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Spin-wave calculations for multilayered structures
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Results are presented on the calculations of spin-wave frequencies in ferromagnetic layers, double

layers, and multilayered structures for small, nonzero wave vectors such as can be investigated by,
e.g. , Brillouin light scattering. The underlying continuum-type magnetostatic theory includes both
dipolar and exchange contributions and fully takes into account magnetic surface and interface an-

isotropies as well as interlayer exchange coupling. For single magnetic layers the detailed influence

of surface anisotropies on both film surfaces is studied. For magnetic double layers the interlayer
exchange coupling mechanism is investigated. In the case of multilayers consisting of alternating
magnetic and nonmagnetic layers, the crossing regime between dipolar and exchange modes shows a
strong dependence of the gap width on the amount of interface anisotropy. For small layer
thicknesses the interlayer exchange coupling shifts the spin-wave frequencies of all but the highest-

frequency dipolar modes into the exchange-mode regime. In the case of all-magnetic multilayered

structures, a new type of collective spin-wave excitations arising from coupled exchange modes is

predicted.

I. INTRODUCTION

Spin waves in layered magnetic structures have spurred
interest both because of the growing technological impor-
tance of these kinds of materials, as well as the advent of
new experimental techniques, which makes experimental
access to properties of magnetic excitations easier. There
are basically two types of magnetic excitations that play
an important role in layered magnetic structures. Long-
wavelength dipolar excitations (so-called Damon-
Eshbach modes) exist on each magnetic layer. These
modes can be coupled via their dipolar stray fields to
form a set of collective magnetostatic spin-wave excita-
tions in magnetic multilayers. In addition, small-
wavelength spin-wave modes determined primarily by
magnetic exchange exist in magnetic layers. The wave
vector of these modes is determined mainly by the layer
thickness.

A well-developed method for studying spin-wave exci-
tations is ferromagnetic resonance (FMR). Many of the
basic properties of spin-wave propagation in thin films
and multilayers have been studied by FMR, and basic
concepts of magnetic coupling mechanisms have been
developed in view of available FMR data. However,
apart from situations where nonzero wave vectors are in-
troduced through finite-geometry effects, FMR is restrict-
ed to dipolar zero-wave-vector spin-wave excitations (uni-
form modes). An example of a nonzero wave-vector situ-
ation are the so-called standing spin waves, i.e.,
exchange-dominated modes with the wave vector deter-
mined by layer thickness. The intrinsic lack of finite-
wave-vector excitations results in a separation of
dipolar-type spin-wave excitations (uniform modes) and
exchange excitations (standing spin waves) in an ap-
propriate theoretical description. However, the cross-
over regime of dipolar modes and exchange modes is not

accessible with FMR.
On the other hand, Brillouin light scattering offers a

versatile experimental tool to study nonzero wave-vector
spin-wave excitations in magnetic structures. The wave
vector of detected spin waves is determined by the
momentum transfer from light to spin waves in the in-
elastic light scattering process. Using Brillouin light
scattering, the collective dipolar spin-wave excitations in
magnetic multilayers could be observed experimentally
for the first time. Dipolar collective modes exhibit their
unique properties only for nonzero wave vectors; they are
degenerate in an FMR experiment. Because of nonzero
wave vectors, dipolar modes contain a small but measur-
able admixture of exchange character. There is a cross-
over regime of dipolar-type modes and exchange-type
modes, where both modes mix their character, showing
characteristic mode repulsions. These effects, and many
more, can be studied easily using Brillouin light scatter-
ing.

Although a large amount of Brillouin light scattering
work exists for bulk materials and for single magnetic
layers, there have been only a few theoretical or experi-
mental studies of Brillouin light scattering in multilay-
ered structures and superlattices. The first calculations,
restricted to the dipolar limit, were reported by Camley,
Rahman, and Mills, ' Griinberg and Mika, Emtage and
Daniel, and, including volume anisotropy contributions,
by Rupp, Wettling, and Jantz. This early work neglect-
ed exchange contributions as well as the possible
influence of magnetic interface anisotropies on the spin-
wave modes. Exchange modes in multilayers have been
considered by van Stapele et al. , Dobrzynski et al. ,
Albuquerque et al. , Hinchey and Mills, Vayhinger and
Kronmiiller, ' and Barnas. "

However, very little attention has been directed toward
interface anisotropies. Although these authors were able
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to predict the salient features of the new collective spin-
wave excitations in superlattices, recent Brillouin light
scattering experiments by Hillebrands et al. ' ' show the
effect of interface anisotropies for small layer thicknesses,
as demonstrated for Fe/Pd superlattices. Experimental
evidence for spin-wave modes in magnetic double layers
has been reported by Grunberg and co-workers, '

Heinrich et al. ,
' Cochran and Dutcher, ' and for mul-

tilayered structures by Grimsditch, Khan, and Schuller
for Mo/Ni superlattices. ' A detailed experimental proof
of the predicted magnetic properties of the collective
spin-wave excitations was presented by Hillebrands
et ai. "

In this paper theoretical investigations applicable to
Brillouin light scattering experiments are presented on
the properties of spin waves in layered ferromagnetic
structures. We do not use Bloch's theorem, but instead
calculate the spin-wave modes for finite numbers of lay-
ers, since this approach bears more relevance to forth-
coming experimental investigations. The calculations are
based on single-layer calculations performed by Rado
and Hicken and by Cochran and Dutcher, ' and are
extended towards double layers and multilayered
structures. Preliminary results have been published in a
preceding Rapid Communication. Multilayers consist-
ing of alternating magnetic and nonmagnetic layers
(magnetic/nonmagnetic multilayers) as well as all-
magnetic multilayered structures are considered. The
model includes both dipolar and exchange interactions as
well as volume and interface anisotropy contributions,
and is applied to a variety of layered magnetic structures.

The paper is organized as follows. In Sec. II the basic
theoretical considerations are outlined. In Sec. III the
theory is applied to single magnetic layers and some re-
marks are added to existing work on spin waves in mag-
netic films. Section IV presents the results for magnetic
double layers and discusses the role of interlayer ex-
change coupling. In Sec. V magnetic/nonmagnetic mul-
tilayered structures consisting of alternating magnetic
and nonmagnetic layers are investigated. In Sec. VI our
model is applied to all-magnetic multilayers. Section VII
summarizes the results.

II. DETAILS OF CALCULATION

We follow the continuum-type approach used by Rado
and Hicken as well as by Cochran and Dutcher, ' who
presented results on single ferromagnetic layers for wave
propagation perpendicular to the direction of the static
magnetization. The magnetization was assumed to lie in
the layer plane and parallel to the applied magnetic field.
In the following we retain the assumption of in-plane
orientation of the saturation magnetization, but allow for
arbitrary in-plane angles of wave propagation. Since
mode damping effects are quite weak in the wave-vector
regime accessible by Brillouin light scattering, they are
not considered in this paper.

The coordinate system used in the following is shown
in Fig. 1. The x axis is perpendicular to the magnetic lay-
ers. For an N-layer system the positions of the interfaces

dl

FIG. 1. Coordinate system used for calculating spin-wave

frequencies. Shown is an example of a layered structure consist-

ing of three magnetic layers, with layer indices n =1,3,5 and two
intervening nonmagnetic layers (n =2,4). the positions of the in-

terfaces are d„,n =0, . . . , 5.

1 BM =Mx H —1
V E,„,+ 2A V'M

y B~ M

where y =y,g /2 is the gyromagnetic ratio,
y, = 1.759 X 10 Hz/Oe is the value of y for the free elec-
tron, and g is the spectroscopic splitting factor. E,„;is
the usually defined magnetic volume anisotropy energy
density, and A is the exchange stiffness constant. We
have omitted the layer index n for clarity. Also, the mag-
netostatic Maxwell equations have to be fulfilled:

VXH=O,

V (H+4nM)=0.
(2)

are defined by d„,n = I. . .N, such that for the nth layer
the interfaces lie at x =d„&and x =d„.We use the in-
dex n to indicate parameters of the nth layer, but when
appropriate this index is omitted for an improved clarity
of the formulas. We assume that the applied magnetic
field H is collinear with the saturation magnetization
4aM„ in each magnetic layer, which can be achieved for
strong enough applied external fields. Without loss of
generality, the external field H and 4aM„ in each mag-
netic layer are in the z direction. We define the angle 4
as the angle between 4aM and a crystallographic refer-
ence direction within the film plane, which is normally
[100]. The direction of the mode propagation, defined by
the mode's wave-vector component parallel to the film
plane, q~~

is within the (y, z) plane. Its angle with the z
axis, i.e., the direction of the saturation magnetization, is
EX.

We begin with the full Landau-Lifshitz torque equation
of motion
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From the equation of motion [Eq. (1)] and the Maxwell
equations [Eqs. (2) and (3)], boundary conditions can be
derived. At each interface the parallel component of H
and the perpendicular component of H+4+M have to be
continuous. From the equation of motion [Eq. (1)] we ob-
tain the condition that the sum of the interface torques
must be zero for each interface. If at the x =d„interface
there is no exchange coupling to the adjacent magnetic
layer, the so-called Rado-Wertman boundary condition
has to be fulfilled:

1 23BM
M Bn X=d

where E;„„,is the interface anisotropy energy. 8ldn is
the partial derivative with respect to the surface normal
unit vector, n. The latter points from the interface into
the magnetic layer. In the presence of exchange coupling
between two magnetic layers, labeled with the indices n
and n ', the so-called Hoffmann boundary conditions have
to be fulfilled:

2A„BM„
MnX FM EjM„~ M Bn„ x =d„

2Ann

M M ~

M XM,
n n' Z=d n' —

1

=0 (5)

1 2A„BM„E.~M„, inter, n'
X=dn' —1

2Ann
nM. XM

Z =d„
(6)

For interfaces between two magnetic layers n' is given by
n'=n + 1, whereas for exchange coupling across a (thin)
nonmagnetic layer n'=n+2. The interlayer exchange
constant between layer n and n' is A„n. Without loss of
generality we call this parameter A&2 in the following.
The interface normal, n„, points into layer n, i.e.,
n„=—n„.The first term in Eqs. (5) and (6) is the Rado-
Weertman boundary condition, whereas the second term
describes the exchange coupling between the two layers.
Two limiting cases of the interlayer exchange constant
A &z should be considered. For A, &=0 Eqs. (5) and (6)
resemble the Rado-Weertman boundary conditions, i.e.,
the interface torque densities must be zero on each side of
the interface separately. For large values of A, 2, i.e.,
A, z » 2;(BM;/dn, ), the first term in Eqs. (5) and (6) can
be neglected and we obtain simply Mn X Mn =0, i.e., M„
and M„are aligned either parallel or antiparallel. The
interface anisotropy constant E;„„,is defined by

2 2
Einter +s x ++sp uy

where E, is the out-of-plane interface anisotropy con-
stant and K, the in-plane interface anisotropy constant,
respectively. The direction cosines of M, in the coordi-
nate system described above are u„and u .

We now turn to the calculation of the spin-wave fre-
quencies. We assume that the fluctuations in M and H
associated with the spin waves are small compared to the
static values. This condition is almost always fulfilled for
thermally driven spin waves at temperatures considerably
less than T, . We split M and H into frequency-
independent static parts Mo and Ho and dynamic parts I
and h.

M(t) =Mo+m(t), Iml « lMOI,

H(t}=H,+h(t),

In principle we have to find the static equilibrium orien-
tations of the magnetizations for the layered system be-

—q, h +q h, =0,
—qh„+qh =0,

q„h +q h +q, h, +4~q m„+4'm

(10)

+4aq, m, =0, (12)

fore calculating the spin-wave frequencies. Due to inter-
face anisotropies and exchange coupling effects the static
equilibrium direction might differ from the bulk direc-
tion. The direction of magnetization can be obtained by
solving the equation of motion [Eq. (1)] and the magne-
tostatic Maxwell equations [Eqs. (2) and (3}]with the ap-
propriate boundary condition [Eqs. (4)—(6)] for time-
independent M and H. It should be noted that in the
general case the direction of the magnetization is a func-
tion of the position in each magnetic layer. Once we
have solved the static problem all time-independent terms
contained in Eqs. (1)—(6) cancel to zero.

Let us define q = (q„,q, q, ) as the spin-wave wave vec-
tor, and qi (qi ) as the component of q parallel (perpen-
dicular) to the interfaces. Thus q

=q„+q 2+ q, ,

qual
=q +q„and q~=q„. In a Brillouin light scattering

experiment qual,
and thus qy =q~lsina and q, =q~lcosa, are

defined by the scattering geometry due to wave-vector
conservation in the scattering process. We assume that
inside the ferromagnetic film h and I are proportional to

exp[i(cot —q, x —
q y —q,z)] .

Outside the film h is proportional to

exp[i(cot —
q y —

q, z ) —q,'x ],
and m is zero. Using Eqs. (8) and (9) we linearize Eqs.
(1)—(6) by dropping all terms that are of quadratic or of
higher order in components of I and h. We assume that
the magnetization lies along its equilibrium direction.
Thus the equation of motion [Eq. (1}]is a homogeneous
system of linear equations in the components ofI and h:
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Mh„+ m„—H+H&+2 q m =0, (13) H = (2—16 sin 4+16sin 4), (18)

2 CO

m, =0,
y

with

l

M
CO

m =0, (14)

(15)

H&= (2—4sin 4+4sin"4),

and for (110)surfaces by

H = (2 —7 sin 4+3sin 4),

(19)

dE,„;H m„=M
dm

(16)

dEani
Hpm =M

Gmy
(17)

where H and H& are the anisotropy fields. For (001)
surfaces of cubic systems these fields are given by

H&= (2 —13sin 4+12sin 4), (21)

with E& being the cubic volume anisotropy constant.
From Eq. (15) it follows that m, is zero for nonzero co. In
order that Eqs. (10)—(15) have a nontrivial solution the
secular determinant of their coefficients must vanish.
Neglecting the unphysical solution q =0, the solutions
are given by the zeros of the relation:

q6+ (4mM+2H+H +Hp)q + (H+H~}(4mM+H+Hp) 8m Aq,— q

+4aM[(H& H)q
~~

—(H+H&—)q, ]=0 . (22)

Since
q~~

and q, are constants defined by the scattering geometry and the wave number of the incident light, Eq. (22) is
the dispersion relation between the spin-wave frequency co and the wave-vector component perpendicular to the layers,

q~ =q„.We label the six roots of q~ by q &. . .q„6.The calculations of these quantities are performed numerically. The
corresponding dynamic fields and magnetizations are labeled h„;,h;, m;, and m;, respectively, for i = 1, . . . , 6.

For an easier analysis of the boundary conditions it is convenient to express h;, m„;,and m„;in terms of h„,. From
Eq. (11)we find

q
hei= hei .

qxi

For m„;and m~; we define the quantities u; and v;

m~, =0;h

my(
=v, hxi ~

From Eqs. (13) and (14) we are able to calculate the quantities u; and u;:

H+H + q; (ice/y )(q~~s—ina/q„; )
2A

[H+H +(2A /M)q2][H+H&+(2A /M)q; ]—(co/y)

(23)

(24)

(25)

(26)

[H+H&+(2A/M)q, ](q~~sin )iaq„;+ice/y

[H+H +(2A/M)q; ][H+H&+(2A/M)q; ] (co/y)— (27)

In the nonmagnetic layers we obtain from Eq. (2) and (3)

(28}

where we label the two solutions of Eq. (30) by q„', and

q~2. We then obtain

(29)
h' =ih'

II x1 7 (31)

qx=+qII ~ (30)

where h
II

is the component of h in the direction of qII. A
nonvanishing solution of Eqs. (28) and (29}requires

h' = —ih'x2 (32)

Outside the layers we must require h'2 =0 for the vacu-
um above the 1ayers and h'& =0 for the vacuum below
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the layers, respectively, since h„'must approach zero for
X —++ OG.

We now turn to the boundary conditions, which mix
the six solutions for h„,, h;, mx;, and m; at the interfaces
d„.Continuity of h

~~

and of h +4m.m requires

6

g (I+4m.u, „)h„,„e
6—g (I+4mu, „+,)h; „~,e "'"' "=0, (36)

6
II

g
qxt n p e q)) n + I e q)[ n

O

i =1 Qxl
(33)

for magnetic/magnetic interfaces. The Rado-Weertman
boundary condition [Eq. (4)] reads:

6

g (I+4mu;)h„,e "' " —h„',e
i=1

ih—„'2e '~ "=0 (34)

6

g (K, —K,icos @+iAq„;)u;h„,e "' "=0,

6

g [K, (1—2cos 4)+i Aq„,] vh„;e "' " =0,

(37)

(38)

for magnetic/nonmagnetic interfaces, and

r'&xi, n e
i =1 9zl, n

6 "4in+) n , 0 (3g)xi, n+1
;=1 qx, n+1

where + refers, respectively, to the upper or lower inter-
face of the magnetic layer. For coupling between two
magnetic layers with interfaces at x =d„and x =d„
we obtain from the Hoff'mann boundary conditions [Eqs.
(5) and (6)]

6 —i d
( iA„—q„;„+K,„K,~ „cos—@+A„„)u;„h„;„e

i=1 i=1 M„
(39)

6 6

[ iA„q—„;„+K,~„(1—2cos 4)+A„„]v;„h„;„e "'" "—g A„„v;„h„,„,e "" "=0,
i=1 i=1

(40)

6 —i
(i A„q„,„+K,„—K, „cos4+ A„„.)u; „h„;„e

i=1 i=1
6

g [iA„q„,„+K,„(1—2cos 4&)+ A„„]v,„h„,„e

Mn qxi n' n'~ nn'ui, n'~xi, n'e
n'

M
~ nn'Vi, n'Axi, n e '" " =O,

n

(42)

where A„„is the interlayer exchange constant between
layer n and n'. Equation (33)—(42) form a system of
linear equations in h, „orh; „,respectively. Since there
are six solutions to h, in each magnetic layer, two solu-
tions h' in each nonmagnetic layer, and two solutions
outside the multilayer, the dimension of the system of
linear equations is given by 2+6% g+2X p g

where

N, (N„,„,) is the total number of magnetic (nonmag-
netic) layers. In order to fulfill the boundary conditions
simultaneously for all interfaces, the determinant of the
system of linear equations must equal zero. For finding
the spin-wave frequencies the numerical procedure is as
follows: For a given frequency co Eqs. (22), (26), and (27)
are used to calculate q, „,u; „,and v;„.Then the value
of the boundary condition determinant is evaluated. In a
root finding routine co is varied and the boundary condi-
tion determinant is calculated until the value of the
boundary condition determinant fulfulls a convergence
criterion. The calculations are performed by means of
appropriate numerical tools. In the following sections ex-
amples are presented on spin-wave calculations in single
magnetic layers, magnetic double layers and
magnetic/nonmagnetic as well as all-magnetic multilay-
ered structures.

III. SINGLE MAGNETIC FILMS

The first results on spin-wave calculations in single
magnetic films, based on the aforementioned theory, were
reported by Rado and Hicken for Fe(110) films for
propagation in the [001] direction and by Cochran and

utcher2' for Fe(001) films for propagation in the [100]
direction. Both dipolar modes (Damon-Eshbach modes)
and exchange modes (so-called standing spin waves) are
contained in the model. In the cross-over regime of dipo-
lar modes and exchange modes, these modes show repul-
sions and mix their mode characters. In the presence of
interface anisotropies, as is the case in, e.g. , epitaxial Fe
films, the frequency of the dipolar mode diverges for film
thickness approaching zero. In this section we call inter-
face anisotropies "surface anisotropies", which is more
convenient for single films.

Figure 2 shows the calculated spin-wave frequencies
for Fe(110) as a function of the film thickness. The prop-
agation direction is [001], and the applied magnetic field
is 1 kG. The film parameters, listed in the figure caption,
are taken from a fit to experimental data. ' The latter
were obtained from an in situ Brillouin light scattering
experiment on epitaxially grown Fe(110) films on a
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FIG. 2. Spin-wave frequencies as a function of layer thick-
ness for a single-crystal Fe(110) layer. The full lines are a calcu-
lation with the theory described in the text; the dashed line is an
effective-volume-anisotropy approach neglecting exchange con-
tributions. The parameters are: 4~M=18 kG, H =1 kG,
g=2. 1, A =2X10 erg/cm, K&=4.8X10' erg/cm', I(,=2.8
erg/cm, E,~ =0.024 erg/cm, q~~

=1.73 X 10' cm

W(110) substrate. ' The full line is the calculation using
the theory described in the previous section. For com-
parison the broken line shows the calculation using a
simplified approach, in which surface anisotropies are
treated as effective volume anisotropies and exchange
contributions are neglected. ' ' Of course the latter ap-
proach can only yield the dipolar mode. For the dipolar
mode the agreement of both calculations is quite good,
since exchange contributions to the dipolar mode are rel-
atively small.

Figure 3 shows the frequencies of the dipolar mode
(lowest-frequency mode} and the first exchange modes for
a 200-A thick Fe film as a function of the in-plane angle

4 between the direction of magnetization and the [100]
axis, i.e., on rotating the sample about the film normal.
The surface anisotropy constant K, is 2.8 erg/cm . Not
only the dipolar mode but also the first exchange modes
are significantly affected by changing the orientation of
the magnetization with respect to the crystallographic
axes. For comparison, the calculation based on the same
parameter set using a simplified approach neglecting ex-
change is shown by the dashed line.

We now focus on the separate inhuence of the surface
anisotropies of both film sides on the spin-wave frequen-
cies. In our approach surface anisotropies, described by
an out-of-plane component K, and an in-plane corn-
ponent E, , enter via the Rado-Weertman boundary con-
dition [Eq. (4)]. Thus, surface anisotropies can be studied
separately for each surface. Treating surface anisotropies
as effective volume anisotropies (i.e., dividing the surface
anisotropy energy by the film thickness and adding this
to the volume-anisotropy energy density term) does not
allow the separation of the contributions from the two
surfaces, since only the averaged values of both the sur-
face anisotropies enter the effective anisotropy energy
density. The effect of different surface anisotropies on
both sides of the film is to slightly change the spin-wave
frequency upon reversal of the propagation direction, or
equivalently, upon reversal of the externally applied mag-
netic field. The results from our calculations are shown
in Fig. 4 for a 10-A thick Fe(110}film. The change in
spin-wave frequency upon reversal of either

q~~
on H is

plotted as a function of the difference of the out-of-plane
surface anisotropy constant E, between the two surfaces.
The averaged value of K, in erg/cm is indicated on each
curve. First of all, the frequency difference is linearly
proportional to the difference in E, between both sides of
the film. Thus, a high-resolution Brillouin light scatter-

1.2

N 2QQ
T'

0- 16Q—
V
Z
LIJ

~ 12Q-
LJ
Ct
Lt

8Q—

N

1.0

UJ

z 0.8
UJ
lZ
UJ
U- o.e
U

CI

o O.I.

UJ

0.2
UJ
lX

4Q-

CL
V)

0.0
6

b, Ks (erg/cm2)
10

0
QO

I
I

zoo
I 1

6oo
I i I I

90 120
I I

15Q' 18Q

FIG. 3. Spin-wave frequencies as a function of the in-plane
angle 4. The parameters are as in Fig. 2.

FIG. 4. Change in spin-wave frequencies upon reversal of
q~~

as a function of the difference in the out-of-plane surface aniso-
tropies of both film sides for a 10-A thick Fe layer. H=1 kG,
4mM=21 kG, the other parameters are as in Fig. 2. The sum of
K, of both film sides is indicated at each graph.
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ing experiment should be directly able to determine the
difference in K, between both film sides. This would pro-
vide important information on, e.g. , the epitaxial growth
properties of the film on a given substrate. Second, the
frequency difference is rather insensitive to the absolute
value of E, . A detailed study shows that this is also true
for a large range of film thickness, of saturation magneti-
zation, and of applied magnetic field. Although the effect
is quite small, high-resolution Brillouin scattering experi-
ments should be able to confirm these results.

60
N
X

50—
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C3~ 30-
U
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5 /'L l'J V.

IV. MAGNETIC DOUBLE LAYERS

Magnetic double layers are an important model system
to study the coupling mechanisms between two magnetic
films in close contact. In addition to dipolar coupling,
the exchange coupling mechanism becomes important if
the distance between the two magnetic films is closer than
the exchange coupling length, which is of the order of a
few Angstroms. Experimentally, there exist a number of
reports by Grunberg and co-workers on Fe, Co, and Per-
malloy double layers with Au, Cr, Cu, and Pd as the
spacer layer materials. ' Varying the spacer layer
thickness, the exchange coupling of the two magnetic
films was varied and its influence on the spin-wave modes
studied. In the case of Cr, antiferromagnetic coupling be-
tween the two magnetic films was also observed.

Based on the aforementioned theoretical approach,
there are reports from three groups in which the spin-
wave modes were calculated for magnetic double lay-
ers. 'O' ' Since the spacer layer thickness, which is typ-
ically of the order of 2 —20 A, is much smaller than the
magnetic film thickness, it can be neglected for the calcu-
lation of the spin-wave frequencies. In this case the layer
system is described by two magnetic layers in contact.
For the interface the Hoffmann boundary conditions Eqs.
(5) and (6) have to be used. The interlayer exchange cou-
pling is described by the interlayer exchange constant
A, 2. Figure 5 shows a calculation of the spin-wave fre-
quencies as a function of the interlayer exchange constant
A &2 for two 400 A Fe layers in contact. For zero inter-
layer exchange the films are only dipolar coupled. The
dipolar mode at 33.2 GHz is the Damon-Eshbach mode
of an 800-A thick Fe film. The three modes at 15.4, 23.3,
and 41.4 GHz are the exchange modes of a single 400 A
layer, since these modes in the two layers do not interact.
The insets of Fig. 5 show the fluctuating parts of the
magnetization component perpendicular to the films as a
function of the position in the layers. The center hor-
izontal line is at m~ =0. The center vertical line indicates
the interface between the two 1ayers. The Damon-
Eshbach mode of the double-layer system still shows the
characteristic decay of the amplitude of m ~ from one sur-
face to the other. The exchange modes are characterized
by the increasing number of nodes in the magnetization
profile. The discontinuity in m~ at the interface is much
larger for the exchange modes than for the dipolar mode
due to the absence of exchange coupling at the interface.
With increasing interlayer exchange constant A &2 the de-
generacy of the exchange modes in the two layers is lifted
and each exchange mode splits into a symmetriclike and

z l0
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FIG. 5. Spin-wave frequencies as a function of the inter-layer
exchange coupling constant A I, for a double layer consisting of
two 400 A Fe layers in an applied magnetic field of 1 kG. The
insets show the perpendicular component of the fluctuating part
of the magnetization as a function of the position in the film

stack.

an antisymmetriclike mode with respect to the interface.
[We use the expression "(anti)symmetric-
like, " since the symmetry is slightly broken by the pres-
ence of the dipolar interaction. ] With increasing A, 2 the
frequencies of the symmetric modes do not change
significantly, since the mode frequencies for A, 2=0 are
already close to those of the even-numbered exchange
modes of an 800-A thick film. The frequencies of the an-
tisymmetriclike modes increase and converge to the
exchange-mode frequencies of the odd-numbered ex-
change modes of an 800 A thick film. For A&2=5
erg/cm the frequencies of the modes shown in Fig. 5

seem to be close to the full coupling limit. It is
noteworthy that for this value 3» is still much smaller
than in the full coupling limit, which can be estimated as
A ', 2= 2 A /a for bcc and fcc lattices, where a is the lattice
parameter. For Fe this estimate for 3 ',

2 is of the order of
100 erg/cm . The magnetization profiles show that at the
interface the discontinuities in m ~ are much smaller than
for A ~2 =0, but still finite. Since for exchange modes the
Brillouin light scattering cross section is very dependent
on the net fluctuating magnetic moment, the mode inten-
sities in a Brillouin spectrum can still be expected to be
very sensitive to 3 ~2 in this regime. However, a detailed
calculation of the scattering cross section is beyond the
scope of this paper. For A, 2

———0.8 erg/cm the
lowest-order exchange mode becomes soft and goes to
zero. This indicates a transition of the equilibrium state
of the magnetization of the system from parallel to anti-
parallel alignment of the magnetizations of the two films.

V. MAGNETIC/NONMAGNETIC
MULTILAYERS

Magnetic/nonmagnetic multilayered structures have
received considerable attention in the past due to novel



41 SPIN-WAUE CALCULATIONS FOR MULTILAYERED STRUCTURES 537

magnetic excitations, which only exist in these types of
artificial structures. Due to a coupling of the dipolar sur-
face spin-wave modes (Damon-Eshbach modes) of each
magnetic layer across the intervening nonmagnetic
spacer layers, their frequency degeneracy is lifted. These
coupled modes show partial surface-modelike as well as
bulk-modelike behavior. In the limit of many bilayers
they form a band of collective spin-wave excitations. In
the dipolar limit these modes have been studied both
theoretically and experimentally. In this paper we in-
clude both bulk exchange as well as interlayer exchange
contributions and, in particular, we study the cross-over
regime of dipolar modes with the exchange modes.

We consider the case of a multilayer stack consisting of
single-crystal Fe(110) layers separated by nonmagnetic
layers of equal thickness. This structure resembles Fe/Pd
superlattices, where the Fe crystallites have preferred
(110) orientation, ' as well as single-crystal epitaxial Fe
films on W(110) substrates. ' For the simulations, the pa-
rameters of the latter are used for the saturation magneti-
zation and the out-of-plane interface anisotropy constant

The parameters are listed in the figure captions of
this section. The value of the in-plane interface constant
K, =0.024 erg/cm has been dropped because it does not
aft'ect the spin-wave frequencies in the layer-thickness re-
gime considered here. The wave-vector points in the
[001]direction, and the applied magnetic field is 1 kG.

Figure 6 shows calculated spin-wave frequencies as a
function of the single-layer thickness for a multilayered
structure consisting of five bilayers. The thickness d of
the magnetic layers equals that of the nonmagnetic lay-
ers. Two kinds of modes are observed. Between about

18—35 GHz there are five dipolar modes (Damon-
Eshbach modes) separated in frequency because of the di-

polar interaction across the nonmagnetic layers. They
are intersected by, and hybridized with, exchange modes
at about d= 350, 600, and 850 A. The frequency splitting
of the dipolar modes decreases with increasing d because
of a corresponding decrease in the interlayer coupling.

0
For very small layer thicknesses (d &30 A) the dipolar
modes exhibit a characteristic increase in frequency be-
cause interface anisotropy contributions become dom-
inant in this regime. The highest-frequency mode is the
Damon-Eshbach surface spin-wave mode of the total
multilayer stack. For d~0, all modes but the highest-
frequency mode become degenerate. An analysis shows
that, as a result of the dominating interface anisotropies,
the dipolar mode in each layer becomes bulk modelike,
with minor stray fields in the spacer layers, thus exhibit-
ing reduced coupling. For d & 250 A, the range of dipo-
lar modes is crossed by the exchange modes. The latter
are characterized by their typical 1/d behavior. Their
stray fields in the spacer layers are very weak, resulting in
virtually no mode splitting apart from the crossing re-
gime. For small layer thicknesses, a weak but still
significant dependence of the exchange-mode frequencies
on the interface anisotropy constants was established. In
the crossing regime, the dipolar modes and the exchange
modes mix their mode type, leading to a pronounced fre-
quency gap. Although in this thickness regime the ener-
getic contributions of the interface anisotropies are very
small, the gap width is determined primarily by K, . This
is demonstrated in Fig. 7, where the spin-wave frequen-
cies are plotted for d=630 A (indicated by the dashed
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FIG. 6. Spin-wave frequencies as a function of single-layer
thickness for a multilayer consisting of Ave layers of Fe{110)and
interleaving nonmagnetic layers of same thickness. The param-
eters are as in Fig. 2. The dashed line indicates the thickness
position referred to by Fig. 7.

FIG. 7. Spin-wave frequencies as a function of the out-of-
plane interface anisotropy constant K, for a

0
magnetic/nonmagnetic multilayer as in Fig. 6 for d=630 A (as
indicated in Fig. 6).
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line in Fig. 6) as a function of the interface anisotropy
constant E, . For negative values of E„the gap width
shrinks virtually to zero and then increases for even
smaller values of E, . A study of the form of the disper-
sion curves as a function of the number of bilayers N re-
veals no strong dependence of the gap width on N. How-
ever, because of numerical instabilities, N could not be
chosen larger than about ten. An extrapolation of the re-
sults implies that the properties of the crossing regime, in
particular the gap width and the importance of interface
anisotropies, are much the same for larger N, i.e., super-
lattices.

An important issue is the possible role of interlayer ex-
change coupling in magnetic/nonmagnetic multilayers.
Due to the short range of interlayer exchange coupling it
can significantly contribute only for very small
thicknesses (a few atomic layers) of the nonmagnetic
spacer layers. Fig. 8 shows calculated spin-wave frequen-

cies as a function of the single-layer thickness d for a
magnetic/nonmagnetic multilayer consisting of five dou-
ble layers. The thickness of the magnetic layers equals
that of the nonmagnetic layers. For the exchange cou-
pling constant A, 2 it is assumed that A, 2 is proportional
to exp( —d /do) with d the thickness of the nonmagnetic

solacer layer and do a characteristic decay length (do = 10
A in Fig. 8). For d )60 A, interlayer exchange is negligi-
ble and we obtain the spin-wave properties as described
earlier. The first single-layer exchange mode with its
characteristic 1/d thickness behavior can be seen on
Fig. 8 for d ) 100 A. For very small layer thicknesses all
of the coupled dipolar modes but the highest-frequency
dipolar mode show a very strong frequency increase and
cross the highest-frequency dipolar mode. In the cross-
ing regime a very small mode repulsion is found, which
can hardly be resolved in Fig. 8. For comparison, the
mode behavior for A, 2=0 is plotted as dashed lines in
Fig. 8.

From these obtained properties we are now able to
draw some important analogies between bulk- and
surface-spin-wave properties in (bulk) single layers and in
multilayers. For a single magnetic layer there exists one
dipolar surface mode nearly unaffected by exchange. The
bulk spin waves, which contain both dipolar and ex-
change contributions, are frequency shifted to high fre-
quencies and become the so-called standing spin-waves
since, due ot the finite film thickness and the associated
large wave-vector component perpendicular to the film,
exchange contributions become dominant. For a
magnetic/nonmagnetic multilayer the role of volume ex-
change interaction is replaced by interlayer exchange.
For large spacer thicknesses, the latter can be neglected
and we are left with the purely dipolar coupled modes.
For small spacer thicknesses the onset of interlayer ex-
change converts all but one of the dipolar modes into
exchange-dominated modes. The remaining dipolar
mode is essentially a surface mode of the total multilayer
stack. Thus, as a basic conclusion, magnetic/
nonmagnetic multilayered structures can be regarded as a
model system to study the basic coupling mechanisms of
dipolar modes with suppressed exchange interaction.
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FIG. 8. Spin-wave frequencies for a magnetic/nonmagnetic
multilayer, as in Figs. 6 and 7, as a function of single-layer
thickness. The full lines are a calculation including interlayer
exchange interaction across the nonmagnetic layers. The
dashed lines are calculations without interlayer coupling.
A &2(dp =0)= 10 erg/cm, do = 10 A. (a) K, =0; (b) K, =2.8
erg/cm .

VI. ALL-MAGNETIC MULTILAYERS

In the case of all-magnetic multilayered structures, i.e.,
alternating magnetic films with different magnetic param-
eters such as saturation magnetization, g factor, or inter-
face anisotropies, the spin-wave modes of each magnetic
layer are coupled to those of adjacent layers both by the
dipolar coupling mechanism as well by interlayer ex-
change. For studying the latter effect, all-magnetic multi-
layers seem to be a good test system due to both the mul-
tiple number of interfaces as well as the specific proper-
ties of the coupled modes spectra. Pure exchange cou-
pling between magnetic layers has been investigated by
ferromagnetic resonance. ' ' ' However, in the present
study dipolar coupling also is included.

As a model system we consider a multilayer stack con-
sisting of three Fe layers of equal thickness interleaved by
two Ni layers of the same thickness. The system Fe/Ni is
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of specific interest since, coincidentally, the lowest-lying
exchange modes of both materials are nearly identical in

frequency for the same single-layer thickness. Figure 9
shows the calculated spin-wave frequencies as a function
of the single-layer thickness. The parameters used are
the bulk literature values of the saturation magnetization,
the g factor and the exchange constant of Fe and Ni. The
interlayer exchange coupling constant A i2 has been
chosen to be A, &=10 erg/cm. Interface anisotropies
have been set to zero; calculations using nonzero values
exhibited modifications close to those discussed in the
preceding sections. The most striking feature in Fig. 9 is
the lifting of the degeneracy for the exchange modes.
With the exception of the lowest two modes, the observed
exchange modes always can be subdivided into groups of
five modes, and each group can be further subdivided
into a two-mode and a three-mode subgroup. Each sub-

group corresponds to a single-layer exchange mode for ei-
ther Fe or Ni. For the lowest-lying group the single-layer
Fe exchange mode and the corresponding Ni exchange
mode are nearly degenerate, as shown by the nearly equal
spacing of all five modes. In the limit of an infinite num-
ber of layers (superlattice structure) the modes eventually
form a band of collective exchange modes, similar to the
band of collective dipolar modes in magnetic/
nonmagnetic-type superlattices. The frequency splitting
of the exchange modes strongly depends on the interlayer
exchange constant A &2. This is demonstrated in Fig. 10,
where the spin-wave frequencies are plotted as a function
of the interlayer exchange constant A i2. The Fe and Ni

layer thickness is 100 A. For A, 2=0 there are three
dipolar-type modes, two of which are doubly degenerate.
With increasing A i2 four of them become exchange dom-

inated, the fifth mode is the dipolar stack surface mode,
which is insensitive to exchange. These properties are
close to those calculated for magnetic/nonmagnetic mul-

tilayers, except that we are now dealing with two
different kinds of magnetic materials. At about 100 GHz
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the exchange mode of Fe, and just above 100 GHz the ex-
change mode of Ni, can be observed. The Fe exchange
modes as well as the Ni exchange modes are degenerate
in frequency, since their dipolar stray fields are extremely
weak in the adjacent layers. With increasing interlayer
exchange the exchange modes become coupled and split
into three Fe modes and two Ni modes. Of particular in-
terest is that with increasing interlayer exchange the Ni
modes show a strong mode repulsion from the Fe modes,
which increases their frequencies much more than the
frequency splitting due to the lift of degeneracy. For
A &z

~ ao the Ni modes approach the Fe exchange modes
of next higher order, and both show a nearly equidistant
mode separation.

VII. CONCLUSIONS
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FIG. 10. Spin-wave frequencies as a function of the inter-

layer exchange constant A» for a multilayer structure, as in

Fig. 9.

200
NX
c9

160-

'z
LU 120—

hJ
lK

80—
hl
O

40—

CL
cA 0

0
I i

100 200

LAYER THICKNESS lk)
300

FIG. 9. Spin-wave frequencies as a function of single-layer
thickness for an Fe/Ni/Fe/Ni/Fe multilayer structure. The pa-
rameters are Fe: 4~M=21 kG, g=2. 1, A =2X10 erg/cm;
Ni: 4aM=6 kG, g=2.2, A =0.7X10 erg/cm. The applied
magnetic field is 1 kG, the interlayer exchange constant is
A»=10 erg/cm .

Results are presented in this paper for propagating
spin waves in single ferromagnetic layers, double layers,
as well as for magnetic/nonmagnetic and all-magnetic
multilayered structures. With only the restrictions of in-

plane orientation of the saturation magnetizations in each
layer and their collinearity with the applied magnetic
field, the model presented here can be applied to a large
number of layered ferromagnetic structures. The variety
of magnetic bulk and interface mechanisms that deter-
mine the spin-wave properties of these materials opens a
large field of possible spin-wave excitations, with use for
the determination of magnetic parameters as well as pos-
sible applications, e.g. , in data processing using magnetic
devices.

For single magnetic films both dipolar and exchange
dominated modes are calculated. Surface amsotropies
strongly inAuence the spin-wave frequencies for small
film thicknesses. For nonzero wave vectors, different sur-
face anisotropies on each side of the film imply changes
in the spin-wave frequencies upon inversion of the propa-
gation direction. The latter opens potential applications
in the field of surface magnetism. For magnetic/
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nonmagnetic multilayers, collective dipolar modes have
been calculated and their crossing with the exchange-
dominated modes has been investigated. The gap width
in the crossing regime is mainly determined by the
amount of interface anisotropy. For very thin spacer
thicknesses, where magnetic interlayer coupling across
nonmagnetic layers becomes important, all but the
highest-frequency dipolar coupled modes become a new
type of exchange modes. In the case of all-magnetic mul-
tilayered structures, a new type of collective spin waves
(i.e., coupled exchange modes) are observed, reminiscent
of dipolar collective spin-wave excitations in magnetic/
nonmagnetic superlattices. The mode splitting of these
collective spin waves depends strongly on the interlayer
exchange constant A&2. It should be highly feasible to
test all these predictions by means of Brillouin light
scattering experiments, with the potential of gaining new
ways for evaluating multilayer-specific properties.
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