA, A TA , A i AM . A )= Tr(TB TPB '—),

Tr(D)=2P aq P+ g c~qj— (31)

where B is a matrix of the form B = (0 „,) with ~h~
= 1.

Hence, after some algebraic manipulation we find

—Tr(TB TPB ')= —P[2—h —(h*)2] .

Clearly, [2—h —(h') ] ~0 for all h on the unit circle,
with equality only for h =+1. It is also evident that for
m ) 1 at least some part of the matrices 8 are not equal
to +1. Hence the coefficient of q is —a p, where a is
real, a & 0, and

for some coefficients c -. Hence, for q&0 sufficiently close
to 0, ~Tr(D ) ~

& 2 and the eigenvalues of D are complex
conjugates. In this case, exactly as in the case
k =(X+—,')n. we get the result that the sequence t ~r„~ j
does not tend to 1 as n ~ 00, namely that the system may
conduct. Small q means small r, namely a small value of
U/k. On the other hand, since the polynomial in q,
Tr(D ) [Eq. (30)] is not a constant, it will lead to
~Tr(D ) ~

~ 2 for large enough q, and in that case, ~r„~ ~1.
This is also similar to the case k =(N + —,

'
)m except that

here we cannot say that there is only one value of u/k at
which the transitions from conductor to insulator (or vice
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versa) occur.
Again, we reemphasize the important result from a

physical point of view. For any k which is a rational
noninteger multiple of m., the system conducts for a small
value of v/k and becomes an insulator at a large value of
v/k. This means that at least one phase transition of this
kind occurs at any k which is a rational noninteger multi-
ple of m, once U/k becomes large enough.

III. DISCUSSION

The present study should be matched with those in
Refs. 5, 8, and 9. From the point of view of the theory of
quasicrystals, our results are less useful since we did not
apply our algorithm to a Fibonacci chain. Apparently,
the studies of Kollar and Suto and of Holzer are related
to the present one when applied to a Fibonacci chain.
For example, we can show how to get one of their results.

We consider the one-dimensional array

1 N
x~ =X+—

7

1 —iq —iq p* 0

iq 1+iq 0 p

(1 iq—)p'

lqp

lqp

(1+iq)p
(32)

We have already shown that lr~l~l if and only if
ltr(D )l ~ 2. But tr(D ) =p+p, '+iq (p, p') =2—(cosa
—

q sina). Hence we obtain

where r=(1+i/5)/2 is the golden ratio, and study the
scattering problem for the discrete set of wave numbers,
k =m ~m and m a positive integer. In this case
ky„=k(x„+,—x„) is either mrm. or men. +me. These
two cases are, in fact, identical since as a quotient the re-
sult will not be affected if the matrix A [Eq. (5)] is multi-
plied by a scalar matrix ( —1 in this particular case).
Denote q = —U/2k, a=mzm, p=e', and using r =t —1,
the matrix D „=A A „[see Eq. (5) for the definition of
A „]can be replaced by the constant matrix

—
( 1 —cosa) /sina if sina )0

lrzl —+I if and only if q&qo&0, qo= (1+ )/
' f 0 (33}

It is worth mentioning here that if l re l ~ 1 as N ~ ~,
then the sequence I re] converges, while if the sequence

I lrtv l j does not tend to unity, then the set of accumula-
tion points of the sequence [rtv] is located on a circle
which passes through the origin. This is result (ii) ob-
tained by Kollar and Suto.

In conclusion, we have developed the mathematical
concepts and tools for the study of scattering from a sys-
tem of scatterers located on an arbitrary sequence of (pos-
itive) real numbers. From this point of view, the present
work is quite general since the phase between two scatter-
ers must not assume only two values as in the Fibonacci
chain discussed above. We applied it to study transmis-
sion through an infinite system of 5-function potentials
located on the Fibonacci numbers, but have shown that it
can also be applied to Fibonacci chains.
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APPENDIX

Lemma l. If the sequence r„converges to a number p
then A,„~1. [Notice that since

l r l
1 and

det( A ) =det( A „)= 1, then p & 1.]
Proof. It is sufficient to demonstrate the convergence

A,„~A, for some A, since, then using the fact that y„ is the
Fibonacci sequence, we will have A,„+2=1,„+,A,„,so that
in the limit A, =A, and, since A,AO, then A, = l. From Eq.

(8) we get

„r„[rr„+, &

—(1 —2t)]= r„+~
r. — (Al)

ls„ I

& C +2~ I
r /t

I
«r»1 ~ ~ ~o (A3)

Indeed, we take some 0(q (1 and no for which the fol-
lowing estimates hold:

From Eq. (Al) we see that p+0, since otherwise the left-
hand side will tend to zero and the right-hand side will
tend to —r, a contradiction. We also claim that
pA(1 2t)/r, since—otherwise the left-hand side of Eq.
(A 1) tends to zero, which implies p =r but clearly
(1 2t)/rAr. Th—erefore, the square-bracketed factor in

Eq. (Al) tends to a nonzero limit. Hence, dividing Eq.
(Al} by r„[rr„+i—(1—2t)] indicates that the sequence
A,„converges. This proves the lemma.

Lemma 2. If A,„~1 exponentially, then r„~—1. (Al-
though this can be intuitively expected from Eq. (8) by
setting A,„=1 and assuming that the iterations end at the
fixed point —1, the rigorous proof needs some precau-
tion. }

Proof Denote s„=.—1/(1+r„). From Eq. 8) we get,
after some algebraic manipulation and use of Eq. (4), the
recursion relation for s„as

s„(1—s„)
s„+i =s„+——(1—A,„'), . (A2)

s„(1—
A,„')+1

Lemma 2 is equivalent to s„~~ (as a complex number).
If this does not hold, then there exists a constant C )0
for which the number of terms s„with ls„ l

& C is infinite.
We will now show that in that case there exists an integer
no such that
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I „ I
&C,

I
1 —A,„l &q", (C+2nlrltl)q" &

—,', 2(1+C+2n Irltl) q" & Irltl for n ~no .
0

(A4)

From this choice the inequality (A4) is, of course, satisfied for n =no .If it is true for some n no, then from Eq. (A2)

we get

) I
—Is. I+ Ir/tl+ I

1 —~„'I Is„ l(1+ Is„ I )
s„(1—

A,„')+1
& C+ 2n

I r ltl +
I
r ltl + q

"(1+ls„ I )
1 —s„ 1 iE„'—

& C+(2n +1)lrltl+(1+C+2n lr/tl ) q" 1

1 —(C+2n I
r ltl )q"

& C+(2n+1)lrltl+2(1+C+2n Irltl) q"

& C+(2n +1)lr/t + Ir/tl & C+2(n +1)lrltl

which proves the inequality (A3).
Using the recursion relation (A2) from no to n,

r
— s (1—sl)s„=s„+(n no)———g (1—

Ak ')
sk(1 —

Ak ')+1
0

and employing the inequality (A3), we obtain

n —1

ls„—s„(n —no)(rl—t)l & g 2(1+C+2klrltl ) q" &2(1+C+2nlrltl ) g k q"=M & ~ .
k=n 0 k=n 0

(As)

2 'lie'
ll= e

=
I 1+2~t llqy. II+« llqy. II &

—1
I

=2~llqy. II+«llqy. II &

=o(ilqy. ll & .

Therefore, it remains to be seen when the sequence I qy„J
tends exponentially to 0 (mod 1). If we use Binet's formu-
la and represent the Fibonacci numbers as

' n+1 n+1
1+v'S 1 —v'S

2 2

v'5
(A6)

then the second term tends exponentially to zero anyhow.
Thus, with q, =(Vs/5)q it remains for one to check for
which real numbers q& the sequence q&[(1+v'5/2)]"

Since s„+(n no)(r—/t)~oo (as a complex number),
0

then also s„~~. This contradicts the negative assump-
tion ls„l &C for an infinite number of terms. Recalling
that s„=1 /(1+ r„) we conclude that r„~—1 from inside
the unit circle (lr„ I

1 by unitarity) and this proves Lem-
ma 2.

Lemma 3. A,„~1 exponentially if and only if k/n is
an algebraic integer in Q[v'5], namely, k is written as

k =n[a+b(1+V'5)/2] (a, b integers) .

Proof. For a real number u, let us define the quantity
llu II

=min(u —[u J, [u J +1—u) as its distance from the
nearest integer. If we set q =k/m. , then

tends exponentially to 0 (mod 1). We will now prove that
the sequence q, [(1+v'5/2)]" converges to 0 (mod 1) if
and only if the convergence is exponential if and only if
q, is of the form

v'S 1+v'S
q1= a +b

5 2
(a, b integers) . (A7)

Let r=(1+v 5)/2 and let K =Q[r]. We take the follow-
ing basis for E over Q:

c01 —1, f02 —7 . (A8)

TrK/q(cotcoi ) =TrK/q
s —v's

10
=2—'=1

10

v'5
TrK/q(co, coo ) =TrK/q

5
=2XO=O,

4+5
TrK/q(co2mi ) =TrK/& 20

=2XO=O,

TrK/Q(~2&2 ) =TrK/&
5+v 5

10 10

We now employ results from Ref. 11, according to which
the sequence q, r" tends to 0 (mod 1) if and only if q, is of

We find the dual basis co] =(5—v'5)/10, co& =v 5/5 con-
structed to satisfy the equalities

TrK/&(co, co,')=5,", 1&i,j &2 . (A9)

Indeed, using TrK/&( a +b v 5 ) =(a +b V'5 ) + (a bV 5)—
=2a (a, b CQ), we have
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the form

qi =r™(pt~i+p2~f )

itself such that the unit circle is mapped onto itself.
Proof. Let us use the paratnetrization (11). Then if

~z~
= 1, we have

&S—1

2

&5
5 2

m

5 —&s &s
)0 +F2

&S—1
F2+Pi

2
(A10)

I

—1+y+2yzl
12+z —4)zl

and by simple algebraic manipulations,

I

—1+(b+2gz I

= 12+z —Pzl' .

for some integers p„pz and m ~0. Hence q, =(&5/5)ri,
where ri&Z[r]. On the other hand, since ( l, (&5—1)/2)
is a basis of Z[r] over Z, then for suitable p, and p2 on
the right-hand side of Eq. (A10) and for m =0 it is possi-
ble to represent any element of (&5/5)Z[r]. Hence there
is a convergence to zero if and only if q& has the form
(A7). It remains to be seen that if qt has the form (A7)
then the convergence of q, [(1+&5/2)]" to 0 (mod 1) is
exponential. Indeed, using the representation (A6) for
the Fibonacci numbers we get, for every a, b EZ,

(a +b~)r"5

+ lbl
5 5'

which tends exponentially to zero. This ends the proof of
Lemma 3.

Lemma 4. The Mobius transformation (8),
to = T(z) =[r +(2t —1)z]/(1 rz), m—aps the unit disk to

I

Hence, the unit circle is mapped onto itself. The point
z =0 is mapped on w = r and the points z = —1 is a fixed
point of the transformation. Using considerations of con-
nectedness and the one-to-one property of the Mobius
transformations, it is clear (without resorting to unitarity)
that the interior of the unit disk is mapped onto itself.
This proves Lemma 4.

Lemma 5. Let U be the set of all circles with its center
on the real axis passing through the point z = —1 includ-
ing the vertical line —1+iy (y ER). Then any element of
S is invariant under T. (Evidently U contains the unit
circle. )

Proof Let z b. e a point on a circle passing through the
point —1 whose center is at a real point c. Then

z=c+(1+c)i@i (i@[=1).

To prove that T(z) remains on the same circle we have to
show that

I
T(z) cl =

I
1+c—

l
.

Using the representation t =
—,'(1+/), r =

—,'( —1+(b) we

get, after some algebraic manipulation,

T(z) c=[—(1—+c) +(1+c) (()
—c(1+c)p+(2+c)(1+c)Pp]/[2+c+(1+c)p—c$—(1+c)Pp],

and by inspecting the absolute value squared of the numerator divided by ~1+c~ and the denominator, we find that
they are indeed equal. Since the union of all the circles in U is the complex plane minus the line —1+iy (y ER), it fol-
lows from the one-to-one properties of T that this line is also invariant under T. This proves Lemma 5.
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