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A general formalism is developed for the construction of separable potentials, either from a
given pseudopotential or directly from the solutions of an atomic all-electron calculation. Such
potentials are vital for the recently developed Car-Parrinello method. A subset of separable po-
tentials, proposed by Kleinman and Bylander, has been used often with great success. However,
for some atoms the previously used potentials do not reproduce the scattering properties over a
sufficiently wide energy range. It is shown that the Kleinman-Bylander form represents the first
term of a complete series. When additional terms are kept, the method yields highly accurate re-

sults.

The concept of nonlocal norm-conserving pseudopoten-
tials developed by Hamann, Schliiter, and Chiang' ten
years ago put the pseudopotential method for electronic
structure calculations on firm theoretical grounds. In
1982, Kleinman and Bylander? proposed an alternative
form for the nonlocal contributions, which leads to consid-
erable savings while setting up the Hamiltonian. At that
time, their method received only limited attention because
such operations involved only a minor fraction of the com-
putational effort for a complete self-consistent calculation.
However, with the advent of the combined electronic
structure and molecular-dynamics scheme of Car and Par-
rinello,? the Kleinman-Bylander (KB) form has experi-
enced a revival. In contrast to traditional plane-wave
pseudopotential calculations, the computational effort of
the Car-Parrinello method is no longer dominated by ma-
trix diagonalization, but considerable time is spent setting
up the Hamiltonian and calculating total energies and
forces. Therefore an efficient scheme for calculating non-
local matrix elements, like the KB form, is absolutely
essential to those calculations. However, it has recently
been shown that the form for pseudopotentials chosen by
Kleinman and Bylander can cause serious problems, e.g.,
the existence of spurious states.

In this paper we will develop a general framework for
the construction of separable potentials. We will show
that there exists an exact transformation of any potential,
local or nonlocal, into a separable form. In this context
the KB potential represents the first term of the resulting
series expansion. Even though such a truncation is often a
valid and accurate approximation, in some cases the
scattering properties of the atoms are not reproduced over
a sufficiently wide energy range. Furthermore, we will de-
scribe how those problems can be cured by including a
small number of additional terms into the truncated ex-
pansion.

State-of-the-art pseudopotential calculations are based
on nonlocal norm-conserving pseudopotentials as proposed
by Hamann, Schliiter, and Chiang,' which have the form
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Here Y, are spherical harmonics and L denotes a com-
bined angular momentum quantum number (/,m). The
potentials v;(r) are chosen such that the resulting wave
functions for the valence bands have zero nodes, but still
reproduce the scattering properties of the full potential
correctly. The choice of the local potential v, is arbi-
trary and affects only the higher partial waves with
1> lnax. We will be mostly concerned with the second
term in Eq. (1), namely the nonlocal potential. However,
our discussion will also apply to completely general poten-
tials. In the following we denote the nonlocal potential
operator simply by v.

In order to construct the separable form we must first
choose a complete but otherwise arbitrary set of functions
| ¢:). To be specific, we may choose a set of atomic wave
functions or a complete set of partial waves® (which are
not restricted to natural boundary conditions the way
atomic wave functions are). Then the potential can be
transformed exactly into the following form:
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where the matrix U satisfies the equation,
;Uik<¢k |v |¢j)-5ij. 3)

The atomic wave functions ¢; contain both a radial and an
angular dependence. The validity of Eq. (2) can be easily
shown by applying the right-hand side of Eq. (2) to an ar-
bitrary wave function |y), which is expanded into the
atomic wave functions, i.e., | y)=|¢,)a;,
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The next step towards a separable form is the transfor-
mation of the atomic wave functions into a new set of
functions |4;) for which the matrix <; | v|§;) and hence
the corresponding matrix U is diagonal. This can be
achieved by means of a Gramm-Schmidt orthogonaliza-
tion procedure, with a norm defined by (f|v | g) for func-
tions f and g. We are led to a recursive equation for the
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new set of functions® | ¢;);
i—1
160 =100 =2 181010, (5)
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This new set leads immediately to the general form of the
separable potential

o= |og)(G] . @

The separable potentials are usually nonlocal not only
in the angular dependence, but also in the radial depen-
dence. They even represent a more general class of poten-
tials than those of Eq. (1). Therefore, the question arises
whether separable potentials can be constructed directly
from an all-electron atomic calculation without first con-
structing a potential which is local in the radial depen-
dence. This is indeed the case. We may choose rather ar-
bitrarily a set of pseudo wave functions | ¢;) which match
the all-electron wave functions at a set of energies ¢ out-
side some radius. Second, we choose, again rather arbi-
trarily, a local potential, which matches the true atomic
potential outside the same radius. Now we construct the
functions | ve;) by

|v¢,-)=[s,-— - %V2+v|°c)]|¢,-). (8)

From this point on the construction of the separable po-
tential proceeds as outlined before.

In order to make the separable potentials a useful tool,
we must truncate the series and understand the resulting
errors. We note the following: Analogous to Eq. (4), it
can be shown that if the summation in Eq. (4) is restricted
to the lowest n atomic wave functions, then the corre-
sponding eigenvalues and wave functions obtained from
the separable form are correct. Furthermore, the energy
derivatives of the logarithmic derivatives at those energies
are correct as a consequence of the condition of norm con-
servation. Every wave function which is orthogonal to all
| vg;), where ¢; is one of those n lowest atomic wave func-
tions, does not feel the nonlocal contribution at all.

This is the key to the understanding of the spurious
states found in pseudopotential calculations using KB po-
tentials. The KB potentials form a subset of separable po-
tentials and are constructed from only one atomic bound
state. If the local potential alone is much deeper than lo-
cal and nonlocal parts together, there is the possibility of a
bound state of the local part with one node in the region of
the occupied states. Such a state is likely to be almost or-
thogonal to |vg;), where ¢; was used in constructing the
KB potential and has no nodes. Hence, this state will per-
sist because it barely experiences the nonlocal contribu-
tion. This will result in an inversion of the node sequence.
Even though this scenario describes the extreme case, the
same effect will usually result in a serious degradation of
transferability.

The cure to this problem is to explicitly include more
terms in the series expansion for the separable potential.
A spurious state with one node will then experience the
nonlocal potential through the added terms and therefore
be shifted upwards in energy, out of the region of interest.

The inclusion of more terms in the expansion of the separ-
able potential makes it possible to explicitly test and con-
trol the accuracy of the separable form.

We shall now verify our predictions with a practical ex-
ample. Because of the increasing interest in III-V semi-
conductors, we investigate the pseudopotential for arsenic.
In particular we will study the scattering properties of
the s potential, while using the d component as a local po-
tential. The pseudopotential is created within the frame-
work of generalized norm-conserving pseudopotentials
(GNCPP) by Hamann.’ The cutoff radii are 0.9 and 1.8
a.u. for s and d potentials, respectively.

The scattering properties are best reflected in the loga-
rithmic derivative function of the energy-dependent par-
tial waves, which are shown in Fig. 1 with several levels of
approximation. The original pseudopotential has a bound
state at —0.54 a.u. The crossover from zero to one node
happens just above the bound-state energy at —0.37 a.u.
States with two nodes appear only above an energy of 2
a.u.

The separable potential with only one term, i.e., the KB
potential, reproduces value and derivative of the logarith-
mic derivative at the bound-state energy, which was used
in the construction of the separable potential. Also, the
bound-state wave function is described correctly [Fig.
2(b)]1. However, the next bound state appears already less
than 0.5 a.u. above the lowest bound state. This can be
seen from the singularity of the logarithmic derivative at 0
a.u., which reflects the crossover to states with two nodes
[Figs. 2(c) and 2(d)]. As a consequence of this, the loga-
rithmic derivative deviates strongly from the correct be-
havior if the energy moves away from the lowest bound-
state energy, i.e., the transferability of the separable po-
tential with only one term is disastrous.

If we, as outlined above, introduce a second term to the
separable potential, we find the transferability greatly

2\\\1\ T T
‘\\
o\
. \
g 1 \ 1
£ \
g \
IS4 \
) ~ -
S 0"-"——:\———“
__1 I I I

-20 -10 O 10 20
Logarithmic Derivative

FIG. 1. Logarithmic derivative function of an As pseudopo-
tential in the original form (solid), and the corresponding separ-
able potentials truncated after the first (long dashes) and the
second (short dashes) term.
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FIG. 2. S-type partial waves of an As pseudopotential in the
original form (solid), and the corresponding separable potentials
truncated after the first (long dashes) and the second (short
dashes) term. The radial distance from the center is shown on
the horizontal axis and the amplitude on the vertical axis. The
energies are (a) —0.7 a.u., (b) —0.54 a.u., (c) —0.25 a.u., and
(d) 0.5 a.u. Partial waves which are not visible fall on top of the
correct solution shown as solid lines.

enhanced, and the logarithmic derivative of the separable
potential coincides with that of the original potential over
a wide energy range. This second term is derived from a
partial wave 0.01 Hartree above the bound-state energy.
A partial wave with a higher energy would be an even
better choice for the wide energy range shown in Fig. 1.

Even though this example does not yet show an inver-
sion of the node sequence as suggested previously, we have
actually found such an inversion for a one-dimensional
model potential.

The transferability of the KB potential depends some-
what on the choice of cutoff radii and usually some im-
provement can already be achieved by simply choosing a
softer pseudopotential. However, in all cases a large im-
provement of the transferability has been observed when
the second term is included in the separable form. Our
feeling is that two terms in the separable potential will al-
ready be sufficient for all relevant cases.

In order to optimize the transferability in the energy
range of interest, a good choice for the function | ¢;) is one
partial wave and its energy derivatives. This choice is
equivalent to choosing a set of partial waves from a small
energy range. The first energy derivative of a partial wave
can be easily obtained either numerically or by solving the

inhomogeneous Schrodinger equation:

("'1"V2+vloc+v)l¢(£)>-|¢(£)). )

Here ¢(¢) denotes a partial wave obtained by outward in-
tegration of the Schriodinger equation at the energy € and
#=09¢/d¢ is the corresponding energy derivative.

It is worth mentioning that the partial waves of truncat-
ed separable potentials frequently show a peculiar behav-
ior. In our numerical studies we find states with one or
more nodes below the states with zero nodes [Fig. 2(a)l.
However, we have not observed any bound states corre-
sponding to those states and the logarithmic derivative
function is not affected by the appearance of more nodes.
The reason is that those nodes do not cross the sphere sur-
face but are pulled in from the center. Hence they do not
affect the behavior of the partial waves in the outer region
of the atom which is relevant for the electronic properties.
This behavior is interesting insofar as that the number of
nodes alone no longer uniquely determines the main quan-
tum number. In addition, it may have consequences for
the plane-wave convergence of calculations using separ-
able potentials truncated after the first term. The reason
for this is that states with more nodes are harder to de-
scribe by a plane-wave expansion and their position, there-
fore, strongly depends on the plane-wave cutoff. If a node
enters from the center even in the region of the valence
states, this will result in a relatively hard pseudopotential.
This effect, too, is greatly reduced if a second term is in-
cluded in the separable form [Fig. 2(a)l, and from our
studies we expect once again, that two terms in the separ-
able potential will be sufficient for all practical purposes.

In conclusion, we have presented a general framework
for the construction of separable potentials from a given
arbitrary potential or directly from the solutions of an
all-electron atomic calculation. This concept generalizes
the potential of Kleinman and Bylander in a natural way.
We have pointed out problems which occur in connection
with the KB potentials, and have shown how these prob-
lems can be easily cured within the framework of separ-
able potentials. In addition, this framework provides an
efficient way to control and improve the accuracy of trun-
cated separable potentials such as the KB potentials.
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